高中化学十字交叉法

合集下载

高中化学解题方法——十字交叉法

高中化学解题方法——十字交叉法
详细描述
在化学反应速率问题中,十字交叉法可以用来确定反应速率常数与反应物浓度之 间的关系,从而理解反应速率的变化规律。
03
CATALOGUE
十字交叉法的解题步骤
确定问题类型
01
02
03
混合物计算
当题目涉及混合物时,可 以通过十字交叉法计算混 合物的组成和比例。
平均量计算
当需要计算平均量时,如 平均相对分子质量、平均 摩尔质量等,可以使用十 字交叉法。
高中化学解题方法—— 十字交叉法
汇报人:
202X-01-01
CATALOGUE
目 录
• 十字交叉法的原理 • 十字交叉法的应用 • 十字交叉法的解题步骤 • 十字交叉法的注意事项 • 实例解析
01
CATALOGUE
十字交叉法的原理
原理概述
十字交叉法是一种用于解决混合 物计算问题的化学解题方法。
它通过将混合物的两个组分的质 量或体积进行交叉相乘,来找出 两组分在混合物中的质量比或体
积比。
这种方法适用于解决涉及两种组 分混合的问题,如气体混合、溶
液混合等。
原理的数学表达
则A组分在混合物中 的质量分数为:XA = (m1/M)。
两组分的交叉相乘关
系为:m1XA
=
m2XB。
B组分在混合物中的 质量分数为:XB = (m2/M)。
溶液配制与稀释
总结词
适用于溶液配制和稀释的计算,特别是当涉及溶液的平均量和两个不同浓度的 溶液时。
详细描述
在溶液配制和稀释过程中,十字交叉法可以用来计算两个不同浓度的溶液混合 后的平均浓度,或者确定某一浓度的溶液稀释到另一浓度的比例。
化学反应速率
总结词

高中化学计算题的常用解题技巧(13)---十字交叉法

高中化学计算题的常用解题技巧(13)---十字交叉法

高中化学计算题的常用解题技巧(13)---十字交叉法
十字交叉法:十字交叉法是专门用来计算溶液浓缩及稀释,混合气体的平均组成,混合溶液中某种离子浓度,混合物中某种成分的质量分数等的一种常用方法,其使用方法为:
组分A的物理量a差量c-b
平均物理量c(质量,浓度,体积,质量分数等)
组分B的物理量b差量a-c
则混合物中所含A和B的比值为(c-b):(a-c),至于浓缩,可看作是原溶液A中减少了质量分数为0%的水B,而稀释则是增加了质量分数为100%的溶质B,得到质量分数为c的溶液.
[例15]有A克15%的NaNO3溶液,欲使其质量分数变为30%,可采用的方法是
A.蒸发溶剂的1/2
B.蒸发掉A/2克的溶剂
C.加入3A/14克NaNO3
D.加入3A/20克NaNO3
根据十字交叉法,溶液由15%变为30%差量为15%,增大溶液质量分数可有两个方法:(1)加入溶质,要使100%的NaNO3变为30%,差量为70%,所以加入的质量与原溶液质量之比为15:70,即要3A/14克.(2)蒸发减少溶剂,要使0%的溶剂变为30%,差量为30%,所以蒸发的溶剂的质量与原溶液质量之比为15%:30%,即要蒸发A/2克.如果设未知数来求解本题,需要做两次计算题,则所花时间要多得多。

十字交叉(附例题)

十字交叉(附例题)

