优等生·江苏版高考数学专题28:以解析几何中定点、定值为背景的解答题

合集下载

专题2.1 以解析几何中定点、定值为背景的解答题-2019年高考数学备考优生百日闯关系列(江苏专版)(解析版

专题2.1 以解析几何中定点、定值为背景的解答题-2019年高考数学备考优生百日闯关系列(江苏专版)(解析版

专题二压轴解答题第一讲以解析几何中定点、定值为背景的解答题【名师综述】解析几何中的定值、定点、定线问题仍是高考考试的重点与难点,都是探求"变中有不变的量".一般运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法.类型一定值问题典例1.【2019江苏镇江上学期期末考】已知椭圆:的长轴长为4,两准线间距离为.设为椭圆的左顶点,直线过点,且与椭圆相交于,两点.(1)求椭圆的方程;(2)若的面积为,求直线的方程;(3)已知直线,分别交直线于点,,线段的中点为,设直线和的斜率分别为,,求证:为定值.【答案】(1);(2);(3)见解析.【解析】(1)由题意可知,,,解得,,因为,解得,所以椭圆的方程为.(2)因为,所以,所以,设直线:,代入椭圆,整理得,,所以,即,解得,即,所以直线的方程为.【名师指点】本题主要考查了椭圆的简单性质,转化思想及方程思想,一元二次方程求根公式,还考查了韦达定理及中点坐标公式、两点斜率公式,考查计算能力,属于难题.【举一反三】1.【2019江苏南京模拟】平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.(1)求椭圆的方程;(2)过椭圆上一动点的直线,过F2与x轴垂直的直线记为,右准线记为;①设直线与直线相交于点M,直线与直线相交于点N,证明恒为定值,并求此定值.②若连接并延长与直线相交于点Q,椭圆的右顶点A,设直线P A的斜率为,直线QA的斜率为,求的取值范围.【答案】(1);(2)①②.【解析】(1)由题意知,则,又可得,所以椭圆C的标准方程为.(2)①M N.②点(),点Q,∵,,∴==.∵点P在椭圆C上,∴,∴==.∵,∴,∴的取值范围是.2.【2019江苏昆山第一学期期中考】如图,已知圆O的方程为,过点的直线与圆O交于点、,与负半轴交于点.设,(1)若,求出、两点坐标(2)当直线绕点转动时,试探究是否为定值.【答案】(1);(2).学-科网【解析】(1)设,因为,所以,所以,因此,由得(2)设,因为,,所以因此,,.类型二定点问题典例2.【2019苏北三市第一次质量检测】如图,在平面直角坐标系中,已知椭圆的离心率为,且右焦点到右准线的距离为1.过轴上一点为常数,且的直线与椭圆交于两点,与交于点,是弦的中点,直线与交于点.(1)求椭圆的标准方程;(2)试判断以为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.【答案】(1)(2)经过定点【解析】(1)由题意,得,解得,所以,所以椭圆C的标准方程为.(2)由题意,当直线的斜率不存在或为零时显然不符合题意;所以设的斜率为,则直线的方程为,又准线方程为,所以点的坐标为,由得,,即,所以,,所以,从而直线的方程为,(也可用点差法求解),所以点的坐标为,所以以为直径的圆的方程为,即,因为该式对恒成立,令,得,所以以为直径的圆经过定点.【名师指点】圆锥曲线中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;(2)从特殊位置入手,找出定点,再证明该点符合题意.【举一反三】1.【2019江苏南通市如皋调研三】如图所示,抛物线的焦点为.(1)求抛物线的标准方程;(2)过的两条直线分别与抛物线交于点,与,(点,在轴的上方).①若,求直线的斜率;②设直线的斜率为,直线的斜率为,若,求证:直线过定点.【答案】(1);(2);(3).【解析】(1)因为,所以p=2,所以方程为.(2)法一:,,,得,代入得,则,,.法二:由①得,代入①求,,而,得.法三:利用抛物线的定义转化为到准线的距离,得.(3),得,,同理①代入①得,又有,,而,.当存在时,设直线:,得:,得,过定点.当不存在时,检验得过定点.综上所述,直线过定点.2.【2019江苏如东中学模拟二】如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.【答案】(1);(2)证明见解析;(3).【解析】(1)设,,.由,得,即.因为,所以,所以.所以动点的轨迹为抛物线,其方程为.(2)证明:设点,,若直线的倾斜角互补,则两直线斜率互为相反数,又,,所以,,整理得,所以.