第四章(典型输入信号及时域性能指标)

合集下载

第四章时域分析法(武汉理工大大学,轮机工程,汤旭晶)

第四章时域分析法(武汉理工大大学,轮机工程,汤旭晶)

n2
e nt 1 e nt
1
2
2
( 1 2 cos d t sin d t )
sin( d t arctg 1 2 )
y (t )
ζ =0.3
(t 0)

ζ =0.6 ζ =1 ζ >1
1
2
1

§4-3 二阶系统的瞬态响应
d t p t p d n 1 2
§4-3 二阶系统的瞬态响应
3、超调量 p p
y(t p ) y () y ( )
1 1 2
1 1
2

ωn
e
nt p
1 2
2
sin(d t p )
ωd
)
t
取拉氏逆变换:
y (t ) 1 nte nt e nt
2
t0
y (t )
2、当 1 时,称为过阻尼;
s 1, 2 n n
Y ( s)
2 n
1
1
1 A B C ( s s1 )( s s2 ) s s s s1 s s2
k 0.3
§4-2 一阶系统的瞬态响应 二、一阶系统的单位斜坡响应
r (t ) t
1 R(s) 2 s
Y (s) 1 1 1 T T Y (s) R( s) 2 2 R(s) Ts 1 s s s s 1 T
y (t ) t T Te
t T
tg 1
1 2
1 1 2
e nt r sin( d t r ) 1

cos 1 sin 1 1 2

自动控制原理3.1典型输入作用和时域性能指标.详解

自动控制原理3.1典型输入作用和时域性能指标.详解
3.1 典型输入作用和时域性能指标
3.1.0 时域分析 3.1.1 典型输入作用及其拉氏变换 3.1.2 瞬态过程和稳态过程
3.1.3
3.1.4
瞬态过程的性能指标
稳态过程的性能指标
3.1.0 时域分析
时域分析是指控制系统在一定的输入信号作用下,根据 输出量的时域表达式,分析系统的稳定性、瞬态性能和稳态 性能。 时域分析是一种在时间域中对系统进行分析的方法, 具有直观和准确的优点。由于系统的输出量的时域表达式是 时间的函数,所以系统的输出量的时域表达式又称为系统的 时间响应。 系统输出量的时域表示可由微分方程得到,也可由传递 函数得到。在初值为零时,可利用传递函数进行研究,用传 递函数间接的评价系统的性能指标。 控制系统的性能指标,可以通过在输入信号作用下系 统的瞬态和稳态过程来评价。系统的瞬态和稳态过程不仅取 决于系统本身的特性,还与外加输入信号的形式有关。
n 2 2 n
分析系统特性究竟采用何种典型输入信号,取决于实际系 统在正常工作情况下最常见的输入信号形式。 当系统的输入具有突变性质时,可选择阶跃函数为典型输 入信号;当系统的输入是随时间增长变化时,可选择斜坡函 数为典型输入信号。
讨论系统的时域性能指标时,通常选择单位阶跃信号作为 典型输入信号。
s
t
B 其拉氏变换后的像函数为: L[ x(t )] 2 s
斜坡函数(速度阶跃函数): 0, t 0 B=1时称为单位斜 x(t ) Bt, t 0 坡函数。
x(t ) x(t ) Bt
t
抛物线函数(加速度阶跃函数): x(t ) 1 2 0, t 0 C=1时称为单位抛 x(t ) Ct 2 t x(t ) 1 2 物线函数。 Ct , t 0 2 C L [ x ( t )] 其拉氏变换后的像函数为: 3

精品文档-自动控制原理及其应用(第二版)温希东-第3章

精品文档-自动控制原理及其应用(第二版)温希东-第3章

能够用一阶微分方程描述的系统称为一阶系统,它的典型 形式是一阶惯性环节,即
(3-9)
第3章 时 域 分 析 法
20
1. 一阶系统的单位阶跃响应 当r(t)=1(t)时,有
第3章 时 域 分 析 法
对上式进行拉氏反变换,得
根据式(3-10),可得出表 3-1 所列数据。
21 (3-10)
第3章 时 域 分 析 法
第3章 时 域 分 析 法
63
图 3-14 二阶系统单位阶跃响应包络线
第3章 时 域 分 析 法
第3章 时 域 分 析 法
57
2) 求峰值时间tp 由峰值时间tp的定义知,tp为c(t)响应超过其终值到达第 一个峰值所需的时间。
由式(3-14)和式(3-19)得
(3-21)
第3章 时 域 分 析 法
58
根据数学求极值概念,令

第3章 时 域 分 析 法
59
因为
所以
由此可得, ωdtp=π, 则 (3-22)
28
3.3 二阶系统的动态响应
用二阶微分方程描述的系统称为二阶系统。从物理上讲, 二阶系统总包含两个储能元件,能量在两个元件之间交换,从 而引起系统具有往复的振荡趋势。当阻尼不够充分大时,系统 呈现出振荡的特性,这样的二阶系统也称为二阶振荡环节。
第3章 时 域 分 析 法
29
二阶系统的典型传递函数为
当r(t)=1(t)时,有

