定积分的概念与可积条件
定积分的概念和可积条件

n
S() f ( i )xi,i [xi1, xi ], i 1
如果当 0 时极限 lim S() 存在,且与划分 的具 0
体选取无关,也与 i 的选取无关,则称函数 f (x) 在 [a,b]
上是黎曼可积的,并称上述极限为 f (x) 在 [a,b] 上的定积分,
T2
t tn1
n
n
(3) 作和: S si v( i )ti
i 1
ቤተ መጻሕፍቲ ባይዱi 1
n
S (4) 取极限:记
t
max {
1in
ti
},
lim
t 0
i 1
v( i
)ti
二、定积分的定义
设 f (x) 是定义在 [a,b] 上的有界函数,在 [a,b] 上任意取分 点a x0 x1 xn b,我们称之为区间 [a,b] 的一个划分, 记作 ,同时记 xi xi xi1,x m1iaxn {xi},称之为划分
S( ') S(), S( ') S().
证明: 不是一般性,设 ' 就比 多一个分点 x ',且
不妨设 x ' (xk1, xk ) ,则
n
k 1
n
S() Mixi Mixi Mk xk Mixi
i 1
i 1
ik 1
k 1
S( ') Mixi (x ' xk1) sup f (x)
记作:
b
f (x)dx
,
即
a
b
n
a
f (x)dx
lim S()
0
lim
0 i1
第7章第2节定积分存在的条件

对应的达布和分别记为 s1,s1及s2,s2, 我们来证明 s1 s2. 把两种分法的分点合并在一起,也是一种分法,
对应的达布和分别记为S3 , 及S3,于是由定理1知
S1 S3, S3 S2 . 而S3 S3 , 所以S1 S2.
(证毕)
2020年4月6日星期一
i
ixi 0.
2020年4月6日星期一
海阔凭鱼跃,天高任鸟飞
19
循序渐进
§7.2 定积分存在的条件
二、可积函数类(三类可积函数)
1. a,b上的连续函数在a,b上可积.
证明: 设f x 在a,b上连续。根据康托定理, f x在a,b上一致连续,
所以对任意的 0, 0,使对于
a,b上任意两点x', x'',只要 x' x'' ,
2020年4月6日星期一
海阔凭鱼跃,天高任鸟飞
21
循序渐进
§7.2 定积分存在的条件
2. 只有有限个第一类不连续点的函数是可积的. (即, 分段函数是可积的).
证明:设f x有k个不连续点:x1' , x2' ,L , xk',则对于
任意的 0及 0,总存在适当小的 0,使 ,
2k
而对任何分法,当 maxxi 时,
n
S f i xi S
i 1
n
取极限 0,得
lim f
0 i1
i
xi I
可积准则1:f 在a,b可积 lim S S 0 0
2020年4月6日星期一
海阔凭鱼跃,天高任鸟飞
16
循序渐进
§7.2 定积分存在的条件
第5.1节 定积分的概念及性质

§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。
注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。
5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。
6.1 定积分的概念及性质

b
b
b
(线性性)
f ( x)dx .
(积分区间具有可加性)
补充 不论 a , b, c 的相对位置如何,上式总成立.
四、定积分的性质
• 性质 4 性质 4
a1dx a dx b a .
b
b
b
•性质5 如果在区间[a, b]上 f (x)0, 则
a f (x)dx 0 (ab).
2
2
1
x dx (2) ln(1 x)dx 与
2
1
0
1
0
ln 2 (1 x)dx
2 x [1, 2] x x 时, ,由保序性可知 解 (1)当
可知
2
1
xdx x 2 dx .
1
2
2
x ,由保序性 ) (2 )当 x [0,1]时, ln(1 x ) ln (1
i 1,2, n
a
b xn x
解决步骤
(2) 取近似
在每个小区间上任 取一点 i 设函数在区间 a, b 上连续
y
xi 1 i xi
y f x 0
为高,以 xi为底, 以 f ( i ) 作 n 个小矩形,其面积分 别为 f i xi , 则 Ai f i xi (i 1,2,, n)
结
1. 定积分的实质: 特殊和式的极限.
思想 以直代曲、以常代变. 取极限. 方法 四步曲: 分割、取近似、求和、
3. 定积分的性质 (注意估值性质、积分中值定理的应用)
4. 典型问题 (1) 估计积分值; (2) 不计算定积分比较积分大小.
•推论1 如果在区间[a, b]上 f (x)g(x), 则
函数可积性

s(T2 ) s(T1 ) [mk ( x xk1 ) mk( xk x)] mk ( xk xk1 )
[Mk ( x xk1 ) Mk ( xk x)]
记作:
积分上限
b
n
a
f ( x)dx
lim
0 k 1
f (k ) xk
积分下限
定积分是 :
[a, b] 称为积分区间
积分和式的极限
2020/1/13
4
b
[例如] 曲边梯形的面积 A f ( x)dx a b 变速直线运动的路程 s v(t)dt a 定积分的“ ”定义:
1 D( x) 0
x为 有 理 数 x为 无 理 数
在[0, 1]上 不 可 积
[证]
任给[0,
1]的一个划
分xk
n k0
任 取k [ xk1 , xk ]是 有 理 数 (k 1,, n)
n
n
n
D(k )xk
k 1
xk
k 1
1
lim
0
作业
P44习题2.1: 2. 4. 8. P54习题2.2: 8. 9.
复习:P37—53 预习:P54—60
2020/1/13
1
第五讲 函数可积性
一、定积分的概念 二、可积性条件与可积类
2020/1/13
2
一、定积分的概念
黎曼积分定义:
设 函 数 f : [a, b] R, 对 区 间[a, b]
2020/1/13
数学分析ch7-1定积分的概念和可积条件

