第七章相变对流传热

合集下载

《传热学》第7章-凝结与沸腾换热

《传热学》第7章-凝结与沸腾换热

补充例题3
v 思路: 膜态沸腾换热套用公式计算即可。
稳定的膜态沸腾时,金属丝的电流的发热量 一部分通过沸腾换热传给了水,其余部分则 使金属丝的内能增加(温度升高),这是一 个能量平衡。
补充例题3
v 解:膜态沸腾换热系数的计算套教材中的公式,略 去。结果为: h=236.70 W/(m2.℃)
每米长金属丝的传热量为:
理论解的修正
h
=
0.943

gγρ
µH (ts
2λ3 − tw
1/ 4
)
实验证实: Re < 20
时,实验结果与理论解相吻合
Re > 20 时,实验结果比理论解高20%
所以在工程计算时将该式的系数加大20%
h
=
1.13

gγρ 2λ3
µl(ts − tw
)
1/
4
定性温度
tm
传热学
第7章 凝结与沸腾换热 Condensation and boiling
简介
蒸气被冷却凝结成液体的换热过程称为凝结换热; 液体被加热沸腾变成蒸气的换热过程称为沸腾换热
——有相变的对流换热
一般情况下,凝结和沸腾换热的表面传热系数要比单相 流体的对流换热高出几倍甚至几十倍。
7-1 凝结换热现象
膜状凝结换热 的主要阻力
=
1 2
(ts
+
tw
)
其他
单根水平圆管外壁面上的层流膜状凝结换热平均表面传热系数
h=
( ) 紊流膜状凝结换热
0.729

gγρ µd ts
2λ3 − tw
1/ 4
( ) 整个垂直壁面的平均表面传热系数

西安交通大学传热学课件

西安交通大学传热学课件
(3)主要热阻
(4)凝结传热设备的设计依据:膜状凝结
9/76
传热学 Heat Transfer
四、膜状凝结传热的应用
1、蒸汽压缩制冷循环 2、电厂的凝汽器 3、电子元器件冷却
10/76
传热学 Heat Transfer 11/76
传热学 Heat Transfer
§7-2 层流膜状凝结传热
凝结传热是一个非常复杂的现象
§7-1 凝结传热的模式
一、凝结的定义
蒸汽与低于其饱和温度的壁面接触时形成 液体的过程。
二、两种存在形态
浸润性液体;非浸润性液体。
5/76
传热学 Heat Transfer
三、凝结传热的两种模式
tw ts
1、膜状凝结(film condensation)
沿整个壁面形成一层薄膜,并且在
g
重力的作用下流动。
传热学 Heat Transfer 38/76
传热学 Heat Transfer
§7-4 沸腾传热简介
一、液体汽化的两种方式
1、蒸发(evaporation) 2、沸腾(boiling) (1)定义
工质内部形成大量气泡并由液态转 换到气态的一种剧烈的汽化过程
39/76
(2)分类
传热学 Heat Transfer
一、不凝结气体
增加了传递过程的阻力 减小了凝结的驱动力 二、蒸气流速 使液膜变厚 使液膜变薄
31/76
三、过热蒸汽
传热学 Heat Transfer
四、液膜过冷度及温度分布的非线性
五、管子排数 前面推导的横管凝结换热的公式只适用于单根横管
六、管内冷凝
32/76
传热学 Heat Transfer

能源第七章 热量传递的三种基本方式

能源第七章 热量传递的三种基本方式
特例:一小凸物体(非凹)被包容在一个很大的空 腔内。该物体与空腔表面的辐射换热量计算式:
Φ 1A1 (T14 -T24 ) W
A1 A2
T1 , A1,ε1 T2
热工基础与应用
4. 例题 已知:A=1.42m2(H=1.75m,d=0.25m),t1=30℃,t2=10 ℃(冬),t2=25℃(夏),ε1=0.95 求:冬天与夏天人体与内墙的辐射传热量
③h:表面传热系数,是表征对流传热过程强弱的 物理量。过程量,与很多因素有关(流体种类、表 面形状、流体速度大小等)
④记住 h 的量级,“个” “十” “百” “千” “成千上万”。(表4-1)
流动方式:强制>自然对流
介质:水>空气 相变:有相变>无相变
水蒸气凝结>有机蒸汽凝结
热工基础与应用
三、辐射(radiation, thermal radiation) 1. 定义 辐射:物体通过电磁波来传递能量的方式
q Φ A h(tw t f ) W m2 q Φ A h(t f tw) W m2
tw t f t f tw
流体力学研究:tw=tf , isothermal flow
①A:与流体接触的壁面面积
②约定对流传热量永远取正值(失去/得到)
热工基础与应用
③对流传热(convective heat transfer):流体流 过温度不同的固体壁面时的热量传递过程(工程 上感兴趣)
热工基础与应用
3. 分类 对流传热按照不同的原因可分为多种类型 流动起因,分为:强制对流和自然对流。 是否相变,分为:相变对流传热和无相变对流传热。
热工基础与应用
4. 基本计算式—(Newton’s Law of Cooling)

