第4章:电极过程

合集下载

第4章电极过程

第4章电极过程
24
5. 反应产物生成新相,如生成气体、固相沉积层等,称
为新相生成步骤。或者,反应产物是可溶性的,产物 粒子自电极表面向溶液内部或液态电极内部迁移,称 为反应后的液相传质步骤。 对于电极过程需要注意的是:
a) 对—个具体的电极过程来说,并不一定包含所有上述
五个单元步骤,可能只包含其中的若干个。但是,任 何电极过程都必定包括(1),(3),(5)三个单元步骤。
• 所以,过电位虽然是表示电极极化程度的重要参数,
但一个过电位值只能表示出某一特定电流密度下电 极极化的程度,而无法反映出整个电流密度范围内 电极极化的规律。
• 为了完整而直观地表达出一个电极过程的极化性能,
通常需要通过实验测定过电位或电极电位随电流密 度变化的关系曲线。这种曲线就叫做极化曲线。
14
与电子运动速度的矛盾实质上决定于控制步骤速度与电 子运动速度的矛盾,电极极化的特征因而也取决于控制 步骤的动力学特征。所以,习惯上常按照控制步骤的不 同将电极的极化分成不同类型。根据电极过程的基本历 程,常见的极化类型是浓差极化和电化学极化。
32
浓差极化
• 所谓浓差极化是指单元步骤(1),即液相传质步骤
表了电极反应速度。19来自• 由此可知,稳态时的极化曲线实际上反映了电极
反应速度与电极电位(或过电位)之间的特征关系。
• 因此,在电极过程动力学研究中,测定电极过程
的极化曲线是一种基本的实验方法。
20
• 极化度表示某一电流密度下电极极化程度变化的
趋势,因而反映了电极过程进行的难易程度:
– 极化度越大,电极极化的倾向也越大,电极反应速 度的微小变化就会引起电极电位的明显改变。或者 说,电极电位显著变化时,反应速度却变化甚微, 这表明电极过程不容易进行,受到的阻力比较大。

第四章 电极过程概述

第四章 电极过程概述

c平 c a平 a IR
a平
阳极极化
E c a IR E V超 IR
原电池的极化图 i
二、电解池的极化
+i -
I电极 a a平 a
Ⅱ电极 c c平 c
I

V a c IR
a平 a c平 c IR
电流为零时,也有一个稳定电位。此时,电 荷交换是平衡的,但物质交换不平衡。
当电极上有电流通过时,电极电位也会偏稳 定电位,出现极化现象。
其差值称为极化值,有时也不加区分地叫做 过电位。

3、电极反应的动力
电化学位差值是实现电化学反应的必要条 件, 也是反应进行的动力。
律决定。
二、研究电极过程步骤
弄清楚电极反应的历程。 找出电极过程的速度控制步骤。 测定控制步骤的动力学参数。 测定非控制步骤的热力学平衡常数或其他有
关的热力学数据。
作业:p217题3、p218题
B 1000块
接力: 速度为20块 vv 1000
甲地
搬砖
C 20块
vw 980 vv w
乙地
2、电极过程中速度最慢的步骤为控制步骤。 3、电极过程的串联步骤中,除了控制步骤之外,
其它步骤均可认为处于近似平衡的状态。
4、混合控制。当电极过程中有两个或多个步骤 速度都很慢时,它们就同时成为控制步骤,称 为混合控制。
| e |
极化电位与静止电位的差值称为极化值。
e
电极电位偏离平衡电位向负移称为阴极极化。极 化值(过电位)小于零,电极上发生还原反应即 阴极反应。
电极电位偏离平衡电位向正移称为阳极极化。极 化值(过电位)大于零,电极上发生氧化反应。

