基于STM32的智能小车控制系统设计
《2024年基于STM32的智能小车研究》范文

《基于STM32的智能小车研究》篇一一、引言随着科技的进步和智能化设备的广泛应用,智能小车已成为人们生活中不可或缺的一部分。
基于STM32的智能小车凭借其卓越的硬件性能、高效的运算速度以及灵活的扩展能力,在各种应用场景中展现出强大的优势。
本文旨在探讨基于STM32的智能小车的设计原理、技术特点及其在多个领域的应用。
二、STM32简介STM32系列微控制器由意法半导体公司生产,广泛应用于嵌入式系统中。
该微控制器具备高性价比、高性能以及丰富的资源优势,成为众多研发人员首选的硬件平台。
基于STM32的智能小车,通过搭载传感器、执行器等设备,实现智能化的导航、避障等功能。
三、智能小车设计原理1. 硬件设计:智能小车的硬件设计主要包括STM32微控制器、电机驱动模块、传感器模块(如超声波传感器、红外传感器等)、执行器等部分。
这些硬件设备通过STM32微控制器的控制,实现小车的智能化运行。
2. 软件设计:智能小车的软件设计主要基于嵌入式操作系统或实时操作系统,实现对硬件设备的控制以及任务调度等功能。
软件设计应具备高效、稳定、可扩展的特点,以满足不同应用场景的需求。
四、技术特点1. 智能化:基于STM32的智能小车可实现自动导航、避障等功能,具备高度自主化特性。
2. 高效性:STM32微控制器的高性能和高效的运算速度,使智能小车能够快速响应环境变化,实现实时控制。
3. 灵活性:智能小车具备丰富的接口资源,可方便地扩展其他功能模块,如摄像头、通信模块等,以满足不同应用场景的需求。
4. 稳定性:智能小车的软件设计采用嵌入式或实时操作系统,具备较高的稳定性和可靠性,确保小车在复杂环境中能够稳定运行。
五、应用领域1. 物流配送:基于STM32的智能小车可应用于物流配送领域,实现自动化货物运输,提高物流效率。
2. 巡检工作:智能小车可应用于工厂、仓库等场所的巡检工作,提高工作效率和安全性。
3. 自动驾驶:在自动驾驶领域,智能小车可实现自动驾驶功能,提高交通安全性和道路利用率。
《2024年基于STM32的智能小车研究》范文

《基于STM32的智能小车研究》篇一一、引言随着科技的飞速发展,智能小车在物流、安防、救援等领域的应用越来越广泛。
STM32系列微控制器以其高性能、低功耗等优点,在智能小车的控制系统中得到了广泛应用。
本文将详细介绍基于STM32的智能小车研究,包括其设计原理、实现方法以及应用前景。
二、智能小车的系统设计1. 硬件设计基于STM32的智能小车硬件系统主要包括STM32微控制器、电机驱动模块、传感器模块等。
STM32微控制器作为核心部件,负责整个系统的控制与协调。
电机驱动模块用于驱动小车的运动,传感器模块则负责采集环境信息,为小车的自主导航提供数据支持。
2. 软件设计软件系统主要包括嵌入式操作系统、控制算法、通信协议等。
嵌入式操作系统负责管理硬件资源,提供多任务处理能力。
控制算法是实现小车智能行为的关键,包括路径规划、避障算法、速度控制等。
通信协议则用于实现小车与上位机之间的数据传输与控制。
三、关键技术实现1. 路径规划与导航智能小车的路径规划与导航是实现自主行驶的关键技术。
通过传感器采集环境信息,结合路径规划算法,小车能够自主规划行驶路径,实现自主导航。
同时,通过避障算法,小车能够在遇到障碍物时及时避障,保证行驶安全。
2. 电机控制与驱动电机控制与驱动是实现小车运动的关键技术。
STM32微控制器通过PWM信号控制电机驱动模块,实现对电机的精确控制。
同时,通过速度控制算法,小车能够根据实际需求调整行驶速度,实现平稳、高效的行驶。
四、应用场景分析基于STM32的智能小车具有广泛的应用前景。
在物流领域,智能小车可以实现快速、准确的货物运输;在安防领域,智能小车可以用于巡逻、监控等任务;在救援领域,智能小车可以用于灾后搜索、物资运输等任务。
此外,智能小车还可以应用于教育、科研等领域,为相关领域的研究提供有力支持。
五、结论本文详细介绍了基于STM32的智能小车研究,包括系统设计、关键技术实现以及应用场景分析。
基于STM32的智能循迹小车的设计

基于STM32的智能循迹小车的设计智能循迹小车是一种具有自主导航能力的智能移动机器人,能够根据预设的轨迹路径进行自主轨迹行驶。
该设计基于STM32单片机,采用感光电阻传感器进行循迹控制,结合电机驱动模块实现小车的前进、后退、转向等功能。
一、硬件设计1.MCU选型:选择STM32系列单片机作为主控芯片,具有高性能、低功耗、丰富接口等特点。
2.传感器配置:使用感光电阻传感器进行循迹检测,通过读取传感器的电阻值判断小车当前位置,根据不同电阻值控制小车行驶方向。
3.电机驱动模块:采用直流电机驱动模块控制小车的前进、后退、转向等动作。
4.电源管理:使用锂电池供电,通过电源管理模块对电源进行管理,保证系统正常工作。
二、软件设计1.系统初始化:对STM32单片机进行初始化,配置时钟、引脚等相关参数。
2.传感器读取:通过ADC模块读取感光电阻传感器的电阻值,判断小车当前位置。
3.循迹控制:根据传感器读取的电阻值判断小车相对于轨迹的位置,根据不同的位置控制小车的行驶方向,使其始终保持在轨迹上行驶。