传热学3-7章问答题及答案

传热学3-7章问答题及答案

第三章 非稳态热传导一、名词解释非稳态导热:物体的温度随时间而变化的导热过程称为非稳态导热。

数Bi :Bi 数是物体内部导热热阻λδ与表面上换热热阻h 1之比的相对值,即:λδh Bi =o F 数:傅里叶准则数2τl a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。

二、解答题和分析题1、数Bi 、o F 数、时间常数c τ的公式及物理意义。

答:数Bi :λδh Bi =,表示固体内部导热热阻与界面上换热热阻之比。

2τl a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。

hA cVc ρτ=, c τ数值上等于过余温度为初始过余温度的36.8%时所经历的时间。

2、0→Bi 和∞→Bi 各代表什么样的换热条件?有人认为0→Bi 代表了绝热工况,是否正确,为什么?答:1)0→Bi 时,物体表面的换热热阻远大于物体内部导热热阻。

说明换热热阻主要在边界,物 体内部导热热阻几乎可以忽略,因而任一时刻物体内部的温度分布趋于均匀,并随时间的推移整体地下降。

可以用集总参数法进行分析求解。

2)∞→Bi 时,物体表面的换热热阻远小于物体内部导热热阻。

在这种情况下,非稳态导热过程刚开始进行的一瞬间,物体的表面温度就等于周围介质的温度。

但是,因为物体内部导热热阻较大,所以物体内部各处的温度相差较大,随着时间的推移,物体内部各点的温度逐渐下降。

在这种情况下,物体的冷却或加热过程的强度只决定于物体的性质和几何尺寸。

3)认为0→Bi 代表绝热工况是不正确的,0→Bi 的工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。

3、厚度为δ2,导热系数为λ,初始温度均匀并为0t 的无限大平板,两侧突然暴露在温度为∞t ,表面换热系数为h 的流体中。

试从热阻的角度分析0→Bi 、∞→Bi 平板内部温度如何变化,并定性画出此时平板内部的温度随时间的变化示意曲线。

答:1)0→Bi 时,平板表面的换热热阻远大于其内部导热热阻。

传热学考研题库【名校考研真题】(相变对流传热)【圣才出品】

传热学考研题库【名校考研真题】(相变对流传热)【圣才出品】

第7章相变对流传热一、填空题1.沸腾危机是指______。

[浙江大学2010研]【答案】在大容器饱和沸腾中,核态沸腾与过渡沸腾中间对应的热流密度的峰值q,max即临界热流密度2.凝结换热的主要热阻是______。

[浙江大学2010研]【答案】凝结液的热阻【解析】无论是膜状凝结还是珠状凝结,凝结液体都是构成蒸气与壁面交换热量的热阻载体。

3.核态沸腾能够发生的两个主要基本条件是______、______。

[浙江大学2012研]【答案】存在汽化核心;有过热度【解析】加热表面上形成汽化核心引起的扰动使沸腾增强,传热强度增大;沸腾液的过热度是气泡存在和长大的动力。

4.临界热流密度是指______,对于通过控制热流密度来改变工况的加热设备,一旦超过临界热流密度将导致设备______,对于壁温可控的加热设备,一旦超过临界热流密度可能导致______。

[浙江大学2012研]【答案】在大容器饱和沸腾中,核态沸腾向过渡沸腾转变的热流密度的最大值;烧毁;传热量减少【解析】在高温下恒热流密度加热时,当热流密度超过临界热流密度,壁温会突然剧烈上升,使设备烧毁;对于恒壁温加热,超过临界热流密度时,进入过度沸腾阶段,热流密度和表面传热量都会下降。