电极过程动力学 ppt课件

电极过程动力学  ppt课件

§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。
电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。
从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
研究电极过程动力学的首要目的在于找出整个电极过程的控制步 骤,并通过控制步骤来影响整个电极过程的进行速度,而这又建立 在对电极过程基本历程的分析和弄清个分步骤动力学特征的基础 之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的反应速度相等, 净反应速度等于零.相应的平衡电极电势可由Nernst公式计算.当 有外电流通过时,净反应速度不等于零,即原有的热力学平衡受到 破坏,致使电极电势偏离平衡电势,这种现象在化学上称为电极的” 极化现象” 。
“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电势表 示,
随着电极电势的改变,不仅可以连续改变电极反应的速度,而且可
以改变电极反应的方向。以后还将看到,即使保持电极电势不变,改变
界面层中的电势分布也会对电极反应速度有一定的影响。因而研究“电
极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面层中的
电化学—研究载流子(电子、空穴、离子)在电化学 体系(特别是离子导体和电子导体的相界面及其邻近 区域)中的运输和反应规律的科学。
电化学所研究的内容有:
(1)电解质溶液理论(离子水化、离子互吸、离子缔合及电导 理论等);
(2)电化学平衡(可逆电池、电极电位、电动势与热力学函数 间关系等);

第四章-电化学阻抗谱-复习课程

第四章-电化学阻抗谱-复习课程

导言 第1章 阻纳导论
第2章 电化学阻抗谱与等效电路
第3章 电极过程的表面过程法拉第导纳
第4章 表面过程法拉第阻纳表达式与等效电 路的关系 4·2除电极电位E以外没有或只有一个其他状 态变量 4·3除电极电位E外还有两个状态变量X1和
X2 第5章 电化学阻抗谱的时间常数 5·1状态变量的弛豫过程与时间常数 5·2EIS的时间常数 第6章 由扩散过程引起的法拉第阻抗 6·1由扩散过程引起的法拉第阻抗 6·2平面电极的半无限扩散阻抗(等效元件W)
从Nyquist 图上可以直接求
出RL和Rct。
0
由半圆顶点的可求得Cd。
半圆的顶点P处:
PCdRct 1
G =G '+jG ''
如果X为角频率为的正弦波电流信号,则Y即为角频率也为的正弦电势信号, 此时,G()也是频率的函数称之为系统M的阻抗(impedance), 用Z表示。
如果X为角频率为的正弦波电势信号,则Y即为角频率也为的正弦电流信号, 此时,频响函数G()就称之为系统M的导纳(admittance), 用Y表示。 阻抗和导纳统称为阻纳(immittance), 用G表示。阻抗和导纳互为倒数关系.
2 Bode图 图 lg Z ~lg
Z1(R RppCd)2j1 (RR p2C pC dd)2
Z Z'2 Z''2
lgZlgR p1 2lg[1(R pC d)2]
讨论:
(1)高频区
(2)低频区
4.4 溶液电阻可忽略时电化学极化的EIS
2 Bode图
图 ~ lg
Rp2Cd
arctgZ''
Z'
L d dt

应用电化学-第4章

应用电化学-第4章
第4章
不可逆电极过程
第4章 不可逆电极过程
主要内容
4.1 极化现象 4.2 极化曲线与极化度 4.3 极化曲线的测量
4.1 极化现象
4.1.1 极化的定义 4.1.2 极化的原因
4.1.1 极化的定义
在有限的电流通过时,电极系统的电 极电位偏离其平衡电极电位值的现象,称 为电极的极化现象。 任何电极系统,只要有宏观的净的电 流流过,就不可能处于平衡状态,即偏离 其平衡状态,发生极化。动力学中研究的 电极系统就是处于这种非平衡的状态!
η 浓差 = ϕ − ϕ 平衡
4.1.2 极化的原因
(2)活化极化(电化学极化)
在有限电流通过电极时,由于电化学反 应进行的迟缓造成电极上带电程度与可逆状 态下不同,从而导致的电极电位偏离其平衡 电极电位的现象,叫做“ 活化极化” 。 此时,电极表面的电化学过程的平衡状 态被打破。“ 活化过电位η活化” 是电极活化 极化程度的度量。
动电位扫描法测量极化曲线 控制电位以一定的速率(扫描速度)进行 线性扫描,同时记录相应的电流,绘成极化曲 线。 过去采用信号源对恒电位仪施加电位信 号,用X-Y记录仪记录极化曲线。现在均采用 自动化仪器,电脑自动控制,记录并输出数字 化的极化曲线。
4.3.1 极化曲线的测试方法
对于稳态极化曲线的测量,电位扫描速 率具有重要的影响。只有扫描速率足够的 慢,才能保证测量的是稳态极化曲线。 对于不同的体系可采用不同的扫描速 率,或通过实验来确定。方法是:不断降低 扫描速率测量极化曲线,当扫描速率降低到 一定的程度时,极化曲线不再变化,即可确 定扫描速率。 但扫描速率不能太慢,否则测量时间太 长,测量过程中体系变化太大。
4.2.2 极化度
4.2.2 极化度