4.电机控制:根据循迹控制的结果,通过电机驱动模块控制小车的前进、后退和转向动作。
5.通信功能:可通过串口通信模块与上位机进行通信,实现与外部设备的数据传输和控制。
三、工作流程1.初始化系统:对STM32单片机进行初始化配置。
2.读取传感器:通过ADC模块读取感光电阻传感器的电阻值。
3.循迹控制:根据读取的电阻值判断小车相对于轨迹的位置,控制小车行驶方向。
4.电机控制:根据循迹控制的结果,通过电机驱动模块控制小车的前进、后退和转向动作。
5.通信功能:可通过串口通信模块与上位机进行通信。
6.循环运行:不断重复上述步骤,实现小车的自主循迹行驶。
四、应用领域智能循迹小车的设计可以广泛应用于各个领域。
例如,在物流行业中,智能循迹小车可以实现自动化的物品搬运和运输;在工业领域,智能循迹小车可以替代人工,进行自动化生产和组装;在家庭生活中,智能循迹小车可以作为智能家居的一部分,实现家庭清洁和智能控制等功能。
【项目实战】基于STM32单片机的智能小车设计(有代码)

【项⽬实战】基于STM32单⽚机的智能⼩车设计(有代码)【1】背景意义近些年随着国民⽣活⽔平的提升,以⼩车为载体的轮式机器⼈进⼊了我们的⽣活,尤其是在⼀些布线复杂困难的安全⽣活区和需要监控的施⼯作业场合都必须依赖轮式机器⼈的视频监控技术。
因此,基于嵌⼊式技术的⽆线通信视频监控轮式机器⼈应运⽽⽣。
由于它们与⼈类⼯作相⽐具有成本低廉、安全稳定的优点,⽬前已经在许多危险作业以及⼯业场合得到了⼴泛应⽤⽽且轮式机器⼈不需要像⼈那样采取过多的保护措施,因此轮式机器⼈更适合在危险困难的⼯作环境中⼯作。
然⽽轮式机器⼈在⾏驶中所能碰到的障碍很多,例如前部凸出物的碰触,后部凸出物的拖托,中部凸出物的顶举,特别还有垂直障碍和壕沟等,所以必须对轮式机器⼈的越障问题进⾏研究来解决类似问题。
针对复杂地形环境的巡检作业,设计⼀种基于wifi视频监控的智能⼩车。
基于STM32F103主控板搭建智能⼩车的控制系统,并采⽤模块化的设计思想编写控制系统程序,为能够在复杂地形下进⾏巡检作业的轮式机器⼈研究提供理论依据。
【2】总设计⽅案本课题利⽤STM32作为智能⼩车的主控制器来驱动智能⼩车的直流电机⼯作,电机驱动芯⽚采⽤L298N微型集成电路电机驱动芯⽚,配合STM32核⼼板使⽤实现四个直流电机运⾏和pwm软件调速,通过改变直流电机占空⽐的电压来改变平均电压的数值,从⽽改变电机的转速变化来驱动轮式机器⼈运⾏。
轮式机器⼈⾏驶的状态有:前进、后退、左转、右转和停⽌。
当轮式机器⼈在⾏驶过程中遇到障碍物,红外避障检测模块检测周围障碍物,轮式机器⼈⾃动停⽌或转向。
通过WIFI⽆线信号作为传输媒介,以上位机或⼿机作为控制端来控制机器⼈的运动以及将摄像头所拍摄的视频信息在控制端界⾯中显⽰,这样便可观察轮式机器⼈周围的环境并对机器⼈进⾏实时监控。
主要设计步骤有:(1)根据提出⽅案的功能需求对智能⼩车进⾏结构设计。
(2)根据主控制器的基本结构和特点,设计总体硬件电路模块。
《2024年基于STM32智能小车的设计与实现》范文

《基于STM32智能小车的设计与实现》篇一一、引言随着科技的不断发展,智能小车在物流、安防、救援等领域的应用越来越广泛。
本文将详细介绍基于STM32的智能小车的设计与实现过程,包括硬件设计、软件设计、系统调试及实际运行效果等方面。
二、硬件设计1. 核心控制器本智能小车采用STM32F4系列微控制器作为核心控制器,其具有高性能、低功耗的特点,满足小车在运动控制、传感器数据处理等方面的需求。
2. 电机驱动智能小车的驱动部分采用电机和电机驱动器。
通过PWM (脉冲宽度调制)控制电机转速,实现对小车的运动控制。
此外,为了保证小车的运动稳定性和动力性,采用差速转向的方式。
3. 传感器模块传感器模块包括红外避障传感器、超声波测距传感器等。
红外避障传感器用于检测小车前方障碍物,实现自动避障功能;超声波测距传感器用于测量小车与前方障碍物的距离,为小车的速度和方向调整提供依据。
三、软件设计1. 操作系统及开发环境本智能小车采用基于STM32的嵌入式操作系统,开发环境为Keil uVision等软件工具。
这些工具能够为开发人员提供丰富的调试、测试等功能。
2. 软件设计流程软件设计包括初始化、数据采集、运动控制等部分。
初始化阶段包括对微控制器及各模块的配置;数据采集部分包括传感器数据的读取和解析;运动控制部分根据传感器数据调整小车的速度和方向,实现智能导航和避障功能。
四、系统调试与实现1. 系统调试系统调试包括硬件调试和软件调试两部分。
硬件调试主要检查电路连接是否正确,各模块是否工作正常;软件调试主要检查程序逻辑是否正确,各功能是否实现。
2. 实际运行效果经过系统调试后,智能小车能够在各种环境下自主导航和避障。
在平地、坡道等不同路况下,小车能够稳定运行,并自动调整速度和方向以适应不同环境。
此外,小车还具有较高的避障能力,能够快速识别并避开障碍物。
五、结论本文详细介绍了基于STM32的智能小车的设计与实现过程。
通过合理的硬件设计和软件设计,实现了智能小车的自主导航和避障功能。