第3章 时 域 分 析 法
44
对上式进行拉氏反变换,可得
(3-17)
其响应曲线如图 3-10所示,系统为无阻尼等幅振荡。该种情况 实际系统不能用。
第3章 时 域 分 析 法
45

《典型输入信号》课件

《典型输入信号》课件
无线传输
利用电磁波传输信号,无需物理介质连接,灵活方便,适用于移动 设备和短距离传输。
网络传输
通过网络协议和接口实现信号传输,具有可扩展性和通用性,广泛 应用于远程控制和多媒体传输。
信号的存储方式
磁存储
利用磁场变化记录信息, 具有较高的存储密度和稳 定性,常见于硬盘、磁带 等存储介质。
光学存储
利用激光在光盘上记录信 息,具有高读写速度和抗 干扰能力,常用于大容量 数据存储。
离散信号通常用于表示事件或状 态的变化,如开关状态的变化。
常见的离散信号有脉冲信号、方 波信号等。
02
典型输入信号介绍
正弦波信号
总结词
正弦波信号是一种常见的周期信号,其波形呈正弦曲线形状 。
详细描述
正弦波信号具有固定的频率、幅值和相位,通常用于模拟各 种物理量,如交流电、振动等。在电子和通信领域中,正弦 波信号被广泛用于信号处理、调制和解调等应用。
方波信号
总结词
方波信号是一种非连续的周期信号,其波形在每个周期内呈现矩形形状。
详细描述
方波信号的电压或电流在两个极值之间快速切换,没有过渡阶段。由于其简洁 的波形形状,方波信号常用于测试和测量设备中,以产生参考信号或触发其他 电路。
三角波信号
总结词
三角波信号是一种周期信号,其波形形状类似于三角形状。
相位
总结词
相位表示信号在时间上的相对位置。
详细描述
相位是描述信号在时间上的相对位置的参数。在周期性信号中,相位表示信号在周期内 的相对位置;在数字信号中,相位通常是指信号状态变化的时刻。相位对信号的合成、
滤波和调制等处理过程具有重要影响。
04
信号的获取与处理
信号的获取方式

闭环传递函数

闭环传递函数

微分方程为: T dy(t) y(t) u(t) dt
开环传函为: G(s) 1
Ts
闭环传函为: (s) 1
T为系统的时间常数,
Ts 1
1/T为开环增益.
2019年8月28日4时34分
17
3.2 一阶系统的时域分析
1)单位阶跃响应 单位阶跃输入 u(t) 1(t)的像函数为 U(s) 1
2019年8月28日4时34分
26
3.2 一阶系统的时域分析
例3.2.1一阶系统Fra bibliotek结构图如图所示,若kt=0.1,
试求系统的调节时间ts,如果要求ts 0.1秒。试求
反馈系数应取多大?
R(s)
C(s)
100/s
kt
2019年8月28日4时34分
27
3.2 一阶系统的时域分析
解 系统的闭环传递函数
故kt 0.3
2019年8月28日4时34分
28
3.2 一阶系统的时域分析
思考题和选做题:
(1)当一阶对象的模型为 k 时,分别求其输出
Ts 1
响应所得的结果是否符合前面的证明和结论?试着
解释为什么有这样的结果?
(2)当输入信号为 u(t) 1 t2 时, 1 的输出响应是
2
Ts 1
什么?能否根据这个结果利用上面思考题直接写出
3、线性系统的时域分析
3.1 典型输入信号与时域性能指标 3.2 一阶系统的时域分析 3.3 二阶系统的时域分析 3.4 高阶系统的时域分析 3.5 系统模型的时域测定法
2019年8月28日4时34分
1
本章学习要点
• 掌握典型输入信号和时域性能指标 • 掌握一阶系统的时域分析方法 • 掌握二阶系统的时域分析方法 • 了解高阶系统的主导极点及其时域分析方

自动控制原理及应用课件(第三章)

自动控制原理及应用课件(第三章)

即 s1,2=- n 临界阻尼情况的单位阶跃响应为
C(s) n2 1 (s n )2 s
设部分分式为
C(s) A1 A2 A3
s s n (s n )2
式中,待定系数分别为A1=1,A2=-1,A3=-n
于是有
C(s) 1 1 n s s n (s n )2
取C(s)的拉普拉斯逆变换,则有
R(s) A0 s2
3.抛物线信号 抛物线信号的数学表达式为
0
r(t)
1 2
A0t
2
(t 0) (t ≥ 0)
式中,A0为常数。
当A0=1时,称为单位抛物线信 号,也称为单位加速度信号。
抛物线信号如图所示,它表示
随时间以等加速度增长的信号。
图3-3 抛物线信号
抛物线信号在零初始条件下的拉普拉斯变换为
R(s) A0 s3
4.脉冲信号 脉冲信号是一个脉宽极短的信号,其数学表达式为
0 t < 0;t >
r
(t
)
A0
0<t <
脉冲信号如图3-4(a)所示,
当A0=1时,若令脉宽 →0,则
称为单位理想脉冲函数,记作
(t),单位脉冲函数如图3-4(
b)所示, (t)函数满足
(t)
0
(t 0) (t 0)
闭环传递函数为 系统特征根为
(s) n2 s2 n2
s1,2 jn
无阻尼情况的单位阶跃响应为
C(s) n2 1 1 s s2 n2 s s s2 n2
取C(s)的拉普拉斯逆变换,则有
c(t) 1 cosnt (t ≥ 0)
系统阶跃响应曲线为等幅振荡,超调量为100%,振荡频率为 自然振荡角频率 n 。由于曲线不收敛,系统处于临界稳定状 态。