(3)因为,所以,即,①直线的方程为:,整理得:,②将①代入②得,即,当时,即直线经过定点.类型三定线问题典例3.【2019江苏如皋中学10月月考】在平面直角坐标系中,已知椭圆的离心率为,两个顶点分别为,.过点的直线交椭圆于,两点,直线与的交点为.(1)求椭圆的标准方程;(2)求证:点在一条定直线上.【答案】(1);(2)见解析(2)由题意知,直线与直线的斜率存在,故设直线的方程为,直线的方程为.联立方程组,消去y得,解得点.同理,解得点.由M,D,N三点共线,有,化简得.由题设可知与同号,所以.联立方程组,解得交点.将代入点G的横坐标,得.所以,点G恒在定直线上.【名师指点】(1)在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2)定点的探索与证明问题:①探索直线过定点时,需考虑斜率存在不存在,斜率存在可设出直线方程,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点;②从特殊情况入手,先探求定点再证明与变量无关.【举一反三】1.如图,已知是椭圆的长轴顶点,是椭圆上的两点,且满足,其中、分别为直线AP、QB的斜率.(1)求证:直线和的交点在定直线上;(2)求证:直线过定点;(3)求和面积的比值.【答案】(1)见解析;(2)见解析;(3)2.【解析】(1)根据题意,可设直线的方程为,直线的方程为,则直线和的交点的横坐标满足:,即.因此直线和的交点在定直线上.(2)由(1),可设点的坐标为,则直线的方程为,直线的方程为,联立方程,得消去得,设,则根据根与系数的关系,得,即,代入直线的方程得,,故.联立方程,得消去得,设,则,即,代入直线的方程得,,故,当,即时,直线与轴的交点为,当,即时,下证直线过点.,故直线过定点.(3)由题意知,,再结合(2)中相关结论知,,故.2.如图,设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F ∆的面积为22. (1)求该椭圆的标准方程;学-科网(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 【解析】从而122DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此2322DF =. 所以12222a DF DF =+=,故2222,1a b a c ==-=因此,所求椭圆的标准方程为:2212x y +=【精选名校模拟】1.【2019江苏南京期末调研】如图,在平面直角坐标系中,,分别为椭圆的左、右焦点.动直线过点,且与椭圆相交于,两点(直线与轴不重合).(1)若点的坐标为,求点坐标;(2)点,设直线,的斜率分别为,,求证:;(3)求面积最大时的直线的方程.【答案】(1) (2)见证明;(3)【解析】(1)因为直线经过点,,所以直线的方程为.由解得或所以.(2)因为直线与轴不重合,故可设直线的方程为.设,,由得,所以,,因为,在直线上,所以,,所以,,从而.因为,所以.(3)方法一:的面积.由(2)知,,故,设函数.因为,所以在上单调递增,所以当,即时,取最小值10.即当时,的面积取最大值,此时直线的方程为.2.【2019江苏如东中学二模】已知椭圆的左、右焦点分别为F1,F2,离心率,且椭圆的短轴长为2.(1)求椭圆的标准方程;(2)已知直线l1,l2过右焦点F2,且它们的斜率乘积为﹣1,设l1,l2分别与椭圆交于点A,B和C,D.①求AB+CD的值;②设AB的中点M,CD的中点为N,求△OMN面积的最大值.【答案】(1);(2)①;②.【解析】(Ⅰ)由题意得2b=2,∴b=1,∵,a2=b2+c2,∴a=,c=1,∴椭圆的方程为.(2)由题意知k0,右焦点设:设A()B().因为l1,l2的斜率乘积为﹣1,所以,所以= +=3,过定点可通过特殊情形猜想,若有定点,则在x 轴上.在k≠0,k≠±1的情况下,设直线l的方程为:x=ky+1,直线l的方程为:,由(2)得,y= ,故,即M(,),则N()….(12分)可得直线MN的方程:,即,则,即y=,故直线MN过定点(或令y=0,即得x=),易验证当k=0,k=±1时,结论仍成立.综上:直线MN过定点,所以S== ,所以面积最大.3.【2019江苏七校期中联考】已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点为椭圆上位于轴上方的动点,直线与直线分别交于两点.(1)求椭圆的方程;(2)求证:直线AS与BS的斜率的乘积为定值;(3)求线段MN的长度的最小值【答案】(1);(2);(3).