毕业设计_基于stm32的智能小车设计

摘要本次试验主要分析了基于STM32F103微处理器的智能小车控制系统的系统设计过程。
此智能系统的组成主要包括STM32F103控制器、电机驱动电路、红外探测电路、超声波避障电路。
本次试验采用STM32F103微处理器为核心芯片,利用PWM技术对速度以及舵机转向进行控制,循迹模块进行黑白检测,避障模块进行障碍物检测并避障功能,其他外围扩展电路实现系统整体功能。
小车在运动时,避障程序优先于循迹程序,用超声波避障电路进行测距并避障,在超声波模块下我们使用舵机来控制超声波的发射方向,用红外探测电路实现小车循迹功能。
在硬件设计的基础上提出了实现电机控制功能、智能小车简单循迹和避障功能的软件设计方案,并在STM32集成开发环境Keil下编写了相应的控制程序,并使用mcuisp软件进行程序下载。
关键词:stm32;红外探测;超声波避障;PWM;电机控制AbstractThis experiment mainly analyzes the control system of smart car based on microprocessor STM32F103 system design process. The composition of the intelligent system mainly including STM32F103 controller, motor drive circuit, infrared detection circuit, circuit of ultrasonic obstacle avoidance. This experiment adopts STM32F103 microprocessor as the core chip, using PWM technique to control speed and steering gear steering, tracking module is used to detect the black and white, obstacle avoidance module for obstacle detection and obstacle avoidance function, other peripheral extended circuit to realize the whole system function. When the car is moving, obstacle avoidance program prior to tracking, using ultrasonic ranging and obstacle avoidance obstacle avoidance circuit, we use steering gear under ultrasonic module to control the emission direction of ultrasonic, infrared detection circuit is used to implement the car tracking function. On the basis of the hardware design is proposed for motor control function, simple intelligent car tracking and obstacle avoidance function of software design, and in the STM32 integrated development environment under the Keil. Write the corresponding control program, and use McUisp program download software. Keywords:STM32;Infrared detection;Ultrasonic obstacle avoidance;PWM;Motor control目录1.绪论....................................................................................................................................... - 5 -1.1研究概况...................................................................................................................... - 5 -1.2研究思路...................................................................................................................... - 5 -2.