电化学原理第四章电极过程概述PPT课件

电化学原理第四章电极过程概述PPT课件
ci0,t cis 常数
Fick Ⅱ方程的特解:
cix,t cisci0cis er2 f xDt
30
非稳态扩散规律 a. ci ci0 cis
x x0 Dt
b. Dt , 4 Dt
c. i nFDci0 cis
Dt
31
3.恒电流阴极极化
初始条件:
cx,0 c0
边界条件 1:
2. ic0cs
3. i与l成反比
4. 当 cis 0时,出现极限扩散电流 i d
7
真实条件下的稳态扩散过程(对流扩散) 对流扩散理论的前提条件:
对流是平行于电极表面的层流; 忽略电迁移作用。
注:稳态扩散的必要条件:一定强度的 对流的存在。
8
电极表面附近的液流现象及传质作用
边界层:按流体力
2i nF
t
D
b.过渡时间—电极表面粒子浓度从主体浓 度降到零的时间。
i
n2F2Di
4i2
ci0
2
34
写在最后
成功的基础在于好的学习习惯
17
1.反应产物生成独立相
R scR s R s 1
∴ =0+R nFTln0cO s
由于:
cOs
1
i id
cO0
∴ =0+R nF Tln0cO 01iid 平+RnFTln1iid
18
反应产物生成独立相时的极化曲线
19
2.反应产物可溶
0R nF lT n O R O RD D O RR nF lT n idii
学定义 u u0的液层。
B
y u0
B
y u0
粘度系数
密度
动力粘滞系数

第四章电催化与电催化电极

第四章电催化与电催化电极
方式二:电化学脱附步骤
在电极表面上,由另一个H3O+ 离子在吸附氢原子的位置上 放电,从而直接生成氢分子,并从电极表面上脱附下来:
MH+H3O+ +e→H2+H2O+M (酸性介质) MH+H2O+e→H2+M+OH - (中性或碱性介质)
㈡析氢机理
⒈迟缓放电理论: 电化学反应是整个析氢反应过程的控制步骤。
能催化电极反应的或者说对电极反应起加速作用 的物质称为电催化剂。
2、电催化的本质:
通过改变电极表面修饰物(或表面状态)或溶液相中的修 饰物,大范围的改变反应的电极电势与反应速率,使电极除具 有电子传递功能外,还能促进和选择电化学反应.
3、电催化反应的共性
反应过程包含两个以上的连续步骤,且在电极表面生成化学 吸附中间产物。许多由离子生成分子或使分子降解的电极反 应都属于此类反应。分成两类:
吸附机理分为两类:
2.反应物首先在电极上进行解离式或缔合式化学吸附,随后 吸附中间物或吸附反应物进行电子传递或表面化学反应。
例如甲酸的电化学氧化:
HC 2 M O M O H H M COOH
M H M H e
M CO M O C 2 H O H e 或
HCOOH M M CO H2O M H2O M OH H e M CO M OHCO2 H e
目前已知的电催化剂主要为过渡金属及其化合物。
设计关键:选择过渡金属中心原子
特点:过渡金属的原子结构中都含有空余的d轨道和未成对 的d电子,通过催化剂与反应物的接触,催化剂空余d轨道上 将形成各种特征的吸附键,达到分子活化的目的,从而降低了 复杂反应的活化能。
主要为含有Ti, Ir, Pt, Ni, Ru等金属或合金及其氧化物。如 RuO2/Ti电极, RuO2-TiO2电极, Pt/Ti电极,Pt/GC电极