【解析】(1)由已知得,椭圆的左顶点为上顶点为,故椭圆的方程为.(2)设,.(3)(常规方法,函数思想)直线AS的斜率显然存在,且,故可设直线的方程为,从而,由得0,设则得,从而,即又由得,故又,当且仅当,即时等号成立时,线段的长度取最小值.4.【2019江苏如皋第一学期调研一】已知椭圆T的焦点分别为F1(﹣1,0)、F2(1,0),且经过点P(,).(1)求椭圆T的标准方程;(2)设椭圆T的左右顶点分别为A、B,过左焦点的直线与椭圆交于点C、D,△ABD和△ABC的面积分别为S1、S2,求的最大值;(3)设点M在椭圆T外,直线ME、MF与椭圆T分别相切于点E、F,若ME⊥MF,求证:点M在定圆上.【答案】(1)(2)点M在定圆上.【解析】(1)设所求的方程为,其中,且,解得,,椭圆T的标准方程为.(2)点A、B的坐标分别为、,设点C、D的坐标为、,因为要构成三角形,又直线CD过焦点,则C、D分别在x轴两侧,所以,不妨设,,则,直线CD过焦点,且斜率不为0,设直线CD方程为,与椭圆方程联立消元得,、是该方程的两个异号实根,,当时,;当时,;当且仅当,即时取等号.综上,的最大值为.(3)当直线ME、MF斜率分别不存在和为0时,ME、MF分别垂直于坐标轴,点M坐标为或或或,则(定值),其中O是坐标原点,点M在定圆上.当直线ME、MF斜率存在且不为0时,设点M坐标为,设直线ME、MF的方程分别为、,可以统一为的形式,并与椭圆方程联立消元得:,直线ME、MF与椭圆相切,则,直线ME、MF与椭圆相切,则,展开化简得:(且),、可以看作是这个方程的两根,由得,即,并且此时方程中的判别式恒成立,点M也在定圆上.综上,点M在定圆上.5.【2019江苏泰州姜堰中学期中考】已知椭圆C:的左右顶点为A、B,右焦点为F,一条准线方程是,短轴一端点与两焦点构成等边三角形,点P、Q为椭圆C上异于A、B的两点,点R为PQ的中点求椭圆C的标准方程;直线PB交直线于点M,记直线PA的斜率为,直线FM的斜率为,求证:为定值;学科=网若,求直线AR的斜率的取值范围.【答案】(1)(2)见解析(3)【解析】椭圆的一条准线方程是,可得,短轴一端点与两焦点构成等边三角形,可得,解得,,,即有椭圆方程为;证明:由,,设直线PB的方程为,联立椭圆方程,可得,解得或,即有,,,则,即为定值.由,可得,即,设AP的方程为,代入椭圆方程,可得,解得或,即有,将t换为可得,则R的坐标为,即有直线AR的斜率,可令,则,则,当时,,当且仅当时上式取得等号,同样当时,,时,,,则AR的斜率范围为6.【2019江苏南通市如皋上学期调研三】如图,在平面直角坐标系中,椭圆的左右顶点分别是,为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.(1)若的面积是的面积的,求直线的方程;(2)设直线与直线的斜率分别为,求证:为定值;(3)若的延长线交直线于点,求线段长度的最小值.【答案】(1);(2)见解析(3)【解析】(1),即为的中点.,代入椭圆方程得:,,直线方程为:.(3),得,,当且仅当时取最小值.7.【2019江苏南京上学期期中考】在平面直角坐标系xOy中,已知椭圆离心率是,焦点到相应准线的距离是3.(1)求椭圆的方程;(2)如图,设A是椭圆的左顶点,动圆过定点E(1,0)和F(7,0),且与直线x=4交于点P,Q.①求证:AP,AQ斜率的积是定值;②设AP,AQ分别与椭圆交于点M,N,求证:直线MN过定点.【答案】(1);(2)①见解析;②见解析.【解析】(1)设椭圆的焦距为,由题意可得,所以,,因为椭圆的焦点到相应准线的距离为,得c=1,所以,,因此,椭圆的方程为.(2)①设动圆的圆心坐标为,则圆的方程为,设点,令,可得,则AP、AQ的斜率之积为(定值).②设直线MN的方程为,设点.将直线MN的方程代入椭圆方程并化简得,由韦达定理可得.因为A、M、P三点共线,则,由于,,所以,则,同理可得,由,解得t=1,因此,直线MN过定点(1,0).8.【2019江苏南通一中期中考】已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程;(2)设是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线与轴相交于定点;(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.【答案】(1);(2)证明见解析;(3).【解析】(1)由题意可得解得,∴椭圆C的方程为.