机械工程控制基础(第4章_系统的频率特性分析)

机械工程控制基础(第4章_系统的频率特性分析)

对频率 的函数曲线,此即幅频特性曲线;作出相位 ) (
的函数曲线,此即相频特性曲线。
对频率
由上可知,一个系统可以用微分方程或传递函数来描述,也可以
用频率特性来描述。它们之间的相互关系如图4.1.2所示。将微分方程
的微分算子 中的s再换成 j,传递函数就变成了频率特性;反之亦然。
d 换成s后,由此方程就可获得传递函数;而将传递函数 dt
式中,
u ( ) 是频率特性的实部,称为实频特性 v( ) 是频率特性的虚部,称为虚频特性
武科大城市学院
机电学部
4.1.3 频率特性的求法
1. 根据系统的频率响应来求取
因为
K G s Ts 1 X i X i s 2 s 2
X i xo t L G s 2 s 2
G j 端点的轨迹即为频率特性的极坐标图, 或称为Nyquist 图, 如
实轴开始, 逆时针方向旋转为正, 顺时针方向旋转为负。当从0→∞时,
武科大城市学院
机电学部
图4.2.1所示。它不仅表示幅频特性和相频特性, 而且也表示实频特性和
虚频特性。图中的箭头方向为从小到大的方向。
正如4.1节所述, 系统的幅频特性和相频特
武科大城市学院
机电学部
2. 频率特性
线性系统在谐波输入作用下,其稳态输出与输入的幅值比是输入
信号的频率 的函数,称为系统的幅频特性,记为A( ) 它描述了在稳态情况下,当系统输入不同频率的谐波信号时,其幅值 的衰减或增大特性。显然
X o ( ) A( ) Xi
) 稳态输出信号与输入信号的相位差 ( (或称相移)也是 的函
1
所以
1 T 2 2 X K A o Xi 1 T 2 2

自动控制考试大纲

自动控制考试大纲

一、课程性质与设置目的(一)课程性质和特点自动控制原理是高等教育自学考试工业电气自动化专业的一门专业基础课,本课程是一门理论性较强的工程学科。

本课程以经典控制理论为主,重点论述用时域法、根轨迹法和频域法分析线性系统的性能,并介绍系统的初步设计及校正的一般性原则。

通过本课程的学习可以使学生对自动控制理论有较系统的认识,达到理解并熟练掌握自动控制的基本理论和基本方法,具有初步解决工程相关问题的能力,并为进一步学习打下基础。

(二)本课程的基本要求通过本课程的学习使学生正确理解反馈控制系统的基本概念,掌握控制系统数学模型建立的一般方法,掌握线性系统的分析方法(时域法、根轨迹法和频域法),为今后的专业课程的学习及工作做准备。

基本要求如下:1、正确理解反馈控制系统的基本概念。

2、掌握控制系统的数学模型建立的方法。

3、掌握线性系统的时域法、根轨迹法和频域分析法。

4、理解自控系统校正的一般概念。

(三)本课程与相关课程的联系、分工或区别本课程在工业电气自动化专业教学计划中被列为专业基础课,本课程以工程数学、电工原理、电机拖动、变流技术、计算机原理等为前序课程,也是自动控制系统等课程必需的理论基础,因此本课程的学习对全面掌握各门专业课程起着重要的作用。

本课程的重点是第三、第四、第五章章,次重点是第一、第二章,一般章节为六章。

二、课程内容与考核目标第一章自动控制系统的基本概念(一)学习目的与要求通过本章的学习使学生了解自动控制的发展、自动控制系统的分类,理解自动控制系统的组成、基本控制方式(开环控制和闭环控制)和评价自动控制系统的性能指标。

通过闭环控制系统的举例,理解反馈控制的原理。

(二)课程内容第一节自动控制及自动控制理论的发展简述。

第二节自动控制的两种基本方式(开环控制和闭环控制)。

闭环控制的特点,闭环控制系统的基本原理。

第三节依据不同的标准,对自动控制系统进行分类,了解常用的分类方法及对控制系统的分类。

第四节评价控制系统性能的指标主要包含三类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档