软硬件设计 ......................................................................................................................... - 6 -2.1中央处理模块............................................................................................................. - 6 -2.1.1 stm32f103内部结构........................................................................................ - 7 -2.1.2 stm32最小系统电路设计............................................................................... - 8 -2.1.3 stm32软件设计的基本思路........................................................................ - 11 -2.1.4 stm32中断介绍............................................................................................... - 12 -2.1.5 stm32定时/计数器介绍 ............................................................................... - 14 -2.1.6 主程序设计流程图......................................................................................... - 15 -2.2 电机驱动模块.......................................................................................................... - 16 -2.2.1 驱动模块结构及其原理................................................................................ - 16 -2.2.2 驱动模块电路设计......................................................................................... - 17 -2.2.3驱动软件程序设计.......................................................................................... - 18 -2.3 避障模块设计.......................................................................................................... - 23 -2.3.1 避障模块器件结构及其原理....................................................................... - 24 -2.3.2 HC-SR04模块硬件电路设计....................................................................... - 26 -2.3.3 HC-SR04模块程序设计................................................................................ - 27 -2.4循迹模块设计........................................................................................................... - 35 -2.4.1 循迹模块结构及其原理................................................................................ - 35 -2.4.2 循迹模块电路设计......................................................................................... - 37 -2.4.3 红外循迹模块程序设计................................................................................ - 38 -3.