(2)如图所示:设直线PB的方程为y=k(x﹣4),B(x1,y1),E(x2,y2),则A(x1,﹣y1).联立,消去y化为方程(1+2k2)x2﹣16k2x+32k2﹣4=0,∵直线PB与椭圆有两个不同的交点,∴△=(16k2)2﹣4(1+2k2)(32k2﹣4)>0.(*)x1+x2=,.直线AE的方程为,令y=0,则====.故直线AE过定点Q(1,0).学科!网(3)①当直线MN与x轴重合时,=(2,0)•(﹣2,0)=﹣4.②当直线MN与x轴不重合时,设直线MN的方程为my=x﹣1,联立消去x化为方程(2+m2)y2+2my﹣3=0,可知△>0.,可得y M+y N=,y M y N=.∴=x M x N+y M y N=(my M+1)(my N+1)+y M y N=(1+m2)y M y N+m(y M+y N)+1==﹣4+,∵m2≥0,∴,∴,∴的取值范围是.综上可知:的取值范围是.。

解析几何中的定点,定值问答(含答案解析)

解析几何中的定点,定值问答(含答案解析)

分析几何中的定点和定值问题【教课目的】学会集理选择参数(坐标、斜率等)表示动向图形中的几何对象,研究、证明其不变性质 ( 定点、定值等 ),领会“设而不求” 、“整体代换”在简化运算中的作用.【教课难、要点】解题思路的优化.【教课方法】议论式【教课过程】一、基础练习1 、过直线x 4 上动点 P 作圆O:x2y2 4 的切线PA、PB,则两切点所在直线AB 恒过必定点.此定点的坐标为.【答案】(1,0)yPB4xA【分析】设动点坐标为P(4,t),则以OP直径的圆C方程为:x(x 4)y( y t ) 0 ,故 AB 是两圆的公共弦,其方程为4x ty 4 .注:部分优异学生可由x0 x y0 y r 2公式直接得出.4x40令0得定点 (1,0) .y2 、已知 PQ 是过椭圆 C : 2 x2y21中心的任一弦, A 是椭圆 C 上异于P、Q的随意一点.若AP、AQ分别有斜率 k1、 k2,则 k1k2=______________.【答案】 -2【分析】设P( x, y), A( x0 , y0 ) ,则Q(x,y) y0y y0y y02y 2k1 k2x x0x 2x2,x0x02x2y 21又由 A 、 P 均在椭圆上,故有:00,2x2y21y02y2两式相减得 2( x02x 2 )( y02y2 ) 0, k1k2222x0x3 、椭圆x 2y 21,过右焦点F作不垂直于 x 轴的直线交椭圆于A、 B 两点,3627AB 的垂直均分线交x 轴于N e=1,则 NF : AB 等于_______.42【答案】1 4【分析】设直线 AB 斜率为 k ,则直线方程为y k x 3 ,与椭圆方程联立消去y 整理可得34k 2x224k2 x36k 2 1080 ,则 x1 x224k22, x1x236k 2108 34k34k2,所以 y1y218k, 34k2则 AB 中点为12k 2,9k. 34k24k23所以 AB 中垂线方程为 y9k21x12k22,34k k 3 4k令则 x3k 2即N 3k22 ,0y 0 ,34k2,34k,所以 NF33k 29(1k 2 ) 34k234k 2.AB1 k2x 1 236 1 k 2NF 1x 24x 1 x 24k 2,所以.3 AB44、已知椭圆 x 2y 2 1(a b 0) , A, F 是其左极点和左焦点,P是圆 x 2y 2b 2a 2b 2上的动点,若PA = 常数,则此椭圆的离心率是PF【答案】 e = 5 12【分析】PA常数,所以当点 P 分别在(± b ,0 )时比值相等,因为 PF即a b = a+b,整理得: b 2 ac ,b c b+c又因为 b 2 a 2 c 2 ,所以 a 2c 2ac同除以 a 2 可得 e 2 + e -1=0 ,解得离心率 e =5 1 .2二、典例议论例1、如图,在平面直角坐标系xOy 中,椭圆 C :x 2y 2 1的左极点为 A ,过原点 O 的直线(与42坐标轴不重合)与椭圆C 交于 P ,Q 两点,直线 PA ,QA 分别与 y 轴交于 M , N 两点.试问以 MN 为直径的圆能否经过定点(与直线 PQ 的斜率没关)?请证明你的结论.yMAPOQNx剖析一:设 PQ 的方程为 ykx ,设点 P x 0 , y 0 ( x 0 0 ),则点 Q x 0 , y 0 .联立方程组ykx,消去 y 得 x 24 2.22y 241x2k所以 x 02,则 y 02k.1 2k21 2 k2所以直线 AP 的方程为 ykx 2 .