5.沸腾的临界热流密度是从______沸腾过渡到______沸腾的转折点。

[重庆大学2014研]【答案】核态;过渡6.大容器核态沸腾的主要传热特点是______;强化沸腾传热的基本原则是______。

[重庆大学2014研;浙江大学2005研]【答案】温压小,换热强度大;增加加热表面的汽化核心数【解析】在核态沸腾区,汽化核心增加,气泡扰动剧烈,传热系数和热流密度都急剧增大。

高的传热强度主要是由于气泡的形成、成长、以及脱离加热壁面所引起的各种扰动所造成的。

7.凝结换热的两种形式是_______和_________。

[浙江大学2006研]【答案】珠状凝结;膜状凝结二、判断题1.蒸汽在低于饱和温度的壁面接触时所可能出现的膜状凝结形式或珠状凝结形式主要取决于接触壁面表面的湿润能力。

传热学相变对流传热

传热学相变对流传热

水冷壁中的传热恶化 (1)第一类传热恶化:在热负荷较高、管内质量含汽率较低的情况下, 由核态沸腾转变为膜态沸腾的传热恶化。通常发生在亚临界压力下。
(2)第二类传热恶化:发生在热负荷较低、管内质量含汽率很高的情况 下。管子内壁上水膜因蒸发或被汽流撕破而消失,从而管壁直接与蒸汽 接触,即蒸干,称为第二类传热恶化。 抑制和推迟方法 (1)内螺纹管;(2)适当提高管内质量流速
(3) 易形成气化核心的位置
壁面上的凹穴和裂缝
原因
• 受热面积大 • 易残留气体
➢管内沸腾影响因素
含气量、质量流率和压力
流动类型 换热类型
• 单相流 • 单相对流换热
• 泡状流 • 过冷沸腾
• 块状流 • 环状流 • 单相汽
• 核态沸腾 •液膜对流沸腾 • 湿蒸汽换热 • 过热蒸汽换热
蒸干:液膜消失
加热壁面沉浸在有自由表面液体中所发生的沸腾
加热表面
2. 沸腾传热分类 ➢ 根据流体运动的动力:
管内沸腾——外加压差作用 液体在外力的作用下,以一定的流速流过壁面时所
发生的沸腾换热。生成的汽泡不能自由上浮,而是与 液体混在一起,形成管内汽液两相流
Liquid Bubble Slug
Annular
Mist
32
1/ 4
rg l l
h 1.13 L(t t ) q
h(ts
tw
)
1.13
rg3l l2 l L
1/ 4
l
(ts
tw
s
)3/ 4
w
➢严重性:1% 的不凝结气体能使 h降低 ~ 60% ➢凝汽器工作中,排除不凝结气体是保证设计能力的关键
➢ 蒸气流速——改变液膜厚度

第7章_相变对流传热讲解

第7章_相变对流传热讲解

5、6、蒸气过热与液膜过冷
(只要对潜热项进行适当修正即可) 蒸汽过热: r" r c p,v (tv ts ) 液膜过冷:
r ' r 0.68c p (ts tw ) r (1 0.68Ja)
7.3.2 膜状凝结传热的强化
1. 基本原则: 尺量减薄液膜厚度(膜层热阻是主要热阻) 2. 强化技术——增加尖突物、及时排液 (1)采用高效冷凝面——原理:利用表面张力使肋顶 或沟槽脊背的液膜拉薄,从而增强换热。 ①低肋高、小节距横管;②锯齿管; (2)使液膜在下流过程中分段泄出或采用其他加速排 泄的措施,保持开始段δ较薄的条件 ——①加泄出罩; ②顺液流方向开沟槽的竖管 (3)采用微肋管(强化管内换热)
1、不凝结气体的影响 影响机理:
(1)冷壁面附近形成一不凝结气体层,增加了一项热阻 (2)不凝结气体的存在使壁面附近的蒸气分压下降,相
应的饱和温度下降,从而使凝结换热的驱动力下降
影响结果:使表面传热系数大大下降,换热削弱 影响程度:与压力、热负荷、运动速度等有关 例:纯净水蒸汽膜状凝结,h=5820-11630W/m•℃, 含有1%空气时,实验证明 h值将下降60%左右
7-2 膜状凝结分析解及计算关联式
主要内容:分析求解思路、求解结果、适用条件(场合)
7.2.1 努塞尔蒸气层流膜状凝结分析解(1916年提出) 1、基本依据:液膜热阻为过程的主要热阻 2、简化假设(详见P303) (1)常物性; (3)忽液膜惯性力; (7)ρ v<< ρ l; (2)蒸汽静止; (4)汽液界面无温差,tδ=ts; (8)液膜表面平整无波动。
7-5 大容器沸腾传热的实验关联式
一 、大容器饱和核态沸腾
表面传热系数或热流密度的计算