一、十字交叉相乘法这是利用化合价书写物质化学式的方法,它适用于两种元素或两种基团组成的化合物。

其根据的原理是化合价法则:正价总数与负价总数的代数和为0或正价总数与负价总数的绝对值相等。

现以下例看其操作步骤。

二、十字交叉相比法我们常说的十字交叉法实际上是十字交叉相比法,它是一种图示方法。

十字交叉图示法实际上是代替求和公式的一种简捷算法,它特别适合于两总量、两关系的混合物的计算(即2—2型混合物计算),用来计算混合物中两种组成成分的比值。

三、十字交叉消去法十字交叉消去法简称为十字消去法,它是一类离子推断题的解法,采用“十字消去”可缩小未知物质的范围,以便于利用题给条件确定物质,找出正确答案。

其实十字交叉法就是解二元一次方程的简便形式如果实在不习惯就可以例方程解但我还是给你说说嘛像A的密度为10 B的密度为8 它们的混合物密度为9 你就可以把9放在中间把10 和8 写在左边标上AB 然后分别减去9 可得右边为1 1 此时之比这1:1 了这个例子比较简单但难的也是一样你自己好好体会一下嘛这个方法其实很好节约时间特别是考理综的时候其实十字交叉法就是解二元一次方程的简便形式如果实在不习惯就可以例方程解但我还是给你说说嘛像A的密度为10 B的密度为8 它们的混合物密度为9 你就可以把9放在中间把10 和8 写在左边标上AB 然后分别减去9 可得右边为1 1 此时之比这1:1 了这个例子比较简单但难的也是一样你自己好好体会一下嘛这个方法其实很好节约时间特别是考理综的时候(一)混和气体计算中的十字交叉法【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。

【分析】根据相对密度计算可得混和气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是0.5体积(二)同位素原子百分含量计算的十字叉法【例题】溴有两种同位素,在自然界中这两种同位素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。

化学常用计算方法之十字交叉法

化学常用计算方法之十字交叉法

高中常见使用十字交叉法的几种情况
3、关于溶液的质量分数的计算
例6、现有20% 和 5% 的两种盐酸溶液,若要配制15% 的盐酸溶液,则两 种盐酸溶液的质量之比为多少?
高中常见使用十字交叉法的几种情况
4有关溶液物质的量浓度的计算
例7、物质的量浓度为别为 6 mol/L 和 1 mol/L 的硫酸溶液,按照怎样的体 积比混合才能配成4 mol/L 的溶液(忽略混合过程中体积的变化)?
高中常见使用十字交叉法的几种情况
5、利用对应的反应的关系求物质的量之比 例8、用 1L 浓度为0.1 mol/L 的NaOH溶液吸收了 0.8 mol 的CO2,所得溶 液中 CO32- 和HCO3- 的浓度之比为 多少?
例9、 A(g)+B(g)=C(g) △H1 D(g)+B(g)=E(g) △H2
若A、D混合1mol完全与B反应,放热△H3,则n(A):n(D)=
【针对练习】1、标况下,甲烷和一氧化碳、乙炔的混合气体8.96L, 完全燃烧生成二氧化碳26.4g,则混合气体中乙炔的体积是多少?
【针对练习】2、在密闭容器中充入CO2和CO的混合气体,其密度是相同条 件下氦气密度的8倍,这时测得容器内的压强为P1,若控制容器的体积不 变,加入足量的Na2O2,充分振荡并不断用电火花燃至反应完全,恢复到 开始时的温度,再次测得容器内的压强为P2,则P1和P2之间的关系是?
高中常见使用十字交叉法的几种情况
2、同位素原子的个数之比
例4、已知自然界中铱(Ir)元素有两种质量数分别为191和193的同位素, 而铱的平均相对原子质量为192.22,则这两种同位素院子的个数值比为?
例5、硼的天然同位素有10B和11B两种。已知10B和11B的原子个数之比为1:4 ,则硼元素的相对原子质量为?

高中化学常见计算方法及练习:十字交叉法

高中化学常见计算方法及练习:十字交叉法

十字交叉法凡能列出一个二元一次方程组来求解的命题,即二组分的平均值,均可用十字交叉法,此法把乘除运算转化为加减运算,给计算带来很大的方便。

十字交叉法的表达式推导如下:设A 、B 表示十字交叉的两个分量,AB ——表示两个分量合成的平均量,x A 、x B 分别表示A 和B 占平均量的百分数,且x A +x B =1,则有: A ·x A +B ·x B =AB ——(x A +x B ) 化简得:x x AB B A ABA B =--———— 若把AB ——放在十字交叉的中心,用A 、B 与其交叉相减,用二者差的绝对值相比即可得到上式。