电化学原理-第四章-电极过程概述

电化学原理-第四章-电极过程概述
阴极极化时,
c 平 c
阳极极化时,
a a 平
⑵极化值
实际遇到的电极体系,在没有电流通过时,并不都 是可逆电极。在电流为零时,测得的电极电位可能是可 逆电极的平衡电应,也可能是不可逆电极的稳定电位。 因而,又往往把电极在没有电流通过时的电位统称为静 止电位。把有电流通过时的电极电位(极化电位)与静止 电位的差值称为极化值。

为此,对一个具体的电极过程.可以考虑按照以下四个
方面去进行研究。
1.
弄清电极反应的历程。也就是整个电极反应过程包括哪 些单元岁骤,这些单元步骤是以什么方式(串联还是并 联)组合的,及其组合顺序。
2.
找出电极过程的速度控制步骤。混和控制时,可以不只
有一个控制步骤。
3.
测定控制步骤的动力学参数。当电极过程处于稳态时,
化学反应(电池反应)过程至少包含阳极反应过程、 阴极反应过程和反应物质在溶液中的传递过程(液 相传质过程)等三部分。
ce
c
a
阴极:cathode
c
a
阳极:anode
ae
电极的极化:有电流通过电极 时,电极电位偏离平衡电位( 或稳定电位)的现象。 阴极极化:电极电位偏离平衡 电位向负移 阳极极化:电极电位偏离平衡 电位向正移 过电位:在一定电位下,电极 电位与平衡电位的差值
j净 j j逆
* *
* 为控制步骤的逆向反应绝对速度。由上式可知 式中 j逆
j净 j*逆
其它非控制步骤,比如电子转移步骤的绝对反应
速度为
(还原反应)和 j (氧化反应),由于 j 和 j 均比 j* 大得多,所以也比 j净 大得多。然而,对于
j

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转化。
3. 反应粒子在电极/溶液界面上得到或失去电子,生成还
原反应或氧化反应的产物。这一过程称为电子转移步骤
或电化学反应步骤。
4. 反应产物在电极表面或表面附近液层中进行电化学反应
后的转化过程。 如反应产物自电极表面脱附、反应产物的复合、分解、歧化
或其他化学变化。这一过程称为随后的表面转化步骤,简称 随后转化。
(3)电子转移(电化学反应)
Ag(CN )- e Ag(吸附态 ) 2CN 2
(4)生成新相或液相传质
Ag(吸附态 ) Ag(结晶态 ) 2CN - (电极表面附近) 2CN - (溶液深处 )
b) 有些情况下,电极过程可能更复杂些,比如除
了串联进行的单元步骤外、还可能包含并联进
电极过程中任何一个单元步骤都需要一定的活化能才能 进行。从化学动力学可知,反应速度与标准活化自由能
之间存在以下指数关系
ve
- G 0 / RT
式中:v 为反应速度, △G 0是以整个电极过程的初始
反应物的自由能为起始点计量的活化能;R为摩尔气体
常量;T为热力学温度。
a) 某一单元步骤的活化能的大小取决于该步骤的特性。因
过,即外电流等于零。
CuSO4
电极的极化
如果电极上有电流通过时,就有净反应发
生,这表明电极失去了原有的平衡状态。 这时,电极电位将因此而偏离平衡电位。 这种有电流通过时电极电位偏离平衡电位 的现象叫做电极的极化。