中药制剂工艺--第07章传热PPT课件

中药制剂工艺--第07章传热PPT课件

gratdln im 0 nt nt
Δt—两等温面温差 Δn—两面间垂直距离
若为稳态一维温度场:
gradt dt dx
18
中药制剂工艺设备与应用
4、傅立叶定律:
(Fourier’s law)
dQdS t n
5、导热系数λ:
热传导时,其传热速率与温度梯 度及传热面积成正比
中药制剂工艺设备与应用
例:平壁S=20m2,b=0.37m,t1=1650oC,t2=300oC,材料 导热系数=0.815+0.00076t(t:oC,:W/(moC))。试 求平壁Q、q和t分布。
解: tm(t1t2)297oC 5
0 .8 1 0 .0 50 9 0 7 7 1 .5 5 6W 56 o C /(m )
11
中药制剂工艺设备与应用
3.列管式换热器
1
2
(Tubular exchanger)
3
4
5
6
管程流体 壳程流体
10
9
8
7
单程列管式换热器
基准面积
1、2、7、8-接管;3-管壳;4-管束;5-管
SndL
板;6、10-封头;9-折流板
12
中药制剂工艺设备与应用
13
中药制剂工艺设备与应用
14
中药制剂工艺设备与应用
tf(x,y,z,)
tf(x,y,z)
, t 0

