活化能活化分子

合集下载

活化能-高二化学(人教版2019选择性必修1)

活化能-高二化学(人教版2019选择性必修1)

反应活化能为0的反应: 自由移动的原子或离子之间的反应
4.化学反应发生所经历的过程 普通分子
活化能
碰撞频率越高,反应速率越快
有没有活化能为0的化学反应?
案例1:AgNO3溶液与NaCl溶液混合
离子间的反应瞬间完成
可看作活化能为0
案例2:在高空50~85Km的大气层,平均温度只有-50℃,存在大量自由 原子之间的反应,不需要活化能的推动。
推论2: 活化能越小,一般分子成为活化分子越 容易,则反应条件越简单。
从上图可知:活化能与化学反应难易的关系是 活化能高,反应难; 活化能低,反应易。
有没有活化能为0的化学反应?
案例1:AgNO3溶液与NaCl溶液混合
离子间的反应瞬间完成 可看作活化能为0
案例2:在高空50~85Km的大气层,平均 温度只有-50℃,存在大量自由原子之 间的反应,不需要活化能的推动。
物质 H2、O2
你知道吗? 条件
常温、常压
碰撞次数 2.35×1010 次/秒
任何分子间的碰撞次数都是非常巨大的,通常情况下, 当气体的浓度为1mol/L时,在每立方厘米、每秒内反应物分 子的碰撞可达到1028。
பைடு நூலகம்
NO.1
有效碰撞
活化能
1.基元反应 反应历程 大多数化学反应并不是经过简单碰撞就能完成的,而往往经过多 个反应步骤才能实现。
目录
01
有效碰撞 活化能
02 有效碰撞理论解析外界条件对
反应速率的影响
学习 目 标
1.知道活化能的含义及其对化学反应速率的影响。 2.通过讨论交流,问题探究,能从活化分子的有效 碰撞理论角度解释外界条件影响化学反应速率的快慢 的本质原因。
3.认识化学反应速率的调控在生活、生产和科学研究领 域中的重要作用。

2.1.2活化能课件高二上学期化学人教版选择性必修1

2.1.2活化能课件高二上学期化学人教版选择性必修1
活化分子
其它条件不变时 升高温度
其它条件不变时,升高温度,单位体积内活化分子的数目增大,单位体积内活化分子 百分数增多,单位时间内有效碰撞次数增多,化学反应速率加快;反之则慢
简单碰撞理论
解释浓度对化学反应速率的影响
活化分子
其它条件不变时 增大反应物浓度
在其它条件不变时,增大反应物浓度,单位体积内活化分子的数目增大,单位时间 内有效碰撞次数增多,化学反应速率加快;反之则慢
H202+2HI===2H20+I2 定量探究浓度、温度对反应速率的影响:
(1)为了有更明显的现象,还需要加入什么试剂? 淀粉,用于显色
(2)对比实验的数据是? 溶液由无色变为蓝色的时间
在298K时,实验测得溶液中的反应H202+2HI===2H20+I2在不同浓度时 的化学反应速率见表。
实验编号
(3)保持容器内压强不变,充入一定量的氩气_____,理由________________ _____________________________________________________________。 (4)保持容器的容积不变,充入一定量的氩气_____,理由________________ _____________________________________________________________。
简单碰撞理论
解释压强对化学反应速率的影响
活化分子
容器内压强不变 充入非反应气体
在其它条件不变时,充入非反应气体,压强不变,体积增大,各物质浓度减小,反 应速率减慢
【例1】在带有活塞的密闭容器中发生如下反应:3Fe(s)+4H2O(g) 高温 Fe3O4(s)+ 4H2(g),分析改变下列条件化学反应速率如何改变(填“变大”“变小”或“不 变”),阐述理由。 (1)增加铁片的质量(不考虑表面积的变化)_不__变__,理由_纯__固__体__的_浓__度__视__为__常____ _数__,_改__变__用__量__不_影__响__化__学__反_应__速__率_____。 (2)保持容器的容积不变,增加水蒸气的通入量_变__大__,理由增__大__反__应_物__浓__度____ _加__快__化_学__反__应__速__率___。