进而 M 0,2k1 1 2k 21 2k 21同理可得点 N0, 2k.112k 2所以以 MN 为直径的圆的方程为x 2( y12k 2k 2)( y 2k ) 01 11 2k 2整理得: x 2y 2 ( 2k2k ) y 2 011 2k 211 2k2 x 2 y 2 2 02, 0)由,可得定点 F (y剖析二 :设 P ( x 0, y 0 ),则 Q (﹣ x 0 ,﹣ y 0),代入椭圆方程可得 x 0 2 2 y 02 4 .由直线 PA 方程为:yy 0 ( x 2) ,可得 M 0,2y 02 y 0 x 0x 0,同原因直线 QA 方程可得 N 0,,可得以22x 02MN 为直径的圆为 x 2y2y 02y 2y 0 2 0 ,x 0x 0整理得: x 2y 22y 02 y 0 y 4 y 2 0x 0 2x 0 2 x 0 2 4242,代入整理即可得x 2y 24x 0 y 0 y 2 0因为 x 02y 0x 0 24此圆过定点 F (2, 0) .剖析三 :易证: k AP k AQb 2 1 a 2,2故可设直线AP 斜率为 k ,则直线 AQ 斜率为1 .2k直线 AP 方程为 y k( x2) ,进而得 M (0, 2k ) ,以1 1代 k 得 N 0,2kk故知以 MN 为直径的圆的方程为 x 2( y 2k)( y1 ) 0k整理得: x2y22 (12k ) y 0kx 2 y 22 02, 0) .由,可得定点 F (y剖析四、设 M (0, m), N (0, n) ,则 以 MN 为直径的圆的方程为x 2 ( y m)( yn) 0即 x 2y 2(m n) y mn再由k AP k AQ k AM k AN = b 21得 mn - 2 ,下略a22.例 2 、已知离心率为 e 的椭圆C :x2y2恰过两点,,a2b21(a b 0)(1 e) 和 20 .(1)求椭圆 C 的方程;(2) 已知AB、MN为椭圆C上的两动弦,此中M 、N 对于原点O对称,AB过点 E(1, 0) ,且 AB、MN 斜率互为相反数.试问:直线AM、BN的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea23B Ne (1)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(2)设 AB 方程为y k( x1) , A( x1 , y1) , B( x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 )k AM kBNy1kx3y2kx3k( x1 1) kx3k ( x21) kx3x1x3x2x3x1x3x2x3则整理得: k AM k BN k ( x1x3 1)(x2x3 ) (x2x3 1)(x1 x3 )( x1x3 )( x2x3 )k AM kBNk 2x1x22x32( x1x2 )①( x1x3 )( x2x3 )由y k( x1)消元整理得: (4 k 21)x28k2 x 4k 240 ,x2 4 y24.所以 x1 x28k 21 , x1 x24k4k24k224②1y kx又由消元整理得:x2 4 y2 4(4 k 2 1)x2 4 ,所以 x3241③4k 2将②、③代入①式得: k AM kBN0.例 2( 变式 ) 、已知离心率为 e 的椭圆Cx2y21(a b 0),,. :a2b2恰过两点 (1 e) 和 20(3)求椭圆 C 的方程;(4)已知 AB、MN 为椭圆C上的两动弦,此中 M、N 对于原点O对称,AB过定点E(m, 0), ( 2 m 2) ,且 AB、MN 斜率互为相反数. 试问:直线 AM 、 BN 的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea2B N e3(3)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(4)设 AB 方程为y k( x m) , A(x1, y1 ) , B(x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 ).kAM kBNy1kx3y2kx3x1x3x2x3k( x1m)kx3k (x2m)kx3 x1x3x2x3则整理得: k AM kBNk ( x1x3m)( x2x3 ) ( x2x3m)( x1x3 )(x1x3 )( x2x3 )kAMkBNk 2x1x22x32m( x1x2 )①( x1x3 )( x2x3 )y k( x m)消元整理得: (4 k21)x28k 2mx4k 2 m240 ,由4 y24x2所以 x1x28k2m, x1 x24k 2m24②4k214k21又由y kx消元整理得:x2 4 y24(4 k 21)x2 4 ,所以 x3241③4k 2将②、③代入①式得:kAMkBN0.