十字交叉法应用非常广,但不是万能的,其适用范围如表4—2:含 化学义 量类型A 、B AB —— x A 、x B 1 溶液中溶质质量分数混合溶液中溶质质量质量分数 质量分数 x x AB B A AB A B =--———— 2 物质中某元素质量分数混合物中某 元素质量分数 质量分数 3 同位素相对原子质量 元素相对 原子质量 同位素原子百分组成正确使用十字交叉法解题的关键在于:(1)正确选择两个分量和平均量;(2)明确所得比为谁与谁之比;(3)两种物质以什么为单位在比。

尤其要注意在知道质量平均值求体积或物质的量的比时,用此法并不简单。

1. 现有50g 5%的CuSO4溶液,把其浓度增大一倍,可采用的方法有:(1)可将原溶液蒸发掉g水;(2)可向原溶液中加入12.5% CuSO4溶液g;(3)可向原溶液中加入胆矾g;(4)可向原溶液中加入CuSO4白色粉末g。

2 . 今有NH4NO3和CO(NH2)2混合化肥,现测得含氮质量分数为40%,则混合物中NH4NO3和CO(NH2)2的物质的量之比为()(A)4∶3 (B)1∶1 (C)3∶4 (D)2∶33. (1)已知溶质质量分数分别为19x%和x%的两硫酸溶液,若将它们等体积混和,则所得混和液的溶质质量分数与10x的大小关系如何?(2)已知溶质质量分数为a%的氨水物质的量浓度是b mol·L-1,则a2%的氨水物质的量浓度与b2mol·L-1的大小关系如何?4. 将金属钠在空气中燃烧,生成Na2O与Na2O2的混合物。

化学计算方法之十字交叉法

化学计算方法之十字交叉法
14
2.同一溶质的不同质量分数“交叉” ——求溶液的质量比 CuSO4 〘变式练习〙取100克胆矾,需加入多少克水才能配成溶 质质量分数为40%的CuSO4溶液? 〖解析〗以100克溶液为基准:
100% CuSO4 0% 水
100 40 0
40 60
100g4)∶m(水)=40∶60 , 故m(水)=150g 即m(CuSO
4
c-b c a-c
其实(1)式也可写为c=(Aa+Bb)/(A+B)。可 见,c实际是一个加权平均数(简称平均数), 它不同于算术平均数,a和b是合成这个平均数 的两个分量。所以… 十字交叉法一般步骤是:
先确定交叉点上的平均数, 再写出合成平均数的两个分量, 最后按斜线作差取绝对值,得出相应物质的 配比关系。
8
[例1]10元钱能买9千克苹果,能买3千克香蕉。 现用10元钱买两种水果共6千克,那么钱应该怎样 分配?买苹果和香蕉各多少千克?
〖解析2〗以1千克水果为基准:10/9元、10/3元、10/6 元的单价分别是两个分量和平均数。 苹果 10/9 10/6 10/6 香蕉 10/3 10/18
(10/6)∶(10/18)=3∶1,比值为基准的量(质量)之 比,即买苹果和香蕉的质量比为 3∶1。 从以上两种解法不难看出:不同的基准所得苹 果与香蕉之比的物理量也不同,前者是买两种水果 9 需钱的分配比,后者是能买两种水果的质量比。
即 Na2CO3 与NaHCO3中C的物质的量之比为1∶3,则 CO32-和HCO3-物质的量浓度之比为1∶3。
十字交叉法(二). 以1mol Na中含C的物质的量为基准 Na2CO3 1/2 2/10 4/5 NaHCO3 1 3/10
即 Na2CO3 与NaHCO3中 Na的物质的量之比为2∶3,则