化学反应的活化能和反应速率

化学反应的活化能和反应速率

化学反应的活化能和反应速率一、化学反应的活化能1.定义:活化能是指在化学反应中,使反应物分子转变为活化分子所需提供的最小能量。

2.意义:活化能的大小反映了化学反应的难易程度。

活化能越低,反应越容易进行;活化能越高,反应越困难进行。

3.影响因素:(1)反应物分子的结构:分子结构越稳定,活化能越高;(2)反应物分子的组成:分子组成越复杂,活化能越高;(3)温度:温度越高,活化能越低。

二、化学反应的反应速率1.定义:反应速率是指在单位时间内,反应物浓度或生成物浓度的变化量。

2.表示方法:通常用反应物浓度或生成物浓度的变化量除以时间来表示,单位为mol·L-1·s-1或mol·L-1·min-1。

3.影响因素:(1)反应物浓度:反应物浓度越大,反应速率越快;(2)温度:温度越高,反应速率越快;(3)催化剂:催化剂能降低反应的活化能,从而提高反应速率;(4)表面积:固体反应物的表面积越大,反应速率越快;(5)压强:对于有气体参与的反应,压强越大,反应速率越快。

4.反应速率方程:反应速率方程是描述反应速率与反应物浓度之间关系的一个数学表达式,通常用速率常数k表示。

三、活化能与反应速率的关系1.活化能与反应速率成反比:活化能越低,反应速率越快;活化能越高,反应速率越慢。

2.活化能与反应速率的关系曲线:活化能与反应速率之间的关系可以通过Arrhenius方程进行描述,绘制出活化能与反应速率的关系曲线。

四、实际应用1.工业生产:了解活化能和反应速率的关系,可以优化工业生产过程,提高生产效率。

2.药物设计:研究活化能和反应速率,有助于设计新型药物,提高药物的疗效。

3.催化技术:研究活化能和反应速率,可以开发新型催化剂,提高反应速率,降低能源消耗。

4.环境保护:了解活化能和反应速率,有助于研究环境污染物的治理技术,保护生态环境。

习题及方法:1.习题:某化学反应的活化能是200 kJ·mol^-1,若反应物的初始浓度为1 mol·L^-1,求在25℃下,该反应的反应速率。

【知识解析】活化能

【知识解析】活化能

活化能1 基元反应与反应历程基元反应:一个化学反应往往经过多个反应步骤才能实现,每一步反应都称为基元反应。

反应历程:与某化学反应有关的一组基元反应反映了该反应的反应历程,反应历程又称反应机理。

自由基:像上述反应历程中的I·一样,带有单电子的原子或原子团叫自由基,如O·自由基。

2 有效碰撞与活化能(1)碰撞和有效碰撞碰撞特点①碰撞次数非常巨大;②不是每次碰撞都能发生化学反应有效碰撞概念能够发生化学反应的碰撞发生有效碰撞的条件①反应物分子必须具有一定的能量;②有合适的碰撞取向。

如反应2HI===H2+I2中分子碰撞示意图如图2-1-2所示:图2-1-2有效碰撞的实质有效碰撞能使化学键断裂,自由基可以重新组合形成新的化学键,从而发生化学反应(2)活化分子和活化能活化分子发生有效碰撞的分子必须具有足够的能量,这种能够发生有效碰撞的分子叫做活化分子活化能活化分子具有的平均能量与反应物分子具有的平均能量之差,叫做反应的活化能活化能与反应热E1——活化能E2——活化分子变成生成物分子放出的能量E1-E2——反应热(即ΔH)活化能与化学反应速率的关系在一定条件下,活化分子所占的百分数是固定不变的。

活化分子所占的百分数越大,单位体积内活化分子数越多,单位时间内有效碰撞的次数越多,化学反应速率越大。

可简略表示:活化能降低→普通分子变成活化分子→活化分子百分数增大→单位时间内有效碰撞的次数增多→化学反应速率增大3 运用有效碰撞理论解释外界条件对化学反应速率的影响(1)运用有效碰撞理论解释浓度对化学反应速率的影响其他条件不变时,对某一反应来说,活化分子在反应物分子中所占的百分数是一定的,增大反应物浓度→单位体积内活化分子的数目增多→单位时间内有效碰撞次数增多→化学反应速率增大。

(2)运用有效碰撞理论解释温度对化学反应速率的影响其他条件不变时,升高温度,反应物分子的能量增加,使一部分原来能量较低的分子变成活化分子(如图2-1-4所示)→活化分子百分数增加→单位时间内有效碰撞次数增多→反应速率增大。