三、课外作业1 、已知椭圆x2y2A、B是其左、右极点,动点M知足MB⊥AB,连接AM交椭圆于点P1 ,,42在 x 轴上有异于点A、B 的定点 Q,以 MP 为直径的圆经过直线BP、MQ 的交点,则点 Q 的坐标为.【答案】(0,0 )【分析】试题剖析:设M (2,t ), 则AM : y t( x 2) ,与椭圆方程联立消y 得(t28) x24t 2 x 4t 232 0,4.28t t 28t162t,所以 k BP 82,即 k BP k OM1,点Q的坐 O所以 x P28, y P22t2tt t 816t 282(0,0 )x2y21上不一样于左点A、右点 B 的随意一点,直PA, PB 的斜率2 、已知 P 是412分 k1 , k2 ,则 k1k2的.1【答案】3【分析】P( x, y) , A(23,0), B(23,0)y, k2yk1x2,x 2 33y y y2 k1k2x2,⋯⋯①x 2 3 x 2 312因 P 在上,所以x2y2 1 ,即 y212x2⋯⋯②1243把②代入①,得k1k2y21 x2123x2y21(a b0) 的离心率e=1, A,B 是的左右点,P 上不一样于3 、已知b2a22AB 的点,直PA,PB 的斜角分,, cos() =.cos()【答案】 7【分析】.试题剖析:因为A,B 是椭圆的左右极点,P 为椭圆上不一样于 AB 的动点,kPAkPBb 2 Q e1 c 1 a2 b 21 b23 kPA b 2 3 a 22 a 2a 24 a 24,k PB,a 24cos( ) cos cos sin sin 1 tan tan 1 34 7cos() cos cossinsin1 tantan1 344 、以下图,已知椭圆x 2 y 21,在椭圆 C 上任取不一样两点A ,B ,点 A 对于 x 轴的对称C :4点为 A ' ,当 A , B 变化时,假如直线 AB 经过 x 轴上的定点 T (1 , 0) ,则直线 A 'B 经过 x 轴上的定点为 ________.【答案】 (4 , 0)AB 的方程为 x = my + 1 ,由 x 2 y 2 1得 (my + 1) 2 + 4 y 2 =4 ,即 (m 2 + 4) y 2+ 【分析】设直线 4x my 12 my -3 = 0.记 A (x 1, y 1 ), B (x 2, y 2),则 A ′(x 1 ,- y 1),且 y 1+ y 2=- 2m, y 1 y 2=-3 ,m 24m 2 4当 m ≠0 时,经过点 A ′(x 1,- y 1 ),B( x 2, y 2 )的直线方程为yy 1 = x x 1.令 y = 0 ,得 x =y 2y 1 x 2x 1x 2 x 1 y 1 + x 1my 2 my 1 y 1 + my 1 + 1 = my 1 y 2-my 12+my 1 y 2+ my 12+ 1 =2my 1 y 2 + 1 =y 2y 1 =y 1y 2+ y 1y 2+ y 1y 2.-2m3m24+ 1 = 4 ,所以y= 0 时,x=4.2mm24当 m =0时,直线AB的方程为 x=1,此时A′,B重合,经过A′,B的直线有无数条,自然能够有一条经过点 (4 ,0) 的直线.当直线 AB 为 x 轴时,直线A′B就是直线 AB ,即x轴,这条直线也经过点 (4 , 0) .综上所述,当点A,B 变化时,直线A′B 经过 x 轴上的定点(4,0).x2y21的右焦点 F2的直线交椭圆于于M ,N 两点,令F2 M m, F2 N n ,则5、过椭圆34mn____ .m n【答案】34【分析】x2y 21,得 M 试题剖析:不失一般性,不如取MN垂直 x 轴的状况,此时 MN :x=1, 联立43x1(1,3),N (1,-3),∴m=n= 3 ,∴ mn3 222m n46 、已知椭圆C的中心在座标原点,焦点在 x 轴上,左极点为A,左焦点为F12,0,点B 2,2在椭圆 C 上,直线y kx k0与椭圆 C 交于E F两点,直线AE AF分别与y轴交于点M,,,N .(Ⅰ)求椭圆 C 的方程;(Ⅱ)以 MN 为直径的圆能否经过定点?