2.等温面(isothermal surface)
同一时刻温度场中相同温 度各点所组成的面
等温面互不相交,等温面上没有热量传递
17
中药制剂工艺设备与应用
3.温度梯度:
(temperature gradient)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/5/18
1
第七章 相变对流传热
5.凝结换热的强化
当凝结热阻是传热过程主要分热阻时,强化效果较好。强化的原则 是破坏或减薄液膜层,强化技术是减薄液膜厚度、加速液膜的排泄。
二、沸腾换热
1.特点
基本概念:蒸发与沸腾,大容器沸腾与管内沸腾,饱和沸腾,过热 度。汽化核心数是衡量强化沸腾的重要参数。
凝结传热 (气相变液相) 沸腾传热 (液相变气相)
凝结传热: 夏天出空调房间后的眼镜表面膜状凝结 沸腾传热: 烧开水
相变:物质系统不同相(气液固)之间的转变。相变过程伴随吸热、放热的相变潜热
相变传热的特点: 由于有潜热释放和相变过程的复杂性,比单相对流换热更复杂。
相变对流传热的重点在于确定表面传热系数,然后由牛顿冷却公式计算热流量
7-1 凝结传热的模式 凝结传热:蒸汽与低于其饱和温度的壁面接触时,将汽化潜热释放给壁面的过程。 珠状凝结
珠状凝结的表面换热系数 >> 膜状凝结,但是一般无法长久保持。
2.55×105
5000~25000
2020/5/18
6
第七章 相变对流传热
7-2 膜状凝结分析解及实验关联式 层流膜状凝结
努塞尔纯净饱和蒸汽层流膜状凝结理论分析解: 液体膜层的热阻为主要因素。
微元体热平衡
d x
ts tw
(x)
dx
rdM
rd (
0
l udy)
u l g (y 1 y2 )
l
2
t
tw
(ts
tw
)
y
导热公式+牛顿冷却公式
1/ 4
4l
l (
g
ts
l2 r
tw
)x
d x
ts tw
(x)
dx
hx (ts
tw )dx
简化后的速度和 温度分布
hx (x)
hx
gr l2l3 4l ( ts tw
1/ 4
)x
2020/5/18
9
第七章 相变对流传热
7-2 膜状凝结分析解及实验关联式 层流膜状凝结
努塞尔纯净饱和蒸汽层流膜状凝结理论分析解
竖壁 倾斜竖壁 水平圆管壁
球壁
hV
1 l
l 0
hx dx
0.943
lgl(rts l2tl3w
1/
)
4
hV
2020/5/18
10
第七章 相变对流传热
7-2 膜状凝结分析解及实验关联式
理论分析解在一定 的假设条件下获得
实验结果修正
膜状凝结实验关联式:
竖壁(层流)
实验关联式 Rec<1600
竖壁(湍流)
Rec>1600
Nu hl / ; Ga gl3 / 2 伽利略数
2020/5/18
竖壁雷诺数
Re 4hl(ts tw )
2020/5/18
4
模式 凝结传热:蒸汽与低于其饱和温度的壁面接触时,将汽化潜热释放给壁面的过程。
凝结传热产生的必要条件: t w t s
tw ts
tw ts
g
膜状凝结
g
珠状凝结
凝结模式源于气液界面的接触角θ(图7-1)
2020/5/18
5
第七章 相变对流传热
h无关)
2020/5/18
2
第七章 相变对流传热
4.临界热流密度qmax 的意义 对热流可控:使q< qmax,保证设备安全运行不致烧毁 对壁温可控:使t< tc,保证设备有较高的传热效率
5.沸腾换热的实验关联式 计算公式的拟合误差一般较大,因为沸腾换热机理复杂,受加热表
面影响很大。 6.汽化核心
0.943
g sin rl23l ll(ts tw )
1/
4
hH
0.729
l
gr d(
l2l3
ts tw
1/ 4
)
hS
0.826
l
gr d(
l2l3
ts tw
1/ 4
)
特征长度分别为 l 和 d;
r 由ts 确定。 其它物性由平均温度确定:
tm
ts
tw 2
为何冷凝器一般多采用水平横管布置?
2t
y 2
0
y 0 时, u 0, t tw
y 时, du 0,
dy
t ts
简化后的速度和温度分布
u l g (y 1 y2 )
l
2
抛物线
2020/5/18
t
tw
(ts
tw )
y
线性
8
第七章 相变对流传热
7-2 膜状凝结分析解及实验关联式 层流膜状凝结
努塞尔纯净饱和蒸汽层流膜状凝结理论分析解
2020/5/18
7
第七章 相变对流传热
7-2 膜状凝结分析解及实验关联式 层流膜状凝结 努塞尔纯净饱和蒸汽层流膜状凝结理论分析解
稳态边界层微分方程
简化后的常微分方程
u
x
v y
0
l (u
u x
v
u ) y
dp dx
l
g
l
2u y 2
u
t x
v
t y
al
2t y 2
l
g
l
2u y 2
0
rl
竖壁临界雷诺数=1600
11
第七章 相变对流传热
7-2 膜状凝结分析解及实验关联式
第七章 相变对流传热
提纲: 一、凝结传热 1.现象与特点 基本概念,产生条件是壁面温度<蒸气饱和温度。珠状凝结和膜状凝结 的特点、热量传递规律,h珠状>>h膜状,但不能持久。 2.竖壁膜状凝结分析解 Nusselt分析解基于9条假设,视液膜内只有纯导热。因此要获得局部表 面传热系数,只需获得该处液膜厚度。竖管与横管,h横>h竖。 3.膜状凝结的工程计算 流态判别(Re迭代法);关联式;注意特征长度和定性温度 4.影响因素 掌握膜状凝结诸影响因素,尤其是不凝性气体和蒸气流速的影响机理。
基本假设: 1. 二维、稳态、常物性、层流; 2. 蒸汽静止,汽液界面无对液膜的粘滞力; 3. 忽略惯性力,液膜的运动仅取决于重力和粘滞力; 4. 壁温tw=const,汽液界面无温差 tδ=ts 5. 液膜内部无对流而只有导热,温度分布为线性; 6. 忽略液膜的过冷度,即认为液膜仅存在潜热; 7. 蒸汽密度<<液体密度; 8. 液膜表面平整无波动。
2.大容器饱和沸腾曲线
曲线形式,随着t ,四个不同区域的换热规律和特点。核态沸腾 是工业中理想的工作区域,其温差小,换热强。
3.沸腾换热的两种加热方式
控制壁温(改变壁温tw与液体饱和温度ts之差t=tw-ts,q的大小受沸 腾侧影响很大。)
控制热流(改变壁面处的热流密度q,q取决于外部施加的条件,而与
结合汽化核心概念理解沸腾换热机理,结合大容器饱和沸腾曲线了 解气泡的生成、长大、脱离、破裂等规律 7.沸腾换热影响因素和强化
沸腾换热影响因素就是气泡生长运动的影响因素。强化沸腾换热的 主要出发点是增加壁面汽化核心数,基本手段是沸腾表面的特殊加工。
2020/5/18
3
第七章 相变对流传热
7-1 凝结传热的模式 相变对流传热
相关文档
最新文档