活化分子与活化能的关系

活化分子与活化能的关系

活化分子与活化能的关系1. 引言在化学反应中,活化分子与活化能是两个重要的概念。

活化分子是指参与反应的分子,而活化能则是指使反应发生所需的最小能量。

活化分子与活化能之间存在着密切的关系,本文将对这一关系进行详细的探讨。

2. 活化分子的定义活化分子是指在化学反应中发生变化的分子。

在一个化学反应中,通常会有多个活化分子参与其中。

活化分子可以是单质,也可以是化合物。

例如,在燃烧反应中,燃料就是一个活化分子;在酸碱中和反应中,酸和碱分别是活化分子。

3. 活化能的定义活化能是指使一个化学反应发生所需的最小能量。

化学反应需要克服能垒才能进行,而能垒的高低决定了反应的速率。

活化能的大小与反应的速率息息相关,活化能越高,反应速率越慢。

4. 活化分子与活化能的关系活化分子与活化能之间存在着密切的关系。

活化分子的性质会直接影响活化能的大小。

4.1 活化分子的结构活化分子的结构对活化能有重要的影响。

一般来说,活化分子中存在着键的形成和断裂,这需要克服一定的能垒。

如果活化分子的结构比较复杂,其中的键比较牢固,那么活化能就会比较高。

相反,如果活化分子的结构比较简单,其中的键比较松散,那么活化能就会比较低。

4.2 活化分子的电性活化分子的电性也会对活化能产生影响。

一般来说,带有正电荷或负电荷的活化分子比中性分子更容易发生反应,因为它们之间的相互作用更强。

因此,带电的活化分子通常具有较低的活化能。

4.3 活化分子的能量活化分子的能量也会对活化能产生影响。

能量较高的活化分子通常具有较低的活化能,因为它们更容易与其他分子发生碰撞并引发反应。

相反,能量较低的活化分子通常具有较高的活化能,因为它们与其他分子发生碰撞的概率较低。

5. 活化能与反应速率活化能与反应速率之间存在着密切的关系。

活化能越高,反应速率越慢;活化能越低,反应速率越快。

这是因为活化能决定了反应发生的难易程度,活化能越高,反应就越难发生,反应速率就越慢;活化能越低,反应就越容易发生,反应速率就越快。

什么是化学反应的活化能

什么是化学反应的活化能

什么是化学反应的活化能化学反应的活化能指的是在进行化学反应时,反应物必须克服的能量障碍,以使反应发生。

在化学反应中,分子和原子之间的键必须断裂,形成新的化学键。

活化能也被称为反应的能垒。

本文将详细介绍化学反应的活化能及其影响因素。

一、化学反应的活化能定义化学反应的活化能是指反应物转化为产物所需克服的最小能量障碍。

在分子层面上,活化能是指分子在碰撞时克服间隔作用力,使原子和分子能够重新排列成新分子所需的能量。

反应物中的化学键需要断裂,形成新的化学键,这一过程需要吸收能量,即活化能。

二、影响化学反应活化能的因素1. 温度:温度是影响活化能的最主要因素。

提高温度可以增加分子的动能,使分子碰撞更频繁、更强烈,有利于反应物分子克服能垒,从而增加反应速率。

2. 反应物浓度:反应物浓度的增加会增加分子之间的碰撞频率,从而增加反应发生的几率,降低活化能。

3. 催化剂:催化剂是一种能够降低反应活化能的物质。

催化剂通过提供新的反应途径,使反应物能够更容易改变结构,从而降低活化能并增加反应速率。

4. 压力:压力的增加会增加反应物分子的碰撞频率,从而增加反应发生的几率,降低活化能。

三、活化能与反应速率的关系活化能直接影响着化学反应的速率。

活化能越高,反应速率越慢;活化能越低,反应速率越快。

当反应物的能量大于等于活化能时,反应才能发生。

化学反应速率可以通过公式Arrhenius方程来描述: k = Ae^(-Ea/RT)其中,k表示反应速率,A表示反应的频率因子,Ea表示活化能,R表示理想气体常数,T表示温度。