若经过,求出定点的坐标;若不经过,请说明原因.x2y21(a b 0) ,分析:(Ⅰ)解法一:设椭圆 C 的方程为b2a2因为椭圆的左焦点为 F12,0 ,所以a2b2 4 .设椭圆的右焦点为F2 2,0,已知点 B2,2在椭圆 C 上,由椭圆的定义知 BF1BF22a ,所以 2a3224 2 .所以 a22,进而 b2.所以椭圆 C 的方程为x2y 2 1 .84解法二:设椭圆C 的方程为x2y 2a2b21(a b0) ,因为椭圆的左焦点为F12,0 ,所以a2b2 4 .①因为点 B 2,2421.②在椭圆 C 上,所以b2a2由①②解得, a2 2 ,b 2.所以椭圆 C 的方程为x2y 21 .84(Ⅱ)解法一:因为椭圆 C 的左极点为 A ,则点 A 的坐标为22,0.因为直线 y kx ( k0) 与椭圆x2y21交于两点E,F,84设点 E x, y(不如设 x00 ),则点 F x0 ,y0.00y kx,28联立方程组x2y2消去 y 得x2.84112k所以 x022,则 y022k.12k122 k2所以直线 AE 的方程为ykx22.112k 2因为直线 AE , AF 分别与 y 轴交于点M,N,令 x22k22k0 得 y12k2,即点 M 0,1.112k2同理可得点22kN 0,.1 1 2k222k22k2 2 12k 2.所以 MN12k 2112k2k1设 MN 的中点为P,则点P的坐标为P 0,2k.22 22 12k 2则以 MN 为直径的圆的方程为x2yk ,k即 x2y 22 2 y 4 .k令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法二:因为椭圆 C 的左端点为 A ,则点 A 的坐标为22,0 .因为直线 y kx (k0) 与椭圆x2y21交于两点 E,F,84设点 E( x0 , y0 ) ,则点 F (x0 ,y0 ) .所以直线 AE 的方程为yy0x22.x022因为直线 AE 与 y 轴交于点M,令 x2 2 y0,即点 M2 2 y0.0 得 y220,x0x022同理可得点 N 0,2 2 y0.x0222 2 y0 2 2 y016 y0.所以 MN2 2 x0x028x0 2 2因为点 E(x0 , y0 ) 在椭圆C上,所以x02y021 .84.所以 MN 8.y0设 MN 的中点为P,则点P的坐标为P2x0.0,y02则以 MN 为直径的圆的方程为x2y 2x016.y02y0即 x2y2 +2 2x0 y4 .y0令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法三:因为椭圆 C 的左极点为 A ,则点 A 的坐标为 2 2,0.因为直线 y kx ( k 0) 与椭圆x2y21交于两点E,F,84设点 E2 2 cos,2sin( 0),则点 F2 2 cos ,2sin .所以直线 AE 的方程为y2sin x22.22 cos 2 2因为直线 AE 与 y 轴交于点M,令 x 0 得 y2sin,即点 M0,2sin.cos1cos1同理可得点 N0, 2sin.cos1所以 MN2sin2sin41cos1.cos sin设 MN 的中点为P,则点P的坐标为P 0,2cos.sin2则以 MN 为直径的圆的方程为x2y2cos4,sin sin2.即 x 2y 24cosy 4 .sin令 y0 ,得 x 24 ,即 x 2或 x 2 .故以 MN 为直径的圆经过两定点P 1 2,0 ,P 2 2,0 .、已知椭圆x 2y 2(a, b)的离心率为 3 A (1 ,3在椭圆 C 上.7C: a2b 2=1>0>0,点2 )2(I) 求椭圆 C 的方程;(Ⅱ )设动直线 l 与椭圆 C 有且仅有一个公共点,判断能否存在以原点O 为圆心的圆,满足此圆与 l 订交于两点 P 1, P 2 (两点均不在座标轴上) ,且使得直线 OP 1 , OP 2 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明原因.(Ⅰ)解:由题意,得c 3 , a 2 b 2 c 2 ,又因为点 A(1, 3 )在椭圆 C 上,a22所以13 1 , 解得a2 , b 1, c3 ,a 24b 2所以椭圆 C 的方程为x 2y 21.4(Ⅱ) 结论:存在切合条件的圆,且此圆的方程为x 2y 25 .证明以下:假定存在切合条件的圆,并设此圆的方程为 x 2y 2 r 2 (r0) .