化学十字交叉法

化学十字交叉法

化学十字交叉法化学十字交叉法化学十字交叉法是一种常用于有机合成中的化学反应设计方法。

该方法通过将多个反应条件、试剂和合成步骤交叉进行考虑,以达到优化反应的目的。

这种方法能够减少有机合成过程中的试剂使用量,同时降低反应所需的时间和成本,并优化反应结果。

化学十字交叉法的设计思路化学十字交叉法的设计包括四个方面:1. 反应物交叉条件:化学十字交叉法对反应物条件进行组合和匹配,以提高反应的化学收率和位选性。

在该方法中,反应物的组合不是随意选择的,而是依靠化学常识和实验经验,以避免无效或低效的反应。

2. 反应步骤交叉考虑:通过对反应步骤进行交叉考虑,可以找到化学合成中比较快速和有效的方法。

在很多实验条件下,反应步骤是可以交叉考虑的,这有助于优化反应的时间和成本,同时有助于提高合成的产率。

3. 反应温度和反应时间的考虑:化学十字交叉法还需要考虑反应的时间和温度,以使反应更加稳定和适存。

这些参数的设定通常需要依照各种不同的反应条件和情况来进行调整。

4. 推乳利用条件交叉:再比如说选择酰化反应中原料中二苯乙酸的化学常识和实验经验,在特定情况下有利于提高产量,而在其他情况下会导致反应效率的降低。

在此情况下,化学十字交叉法可以帮助实验者准确预测如何选择适当的反应条件,以达到更佳的结果。

化学十字交叉法的优势和应用化学十字交叉法的主要优势在于它可以优化反应条件,提高产量和降低成本。

在物质生产和有机合成方面,这种方法非常有用。

它可以通过优化试剂浓度、反应条件等参数来帮助提高反应速率和产量。

此外,在有机合成方面,该方法也具有重要的应用。

总的来说,化学十字交叉法在化学合成中具有广泛的应用和优势,可以帮助实验者准确地预测反应条件,以达到更优化和更有效的反应。

在不断突破化学合成技术的过程中,化学十字交叉法也将继续发挥着其独特的应用价值。

高中化学解题方法——十字交叉法

高中化学解题方法——十字交叉法

3 .十字交叉法十字交叉法又名混合规则法、杠杆原理等,它在化学计算中具有能简洁和迅速求解的特点。

1、十字交叉法的数学原理:凡能列出一个二元一次方程组来求解的命题,均可用十字交叉法。

如: 1211221x x a x a x a +=⎧⎨+=⎩平12a a a -平a平21a a a -平结论:2121a a x x a a -=-平平十字交叉法立足于二元一次方程的求解过程,并把该过程抽象为十字交叉的形式,所以凡能列出一个二元一次方程来求解的命题均可用此法。

2、使用范围列表如下:⎧⎪⎨⎪⎩溶液度混合十字交叉法平均化式量(原子量)平均耗氧量3、注意事项(1)适用于十字交叉法的量必须是具有加权平均意义的量,具体说是一些分数,如:质量分时、体积分数、物质的量分数或者是一些具有复合单位的量,如:摩尔质量、密度、燃烧热等。

(2)物理量必须具有简单的加和性。

如溶液质量等,而溶液混合时的体积不具有加和性,所以一般不可用物质的量浓度交叉求两溶液的体积比,只有稀溶液混合时近似处理忽略体积........变化..才可用十字交叉法求解。

(3)比的问题:什么比——基准物质以什么物理量为前提进行分量和平均量的确定得出的比,以物质的量为前提得出的是基准物质的物质的量之比;以一定质量为前提得出的是基准物质的质量之比。

练习1、质量百分比浓度溶液的混合如用的98%浓硫酸与7%的稀硫酸混合配成20%的硫酸溶液,则需浓硫酸与稀硫酸以质量比为混合恰好配成20%的硫酸。

2、物质的量浓度溶液的混合如用18mol/L的浓硫酸与2mol/L的稀硫酸混合成6mol/L的硫酸,则浓硫酸与稀硫酸的体积比是。

3、相对原子量的求算铜有两种天然同位素6529Cu和6329Cu,已知通的相对原子质量为63.5,估算6529Cu的百分含量(丰度)约为A、5%B、25%C、50%D、75%4、平均相对分子质量的计算甲烷和氧气混合后,其平均相对分子质量为24,则混合气体中甲烷与氧气的体积比为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