Cu
实验表明,在电化学体系中,发生
电极极化时,阴极的电极电位总是
变得比平衡电位更负,阳极的电极 电位总是变得比平衡电位更正。
• 由此可知,稳态时的极化曲线实际上反映了电极
反应速度与电极电位(或过电位)之间的特征关系。
• 因此,在电极过程动力学研究中,测定电极过程
的极化曲线是一种基本的实验方法。
• 极化度表示某一电流密度下电极极化程度变化的
趋势,因而反映了电极过程进行的难易程度:
– 极化度越大,电极极化的倾向也越大,电极反应速 度的微小变化就会引起电极电位的明显改变。或者 说,电极电位显著变化时,反应速度却变化甚微, 这表明电极过程不容易进行,受到的阻力比较大。 反之,极化度越小,则电极过程越容易进行。
称为电极过程。
2. 电极过程动力学: 有关电极过程的历程、速度
及其影响因素的研究内容就称为电极过程动力 学。
4.1.2 电极的极化现象
1、什么是电极的极化现象
• 首先回顾可逆电极、平衡电极电位特征
处于热力学平衡状态
Cu
氧化反应和还原反应速度相等
电荷交换和物质交换都处于动态平衡之中
因而净反应速度为零,电极上没有电流通
• 总结:电极极化现象是极化与去极化两种矛盾作用
的综合结果,其实质是电极反应速度跟不上电子运动 速度而造成的电荷在界面的积累,即产生电极极化现 象的内在原因正是电子运动速度与电极反应速度之间 的矛盾。
3、极化曲线
• 实验表明,过电位值是随通过电极的电流密度不
同而不同的。一般情况下,电流密度越大,过电位 绝对值也越大。
• 相互独立:这三个过程又往往是在不同的区域进
行着,并有不同的物质变化(或化学反应)特征, 因而彼此又具有一定的独立性。
• 我们在研究一个电化学体系中的电化学反应时,
能够把整个电池反应分解成单个的过程加以研究, 以利于清楚地了解各个过程的特征及其在电池反 应中的作用和地位。
重点研究对象
• 较少研究溶液本体中的传质过程
极化曲线动力学基础
• 根据电极反应的特点,即它
是有电子参与的氧化还原反 应,故可用电流密度来表示 电极反应的速度。假设电极 反应为
O ne R
• 按照异相化学反应速度的表
示方法,该电极反应速度为
1 dc v S dt
式中v为电极反应速度;S为电极表面的面积;c为反应物浓 度,t为反应时间。
• 根据法拉第定律,电极上有1摩尔物质还原或氧
化,就需要通过zF电量。z为电极反应中一个反
应粒子所消耗的电子数,即参与电极反应的电子
数z。所以,可以把电极反应速度用电流密度表
示为:
1 dc i zFv zF S dt
• 当电极反应达到稳定状态时,外电流将全部消耗
于电极反应,因此实验测得的外电流密度值就代 表了电极反应速度。
1. 反应粒子(离子、分子等)向电极表面附近液层迁移,称
为液相传质步骤。
2. 反应粒子在电极表面或电极表面附近液层中进行电化学
反应前的某种转化过程。 – 如反应粒子在电极表面的吸附、络合离子配位数 的变化或其他化学变化。通常,这类过程的特点 是没有电子参与反应,反应速度与电极电位无关。
这一过程称为前置的表面转化步骤,或简称前置
的定向运动,溶液中有正、负离子的定向运动,以及界面上 有一定的净电极反应,使得两种导电方式得以相互转化。
• 这种情况下.只有界面反应速度足够快,能够将电子导电带
到界面的电荷及时地转移给离子导体,才不致使电荷在电极 表面积累起来,造成相间电位差的变化,从而保持住未通电 时的平衡状态。
通过上述分析可以发现: 有电流通过时,产生了一对新的矛盾。 • 一方为电子的流动.它起着在电极表面积 累电荷,使电极电位偏离平衡状态的作用, 即极化作用; • 另一方是电极反应,它起着吸收电子运动 所传递过来的电荷,使电极电位恢复平衡 状态的作用,可称为去极化作用。 • 电极性质的变化就取决于极化作用和去极 化作用的对立统一。

4.1.3 电极过程的基本历程
• 所谓电极过程系指电极/溶液界面上发生的一系
列变化的总和。
• 电极过程并不是一个简单的化学反应,而是由一
系列性质不同的单元步骤串联组成的复杂过程。 有些情况下,除了连续进行的步骤外,还有平行 进行的单元步骤存在。
一般情况下,电极过程大致由下列各单元步 骤串联组成:
现象。
• • •
例如镍离子在镍电极上的还原过程。未通电时,阴极上 存在着镍的氧化还原反应的动态平衡、即
Ni 2e Ni
通电后,电子从外电源流入阴极,还原反应速度增大, 出现了净反应,即
2