软件调试............................................................................................................................ - 40 -3.1 程序仿真 ................................................................................................................ - 40 -3.2 程序下载................................................................................................................... - 41 -4.系统测试............................................................................................................................ - 42 -5.总结..................................................................................................................................... - 45 -致谢 ........................................................................................................................................ - 47 -参考文献 ............................................................................................................................... - 48 -附录 ........................................................................................................................................ - 49 -1.绪论智能小车通过各种感应器获得外部环境信息和内部运动状态,实现在复杂环境背景下的自主运动,从而完成具有特定功能的机器人系统。
《2024年基于STM32智能小车的设计与实现》范文

《基于STM32智能小车的设计与实现》篇一一、引言随着科技的不断发展,智能小车作为一种集成了传感器、控制算法和执行机构的智能移动平台,在物流、安防、救援等领域得到了广泛的应用。
本文将详细介绍基于STM32微控制器的智能小车的设计与实现过程。
二、系统概述本智能小车系统以STM32微控制器为核心,通过集成电机驱动、传感器(如红外传感器、超声波传感器等)、通信模块等,实现小车的自主导航、避障、远程控制等功能。
系统具有体积小、重量轻、成本低、性能稳定等特点。
三、硬件设计1. 微控制器选择本系统选用STM32系列微控制器,该系列微控制器具有高性能、低功耗、丰富的外设接口等特点,能够满足智能小车的控制需求。
2. 电机驱动设计电机驱动采用H桥电路,通过PWM信号控制电机的转速和方向。
同时,为了保护电机和电路,还设计了过流、过压等保护电路。
3. 传感器模块设计传感器模块包括红外传感器、超声波传感器等,用于实现小车的自主导航和避障功能。
传感器通过I2C或SPI接口与微控制器进行通信,实时传输数据。
4. 通信模块设计通信模块采用蓝牙或Wi-Fi等无线通信技术,实现小车的远程控制和数据传输功能。
通信模块与微控制器通过串口进行通信。
四、软件设计1. 开发环境搭建软件设计采用Keil uVision等集成开发环境,进行代码的编写、编译和调试。
同时,为了方便程序的烧写和调试,还使用了STM32的调试器。
2. 程序设计流程程序设计主要包括主程序、电机控制程序、传感器数据处理程序和通信程序等。
主程序负责整个系统的协调和控制,电机控制程序根据传感器数据和遥控指令控制电机的转速和方向,传感器数据处理程序负责处理传感器的数据并输出控制指令,通信程序负责与上位机进行数据传输和指令交互。
五、系统实现与测试1. 系统实现根据硬件设计和软件设计,将各部分模块进行组装和调试,完成智能小车的制作。
在制作过程中,需要注意各部分模块的连接和固定,确保系统的稳定性和可靠性。
《2024年基于STM32的智能小车研究》范文

《基于STM32的智能小车研究》篇一一、引言随着科技的飞速发展,智能小车在各个领域的应用越来越广泛,如物流、军事、救援等。
STM32系列微控制器以其高性能、低功耗的优点被广泛应用于各种智能设备的控制系统中。
本文旨在探讨基于STM32的智能小车的研究,从小车的系统架构、硬件设计、软件编程到测试分析等方面进行详细的阐述。