由公式可见,活化能越小,反应速率越快。

四、应用和意义对化学反应的活化能的研究有助于我们了解反应速率的变化规律以及如何调控反应速率。

根据活化能的不同,一些化学反应是迅速发生的,如爆炸反应或酸碱中和反应;而一些化学反应则需要较高的温度、压力或催化剂的存在才能进行,如某些有机反应。

研究活化能可以帮助我们优化反应条件,提高反应速率,从而节约时间和资源。

【课件】活化能课件高二化学人教版(2019)选择性必修1

【课件】活化能课件高二化学人教版(2019)选择性必修1
“环式”反应历程图象分析
对于”环式”反应历程图象,位于“环上”的物质 一般是催化剂或中间体,如⑤、⑥、⑦和⑧.“入环” 的物质为反应物,如①和④,“出环”的物质为生成 物、如②和③,由反应物和生成物可写出总反应化学 方程式。
书写基元反应及总反应 图示历程包含__个基元反应,其中速率最慢的是第___个
速率减小
自我测试
3. 平流层中氟氯烃对臭氧层的破坏是由于含氯化合物 的催化作用改变了臭氧分解反应的历程,其反应过程 的能量变化如图。总反应:O3+O―→2O2。 催化反应:①O3+Cl―→O2+ClO; ②ClO+O―→Cl+O2。 下列说法正确的是
A.Ea=Ea1+Ea2 催化效率越强,活化能降低越多,Ea与(Ea1+Ea2)之间没有等 B.反应①为吸热量反关应系,反应②为放热反应,因此反应速率:反应①<反应②
4.自由基:带有单电子的原子或原子团
一、基元反应与反应历程
CH₄与Cl₂的取代反应是自由基反应历程,经历反应的链引发、链传递、链终止: Cl₂→2Cl·,Cl·+CH₄→HCl+·CH₃、 ·CH₃+Cl₂→CH3Cl +Cl·、 CH3Cl+Cl·→·CH2Cl+HCl、 ·CH2Cl+Cl2→CH Cl₂+Cl·
问题思考: 化学反应速率与活化分子有什么关系?根据有效碰撞理论,联系化学 反应速率的影响因素,讨论各因素是如何影响化学反应速率的。
二、碰撞理论与活化能
3.用有效碰撞理论解释影响化学反应速率的因素
(1)浓度、压强对化学反应速率的影响
增大反应物 浓度
增大压强
(相当于增大 浓度)
单位体积内分 子总数增多, 活化分子百分 数不变,单位 体积内活化分

2.2.2活化能

2.2.2活化能

天津大学 无机化学教学团队第二章化学反应的方向、速率和限度第一节 化学反应速率1活化分子p分子碰撞理论认为:反应物分子 (或原子、离子) 之间必须相互碰撞,才有可能发生化学反应。

但反应物分子之间并不是每一次碰撞都能发生反应。

绝大多数碰撞是无效的弹性碰撞,不能发生反应。

对一般反应来说,事实上只有少数或极少数分子碰撞时能发生反应。

发生反应的两个基本前提:Ø 发生碰撞的分子应有足够高的能量例NO 2+ CO →NO + CO 21活化分子1活化分子p有效碰撞——能发生反应的碰撞。

p E c: 发生有效碰撞所必须具备的最低能量。

活化分子——具有等于或超过Ec的分子。

非活化分子(或普通分子)——能量低于Ec的分子。

发生反应的两个基本前提:Ø 发生碰撞的分子应有足够高的能量Ø 碰撞的几何方位要适当*例NO 2+ CO →NO + CO 21活化分子p 反应活化能——活化分子具有的平均能量(E * )与反应物分子的平均能量(E )之差。

E a =E * - E 例 N 2O 5 → 2NO 2 + O 212E a =E *-E=(106.13-4.03)kJ·mol -1=102.10kJ·mol -1325K 时 E *=106.13kJ·mol -1, E =4.03kJ·mol -11活化能p 大部分分子的能量接近E 值,能量大于E 分子只占少数。

p 非活化分子要吸收足够的能量才能转变为活化分子。

p E a 可以通过实验测出,属经验活化能。

p 大多数反应的活化能在60~250kJ·mol -1之间p E a <42kJ·mol -1的反应,活化分子百分数大,有效碰撞次数多,反应速率大,可瞬间进行。

如酸碱中和反应。

再如p E a >420kJ·mol -1的反应, 反应速率很小。

(NH 4)2S 2O 8+3KI → (NH 4)2SO 4+K 2SO 4+KI 3E a =56.7kJ·mol -1, 反应速率较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档