Ni2+ + 2e →Ni
• 但还原反应需要一定的时间才能完成,即有一个有限的速
度,来不及将外电源输入的电于完全吸收,因而在阴极表

阴极极化: 电极电位偏离平衡电位 向负移称为阴极极化。
CuSO4

阳极极化: 电极电位偏离平衡电位
向正移称为阳极极化。
• 在一定的电流密度下,电极电位与平衡电位的
差值称为该电流密度下的过电位,用符号 h 表
示。即
• h = j - j平 • 过电位h 是表征电极极化程度的参数,在电极
过程动力学中有重要的意义。习惯上取过电位 为正值。
5.
反应产物生成新相,如生成气体、固相沉积层等,称
为新相生成步骤。或者,反应产物是可溶性的,产物
粒子自电极表面向溶液内部或液态电极内部迁移,称 为反应后的液相传质步骤。 对于电极过程需要注意的是:
a)
对—个具体的电极过程来说,并不一定包含所有上述 五个单元步骤,可能只包含其中的若干个。但是,任 何电极过程都必定包括(1),(3),(5)三个单元步骤。
第四章 电极过程
4.1.1 电池反应和电极过程
☞无论在原电池还是电解池中,整个电池体系的电
化学反应(电池反应)过程至少包含阳极反应过程、 阴极反应过程和反应物质在溶液中的传递过程(液 相传质过程)等三部分。
三个过程的特点
• 串联:上述每一个过程传递净电量的速度都是相
等的,因而三个过程是串联进行的。

实验表明,电子运动速度往往是大于电极反应速度 的,因而通常是极化作用占主导地位。也就是说,有 电流通过时
– 阴极上,由于电子流入电极的速度大,造成负电荷的 积累; – 阳极上,由于电子流出电极的速度大,造成正电荷积 累。 – 因此,阴极电位向负移动。阳极电位则向正移动,都 偏离了原来的平衡状态,产生所谓“电极的极化”现 象。
银氰络离子在阴极还原的电极过 程,它只包括四个单元步骤
5
5 3
1
2
2
3
表示银氰络离子在阴极还原电极过程,它只包括四 个单元步骤: (1)液相传质
2 2 Ag(CN )3- (溶液深处) Ag(CN )3- (电极表面附近)
(2)前置转化
2 Ag(CN )3- Ag(CN )- CN 2
而不同的步骤有不同的活化能,从而有不同的反应速度。
b) 当几个步骤串联进行时,在稳态条件下,各步骤的实际
进行速度应当相等。
c) 实际反应速度将取决于各单元步骤中进行得最慢的那个
步骤,即各单元步骤的速度都等于最慢步骤的速度。
• 定义:我们就把控制整个电极过程速度的单元步
骤(最慢步骤)称为电极过程的速度控制步骤,也
与电子运动速度的矛盾实质上决定于控制步骤速度与电
子运动速度的矛盾,电极极化的特征因而也取决于控制 步骤的动力学特征。所以,习惯上常按照控制步骤的不 同将电极的极化分成不同类型。根据电极过程的基本历 程,常见的极化类型是浓差极化和电化学极化。
浓差极化
• 所谓浓差极化是指单元步骤(1),即液相传质步骤
行的单元步骤。
c) 有些单元步骤本身又可能由几个步骤串联组成。
– 如涉及多个电子转移的电化学步骤,由于氧
化态粒子同时获取两个电子的几率很小,故
整个电化学反应步骤往往要通过几个单个电
子转移的步骤串联进行而完。
所以对一个具体的电极过程,必须通过实验来判
断其反应历程,而不可以主观臆测。
电极过程的速度控制步骤
• 所以,过电位虽然是表示电极极化程度的重要参数,
相关文档
最新文档