二、系统架构设计智能小车的系统架构主要包含四大模块:控制模块、驱动模块、传感器模块和通信模块。
控制模块采用STM32微控制器,负责整个系统的控制与协调;驱动模块负责驱动小车的电机,实现小车的运动;传感器模块包括超声波测距传感器、红外线避障传感器等,用于获取环境信息;通信模块负责小车与外界的通信,实现远程控制或数据传输。
三、硬件设计1. 微控制器选型及电路设计本文选用STM32F103C8T6微控制器,其具有高性能、低功耗的特点,适合于智能小车的控制系统。
电路设计包括电源电路、时钟电路、复位电路等,保证微控制器的稳定工作。
2. 电机驱动设计电机驱动采用H桥电路,通过PWM信号控制电机的转速和方向。
同时,为了保护电机和电路,还设计了过流、过压、欠压等保护电路。
3. 传感器选型及接口设计传感器包括超声波测距传感器、红外线避障传感器等,通过I2C或SPI接口与微控制器进行通信,实现环境信息的获取。
四、软件编程1. 编程环境及开发工具采用Keil uVision5作为开发工具,编写C语言程序,实现小车的控制功能。
2. 程序设计及算法实现程序设计包括初始化程序、主程序、中断服务等。
其中,主程序采用循环扫描的方式,不断读取传感器的数据,根据数据做出相应的决策。
算法实现包括路径规划算法、避障算法等,保证小车在复杂环境中的稳定运行。
五、测试分析1. 测试环境及方法在室内外不同环境下进行测试,包括平坦路面、坡路、弯道等。
通过手动遥控和自动巡航两种方式进行测试。
2. 测试结果及分析测试结果表明,基于STM32的智能小车在各种环境下都能稳定运行,实现了远程控制、路径规划、避障等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
www�ele169�com | 21
电子电路设计与方案
0 引言
移动机器人已经渗透到工业生产、物流、搬运、医疗等
社会的每个方面[1]。
智能小车作为一种轮式机器人也得到了广泛的应用研究[2]。
控制系统是智能小车的关键构成部分,能够在较为复杂的环境中,将小车按照预定的轨迹运行,或者运行到预先设定的位置,实现小车精确的速度与位置的控制,对智能小车系统起着至关重要的作用[3]。
因此,本文以四轮轮式结构智能小车为研究对象,采用STM32系列单片机作为控制核心,结合CAN 总线通信接口,设计一种基于
STM32的智能小车控制系统,该系统功能强大且扩展性好,
具有一定的实用价值。
1 系统介绍
智能小车的控制系统是整个智能小车设计过程中最为重
要的一环。
智能小车是在它的统一协调控制下完成行走、避障、自主循迹等任务,它的好坏直接关系着智能小车的性能好坏,
控制系统的设计方法也决定着智能小车的功能特点。
图1 控制系统结构框图
通常,智能小车应具备自主定位、障碍物实时检测、自
动避障、速度检测以及无线通信等功能。
根据上述功能的要
求,本文所设计的控制系统的硬件模块主要包括:主控模块、障碍物检测模块、速度检测模块、无线通信模块、电源模
块以及电机驱动模块等部分。
控制系统的结构如图1所示。
为了方便后续的功能的扩展,在实际设计过程中,各模块的软硬件设计均采用相对独立的模块化设计方法。
2 系统硬件设计
■2.1 电源模块
电源模块主要为控制系统提供工作的电压。
根据各个
组成部分的功能,电源模块应提供电机驱动所需的12V、STM32主控核心所需的3.3V、其他芯片工作所需的5V 三种幅值的电压。
因此,采用12V 的航模电池作为供电电源,5V 与3.3V 电源转换电路如图2所示。
为了增加电源的可靠性,减少外界扰动的影响,在稳压芯片7805和LM1117的
输入和输出两侧均布置有电容。
图2 电源模块电路
■2.2 障碍物检测模块
智能小车要具备自主避障的能力,必须在其行进过程中
能够时刻检测到障碍物的信息,为此就需要设计相应的障碍物检测模块。
常用的传感器主要有超声波、激光以及红外测
距传感器。
鉴于超声传感器使用方便、实时性强和性价比高等优点,本文选用型号为HC-SR04的超声测距模块,得到智能小车在行进过程中遇到的障碍物的信息。
所使用的测距模块如图3所示。
其中VCC 为5V 电源输入接5V 电源即可,GND 为接地线,回响信号输出ECHO 与触发控制信号输入
TRIG 与STM32的I/O 口连接即可。
基于STM32的智能小车控制系统设计
王嘉俊
(山西省清徐梗阳中学,山西清徐,030400)
摘要:本文设计一种基于STM32的智能小车控制系统。
该系统采用STM32单片机作为控制核心,通过HC-SR04超声波传感器实时检测障碍物信息,采用光电编码器得到转速信息构成闭环控制系统,使得智能小车的控制更为精确,通过CAN总线和无线通信模块实现操作人员对智能小车的有线和无线通信。
该系统设计简单、可扩展性好且控制精度高,具有一定应用价值。
关键词:智能小车;STM32;转速检测;避障
22 | 电子制作 2018年9月
3 超声测距模块
2.3 电机驱动模块
电机驱动模块主要驱动直流电机实现小车的前进、后
退、转向等运动能力。
通常,通过STM32单片机输出的
脉冲配合直流电机驱动芯片,实现智能小车的运动能本文选用型号为L293D 专用直流电机驱动芯片来实现。