第十三页,共三十页。
例7.1.1 讨论Dirichlet函数
1, x为有理数 D(x) 0, x为无理数
在[0, 1] 上的可积性。
解 由于有理数和无理数在实数域上的稠密性,因此不管用什么
样的划分 P 对[0, 1] 作分割,在每个小区间[xi , xi1] 中一定是既有有理数 又有无理数。
于是,当将 i 全部取为有理数时,
并由此得到
b f (x)dx = - a f (x)dx ,
a
b
a f (x)dx 0 。 a
这一定义也可以用“ - 语言”表述如下: 设有定数 I ,对任意给定的 0 ,存在 0 ,使得对任意一种划 分
P: a x0 x1 x2 xn b , 和任意点 i [xi1,xi ] ,只要 m1iaxn (xi ) ,便有
另一方面为了确定第二定律kepler将椭圆中被扫过的那部分图形分割成许多小的扇形并近似地将它们看成一个个小的三角形运用了一些出色的技巧对它们的面积之和求极限成功地计算出了所扫过的面积图711
数学分析(shù xué fēn xī)ch7-1定 积分的概念和可积条件
第一页,共三十页。
这是天文学上划时代的发现(Newton正是在证明这些定律的过程 中发现了万有引力定律,进而创立了现代天体力学),而且也是数学 发展史上的重要里程碑。
i 1
6
令 n ,得到
lim
n
S
n
lim
n
n(n
1)(2n 6n3
1)
1 3
与
lim
n
S
n
lim
n
n(n
1)(2n 6n3
1)
1 3
,
由极限的夹逼性,可知曲边三角形的面积为
高等数学定积分可积条件

又任取 i [ xi 1 , xi ]\ Q, i 1, 2,
, n, 则
D(i )Δxi 0.
i 1
n
于是
n
D( i )Δxi D(i )Δxi
i 1 i 1 n i 1
n
n
1, 而这与
D( i )Δxi D(i )Δxi
与 i [ xi 1 , xi ] ( i 1,2,
n i 1
, n ) 如何选取, 都有
1,
f ( i )Δxi J
于是
前页 后页 返回
f ( i )Δxi
i 1
n
J 1 M.
则必有 k , 使得 f ( x ) 在 倘若 f ( x ) 在 [a, b] 上无界,
工作危害分析(JHA)- 分析步骤
分析步骤(参照附表)
1、 把正常的工作分解为几个主要步骤,即首 先做什么、其次做什么等等, 2、 用3 - 4个词说明一个步骤,只说做什么, 而不说如何做。 3、 分解时应:
—观察工作 —与操作者一起讨论研究 —运用自己对这一项工作的知识 —结合上述三条 国家职业安全卫生管理体系认证中心(青岛) 前页 后页 返回
n
ba
n i 1
,从而
i Δxi b a Δxi .
i 1
例如, 在 [a, b] 上一致连续的 f ,便属于这种情形.
定理9.4(连续必可积)
若 f 在 [a , b] 上 连续,则 f 在 [a , b] 上 可积. 证 f 在 [a , b] 上连续,从而 在 [a , b] 上 一致连续.于
当 T 时 , 对任何 i [ xi 1 , xi ], 有
第6章定积分 - 精品课程网