被遗忘的十字交叉法
山东临清一中高泽岭
十字交叉法是进新型两组混合物平均量与组分量计算的一种简便方法。

但是由于两种量交叉出来后的比容易混淆,或者不知道是什么之比,在近年的高中化学教学中,一般老师都在回避这种方法,而改用列方程组法。

其实,如果我们把握好,十字交叉法依然是我们解题的一把利器。

凡可按a1X + a2Y = a ( X +Y ) 关系式的习题,均可用十字交叉法计算,其中a为a1和a2的平均量。

在计算过程中遵循守恒的原则。

一、有关质量分数的计算
二、有关物质的量浓度的计算
三、有关平均分子量的计算
四、有关相对平均原子质量的计算
五、有关反应热的计算
六、有关混合物反应的计算
现举例如下:
一、有关质量分数的计算
例1.实验室用98%的浓硫酸(密度为1.84g/cm3)与15%的稀硫酸(密度为1. 1g/cm3)混和,配制59%的硫酸溶液(密度为1.4g/cm3),取浓、稀硫酸的体积比最接近的值是()
A. 1∶2 B. 2∶1 C.3∶2 D.2∶3
[分析]用硫酸的质量分数作十字交叉:
根据溶质质量守恒, 满足此式的是:98%X + 15% Y = 59%(X+Y),X 和 Y 之比是溶液质量比,故十字交叉得出的溶液质量比为:44 ∶39 。

换算成体积比:(44/1.84)∶(39/1.1)≈ 2∶3,答案为D。

二、有关物质的量浓度的计算
例2.物质的量浓度分别为6mol/L和1mol/L的硫酸溶液,按怎样的体积比才能配成4mol/L的硫酸溶液?
[分析] 用物质的量浓度作十字交叉:
根据溶质物质的量守恒,满足此式的是6X + Y = 4 (X+Y),X 和 Y 之比是溶液体积比,故十字交叉得出的体积比为3∶2 ,答案:6mol/L,1mol/L的硫酸溶液按3∶2的体积比才能配成4mol/L的硫酸溶液。

三、有关平均分子量的计算
例3.实验测得,相同条件下乙烯与氧气混合气体的密度是氢气密度的14.5倍,可知其中乙烯的质量分数为()
A.25.0% B.27.6% C.72.4% D.75.0%
[分析] 乙烯与氧气混合气体的相对平均分子质量为29。

用乙烯、混合气体和氢气的相对分子质量作十字交叉:
根据质量守恒, 满足此式的是 28X + 32 Y = 29(X+Y),X 和 Y 之比是物质的量之比,故十字交叉得出的物质的量比为:3∶1。

四、有关相对平均原子质量的计算
例4.铜有两种天然同位素63Cu和65Cu ,铜的相对原子质量为63.5 ,63Cu 的原子个数百分含量为()
A.20% B.25% C.66.7% D.75%
[分析]用63Cu和65Cu的质量数作十字交叉:
根据质量守恒,满足此式的是 63X + 65 Y = 63.5 (X+Y),可知X∶ Y 应为原子个数比,故十字交叉法得出的原子个数比为1.5∶0.5。

五、有关反应热的计算
例5.已知:2H2(g) + O2(g) = 2H2O(l);△H= —571.6KJ·mol-1 CH4 (g) +2O2(g) = CO2(g) + 2H2O(l);△H= —890 KJ·mol-1。

现有H2与CH4的混合气体112L(标准状况),使其完全燃烧生成CO2和H2O,若实验测得反应放热3695KJ。

则原混合气体中H2与CH4的物质的量之比是()
A. 1∶1 B.1∶3 C.1∶4 D. 2∶3
[分析]标准状况下,112LH2与CH4的混合气体物质的量为5mol。

用CH4、H2与混合气体的燃烧热作十字交叉:
根据总热量守恒, 满足此式的是 890X + 285.8 Y = 739 (X+Y)。

可知X∶ Y 应为物质的量之比,故十字交叉法得出的是物质的量之比,即体积比。

V(H2)∶V(C H4)=151∶453.2≈ 1∶3。

答案为B。

六、有关混和物反应的计算
例6.已知白磷和氧气可发生如下反应:P4+3O2 = P4O6,P4 +5O2 = P4O10。

在某一密闭容器中加入62克白磷和50.4升氧气(标准状况),使之恰好完全反应,所得到的P4O10与P4O6的物质的量之比为()
A.1∶3 B.3∶2 C.3∶1 D.1∶1
[分析]用生成P4O10、P4O6的耗氧量和平均耗氧量作十字交叉:
根据O2物质的量守恒,满足此式的是5X + 3Y = (2.25/0.5)(X+Y),X 和 Y 之比是P4O10和P4O6物质的量之比,故十字交叉得出的物质的量之比为:1.5∶0.5 =3∶1。

答案为C。

相关文档
最新文档