该芯片具有抗噪能力强、驱动电流大、且内部集成护等优点,非常适合类似本文的设计要求。
所设计的电机驱
4所示。
2.4 速度检测模块
为了提高智能小车的控制精度,采集电机的转速作为反
馈,构成一个基于速度信号的闭环控制系统。
本文采用增量式光电编码器获取实时的转速信息,测速的基本原理是对脉冲进行计数。
常用的方法主要有测频法、周期法以及频率/周期法三种,本文采用频率/周期法,通过光电编码器和
STM32单片机的内部计数器想配合得到实时的转速。
■2.5 通信扩展模块
控制系统的通信扩展模块主要包括CAN 总线和无线
通信两部分,用来实现与外界信息交换。
CAN 总线通信主
要利用STM32单片机内部的CAN 总线控制器,与型号为
T JA1050的CAN 总线高速接收芯片相连接来实现。
具体的
图5 CAN 总线电路
图6 无线通信接口电路
无线通信模块主要用于操作人员对智能小车发动运动
指令,本文选用射频模块PTR2000作为无线通信端口,与
STM32控制器自带的USART 收发器端口连接,从而实现操
作者与智能小车之间的无线通信。
该射频模块具有接收和发
图4 电机驱动电路
图7 系统软件流程图(下转第25页)
www�ele169�com | 25
电子电路设计与方案
相图是多个变量之间的相关关系图,这里我们观察变量为三个,对于非混沌行为,三个变量之间没有相关关系,这
里没有给出图示,而对于出现混沌行为的三个变量之间我们可以清晰的观察到系统的混沌行为,任意两个变量的相图可以是双涡旋、单涡旋、周期等模型,这里我们可以利用相图进一步判断一个新的系统是否能产生混沌现象。
蔡氏电路系统的相图具体情形如图2第二行的三张图所示,其中每组小
图用横向变换坐标放置在同一个图上,以便更清楚的比较观察、分析和研究系统的吸引子性质。
我们可以看到变量与变量之间有相互作用,并不是没有关系,变量与变量随着时间演化的相图形成了双旋涡模型,两个变量之间相互吸引的同
时,但是在空间的演化过程中不会相遇。
图2 混沌电路系统的时序图与相图
在进行非线性电路中混沌现象的仿真过程中,微分方程
组的求解算法是核心算法,四阶龙科库塔算法是工程上应用广泛的高精度单步算法,同时,如果想要更加提高精确度的可以利用五阶龙科库塔算法。
对于没有编程基础的高中生来
说龙科库塔算法的编程比较困难,这里可以利用MATLAB 程序的扩展程序包中的已有的算法ODE(45),通过命令语句直接调用,方便快捷,其中ODE(45)是结合四阶与五阶龙
科库塔之间的算法,精确度高。
4 结论
本文利用MATLAB 建模仿真实现了混沌电路的数值模
拟,这里学习研究的是一个经典的蔡氏混沌电路,通过仿真学习,我们知道通过加入非线性元件和储能元件,在一定的参数下,可以实现电路的混沌行为。
如果改变电路参数和初始值,蔡氏混沌电路在仿真过程中呈现各种混沌动态行为。
是与高中课本中常见的电路的完全不同的动力学行为。
同时对混沌现象有了更加直观深入的理解,理解了混沌电路应用于现代保密通信的理论依据所在,利用了混沌对初始条件敏感、随机性,同时具有整体有界性。
通过理论学习到电路仿真和数值结果分析,培养自身的学习兴趣和激发自身的创新精神,为今后进一步学习研究设计专用的混沌电路奠定基础。
参考文献
* [1]王宏.精通MATLAB 6.5即其在信号处理中的应用[M].北京:清华大学大学出版社.2004年.
* [2]王改云;马姝靓.典型混沌系统的MATLAB 仿真[J].物理学报.2003年.
* [3]梁虹;梁洁.陈跃斌等编著.信号与系统分析及MATLAB 实现[M].北京:电子工业出版社.
* [4]Galias Z; Maggio G M. Quadrature Chaos-Shift Keying: Theo ry and performance analysis[J]. IEEE Transactions on Circuits and Systems; 2001; 48(12): 1510.射数据的功能,可与单片机的串口进行通信连接,且具有接收灵敏度高、工作速率快、稳定性高等特点。
它与主控制模块的接口电路如图6所示。
3 系统软件设计
系统软件的设计主要包括系统的初始化、超声波测距数
据采集与处理、电机PWM 信号驱动、转速检测数据的采集
与处理、CAN 总线数据收发以及外部无线通讯指令接收等几个部分。
当小车检测到外部指令时,执行相应动作;当无外部指令时,则在行进过程中实时检测障碍物,所设计的系统软件流程如图7所示。
4 结束语
本文设计的基于STM32的智能小车控制系统,详细介
绍了系统的硬件与软件设计过程。
该系统利用超声波传感器检测障碍物信息,通过光电编码器采集速度信号构成闭环控
制系统,从而提高小车的控制精度和稳定性。
参考文献
* [1]刘艳霞.多转向驱动拖挂式移动机器人的运动规划与跟踪控制[D]. 天津: 南开大学, 2016.* [2]袁新娜.基于多传感器信息融合技术的智能小车避障系统研究[D]. 太原: 中北大学, 2010.
* [3]翁卓,熊承义,李丹婷. 基于光电传感器的智能车控制系统设计[J]. 计算机测量与控制, 2010, 18(8):1789-1791.
(上接第22页)。