2、 直径为 20cm,高为 80cm 的圆柱体内充满压强为 10N/ cm2 的蒸气,设温度保持不变,要
使蒸气体积缩小一半,问需要作多少功?
3、 有一等腰梯形闸门,它的两条底边各长 10m 和 6m,高为 20m,较长的底边与水面相齐,计 算闸门的一侧所受的水压力。
⎩x,
当x ∈[0,1)时,求 Φ(x) =
x
f (t)dt 在[0,2]上的表达式,并讨论
当x ∈[1,2]时.
0
Φ(x) 在(0,2)内的连续性。
∫ ∫ 8、 设 f(x) 在 [a,b] 上 连 续 且 f(x)>0,F(x)=
x
f (t)dt +
x
dt
, x ∈[a,b]. 证 明 :
a
b f (t)
∫b) π sin 2 kxdx = π . −π
∫ 5、设 k 及 l 为正整数,且 k ≠ l,证明 π cos kx sin lxdx = 0. −π
∫ 6、设 f(x)在[a,b]上连续,在(a,b)内可导且 f ′(x) ≤ 0, F (x) = 1
x
f (t)dt. 证明在(a,b)
x−a a
4、 设有一长度为 L,线密度为 ρ 的均匀细直棒,在与棒的一端垂直距离为 a 单位处有一质
量为 m 的质点 M,试求这 的物体从地球表面升高到 h 处所作的功是W = k mMh 其中 k R(R + h).
是引力常数,M 是地球的质量,R 是地球的半径;
积。
2、 证明:由平面图形 0 ≤ a ≤ x ≤ b,0 ≤ y ≤ f (x) 绕 y 轴旋转所成的旋转体的体积为:
∫ V = 2π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小区间的长度xi qi qi1 qi1(q 1),
取i qi1,(i 1,2, , n)
n
i 1
f (i )xi
i
n 1
1
i
xi
n i 1
q1i1q
i
1
(q
1)
n
1
(q 1) n(q 1) 取qn 2 即q 2n
i 1
n
1
f (i )xi n(2n 1),
i 1
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 , xn }
趋近于零 ( 0) 时,
n
曲边梯形面积为
A lim 0 i1
f (i )xi
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t )是 时 间 间 隔[T1 ,T2 ] 上t 的 一 个 连 续 函 数 , 且 v(t) 0,求物体在这段时间内所经过的路程.
定理2 设函数 f ( x)在区间[a, b]上有界, 且只有有限个间断点,则 f ( x)在 区间[a, b]上可积.
四、定积分的几何意义
f ( x) 0, f ( x) 0,
b
a f ( x)dx A
曲边梯形的面积
b
a f ( x)dx
A
曲边梯形的面积 的负值
A1 A2
A3 A4
b
a
f
( x)dx
A1
A2
A3
A4
几何意义:
它是介于 x 轴、函数 f (x)的图形及两条 直线 x a, x b 之间的各部分面积的代数和. 在 x 轴上方的面积取正号;在 x 轴下方的面 积取负号.
例1 利用定义计算定积分 1 x2dx. 0
解
将[0,1]n 等分,分点为xi
i ,(i n
本章内容、要求及重点
教学内容:
1、给出了定积分的概念和可积条件。 2、给出了定积分的基本性质。 3、给出了微积分基本定理及求定积分的常用方法。
4、给出了定积分的应用。
教学重点: 变限函数与定积分的概念;求定积分的方法。
要求:
1、理解变限函数与定积分的定义。 2、熟练掌握求定积分的方法,并会应用微积分知识解决 实际问题。 3、了解达布(Darboux)和及可积条件。
xi xi xi1,(i 1,2, ),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2, )
n
并作和S f (i )xi ,
i 1
记 max{ x1 , x2 , , xn },如果不论对[a, b]
怎样的分法, 也不论在小区间[ xi1 , xi ]上
1,2,
,n)
小区间[ xi1 , xi ]的长度xiΒιβλιοθήκη 1 ,(i n1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,
i 1
i 1
i 1
n
i 1
i n
2
1 n
1 n3
n
i 1
i2
1 n3
n(n
1)(2n 6
1)
1 6
1
1 n
2
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
n
(2)求和 s v( i )ti
把区间[a,b] 分成 n y
个小区间[ xi1, xi ], 长度为 xi xi xi1;
在每个小区间[ xi1, xi ]
上任取
一点
,
i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
曲边梯形面积的近似值为
n
A f (i )xi
1
lim
x
1
x(2x
1)
lim
x
2x 1
1
ln
2,
1
lim n(2n 1) ln 2,
x
n
2 1dx
1x
lim
0
n i 1
1
i
xi
1
lim n(2n 1) ln 2. n
例 3 设函数 f ( x) 在区间[0,1] 上连续,且取正值.
i 1
(3)取极限 max{t1,t2 , ,tn }
n
路程的精确值
s
lim
0
i 1
v(
i
)ti
二、定积分的定义
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n 个小区间,各小区间的长度依次为
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示,在区间 [a , b]内插入若干
个分点,a x0 x1 x2 xn1 xn b,
而与积分变量的字母无关.
b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(2)定义中区间的分法和i 的取法是任意的.
(3)当函数 f ( x)在区间[a,b]上的定积分存在时,
称 f ( x)在区间[a, b]上可积.
三、存在定理
定理1 当函数 f ( x)在区间[a, b]上连续时, 称 f ( x)在区间[a, b]上可积.
点i 怎样的取法,只要当 0时,和S 总趋于
确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限 b a
f ( x)dx
I
lim 0
n i 1
积分和
f (i )xi
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
注意:
(1) 积分值仅与被积函数及积分区间有关,
第一节 定积分的概念和可积 条件
● 一、问题的提出 ● 二、定积分的定义 ● 三、存在定理 ● 四、几何意义 ● 五、小结
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形由连续曲线
y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
x b所围成.
A?
oa
bx
1 n
,
0 n
1 x2dx
0
n
lim 0 i1
i 2xi
lim 1 1 1 2 1 1 . n 6 n n 3
例2
利用定义计算定积分
2
1
1dx x
.
解 在[1,2]中插入分点 q, q2 , , qn1 ,
典型小区间为[qi1 , qi ],(i 1,2, , n)