当直线 l 的斜率存在时,设l的方程为ykx m .y kxm,222由方程组x 2得 (4k1) x8kmx 4m40 ,y21,4因为直线 l 与椭圆 C 有且仅有一个公共点,所以 1 (8km) 24(4k21)(4m24) 0 ,即 m 24k 2 1 ..y kx m,得 (k 222kmxm 2r 20 ,由方程组y 2r 2 ,1)xx 2则2(2km)24(k21)(m2r 2 ) 0 .设 P 1 (x 1, y 1 ) , P 2 (x 2 , y 2 ) ,则x 1x 2 2km , y2xb ,k 2 1设直线 OP 1 , OP 2 的斜率分别为 k 1 , k 2 ,y y2 (kxm)(kx 2m) k 2 x x2km( xx ) m 2k 1k 211112x 1x 2x 1 x 2x 1 x 2所以k 2 m 2 r 2 km k 2km m 2 m 2 2 2k 21 2 1r k2 r 22 r 2mmk 2 1,k 1 k 2(4 r 2 )k 2124k 214k 2(1r 2) .将m代入上式,得要使得k 1k2为定值,则4 r 21241 r2 ,即 r 5 ,考证切合题意 .所以当圆的方程为x 2 y 25 时,圆与 l 的交点 P 1, P 2 知足 k 1k 2 为定值 1 .4 当直线 l 的斜率不存在时,由题意知 l的方程为 x2 ,此时,圆 x 2 y 25 与 l 的交点 P 1 , P 2 也知足 k 1k 21 .4y 2 2228、已知椭圆 C 1 :x1( a b0) 的离心率为,且过定点 M (1 , ). a 222 2b(1) 求椭圆 C 的方程;(2) 已知直线 l : y kx1(k R) 与椭圆 C 交于 A 、 B 两点,试问在 y 轴上能否存在定点P ,使得3以弦 AB 为直径的圆恒过 P 点?若存在,求出 P 点的坐标,若不存在,说明原因.ec25a2a 222a 22(1) 解:由已知 b cb251 112a 224b∴椭圆 C 的方程为2 y24x21 55y kx 1322(2) 解:由得:9(2k4) x12kx 43 02y24x215 5设 A(x1, y1), B(x2, y 2),则 x1、 x2是方程①的两根∴x1x212k,x1 x2439(2k24)9(2k24)uuur,uuur,设 P(0, p ),则PA ( x1,p)y1p) PB ( x2y2uuur uuurp 21PA PB x1 x2y1 y2p( y1y2 )x1 x2(kx1)( kx2(18p 245)k236 p23 24 p39uuur uuur uuur 9(2k24) uuur若 PA PB ,则 PA PB即 (18 p245)k 236 p224 p39 0对随意 k∈R恒建立18p 245 0∴24 p39036 p2此方程组无解,∴不存在定点知足条件.①1) pk ( x1 x2 ) 2 p p233。

苏教高中数学高考二轮复习专题与圆相关的定点、定值问题PPT演示课件

苏教高中数学高考二轮复习专题与圆相关的定点、定值问题PPT演示课件

解:
(2)对于圆方程x2 y2 1, 令y 0, 得x 1,
不妨令P(1,0),Q(1,0).由直线l2过点A(3,0)且与 x轴垂直,所以直线l2方程为x 3 设M (s,t),则直线PM方程为y t (x 1)
s 1
解方程组 y
s
t 1
(x
1),
得E(3,
x3
4t ) s 1
同理可得F (3, 2t ) s 1
作业:
1、已知椭圆x2 y2 1, A, B是其左右顶点.动点M满足MB AB, 42
连接AM交椭圆于点P,在x轴上有异于A, B的定点Q,以MP为直径的 圆经过BP、MQ的交点,则点Q的坐标为_______
2、已知圆C : (x 4)2 ( y 1)2 4,直线l:2m x (3m 1) y 2 0 (1)若直线l与圆C相交于两点A, B.弦长AB 2 3,求m的值; (2)已知点M (4,5),点C为圆心,若直线MC上存在定点N(异于点M ) 满足:对于圆C上任一点P,都有 PM 为一常数,试求所有满足条件
所以 3
52 42
t 0 t2 9
0
解得
t
-539或t
1(舍去) -5
5
所以,存在点B( 9 ,0)对于圆上的任意一点P 5
都有 PB 为一常数3
PA
5
小结: 此类定点(定值)问题一般有两种思路: 1由特殊到一般,先由特殊位置(特殊值)找出定点(定值), 再利用所求出的定点(定值)来证明一般性结论 2 转化为等式(方程)恒成立问题
解:
(1)因为直线l1过点A(3,0),且与圆O:x2 y2 1相切
所以直线l1的斜率必定存在。 设直线l1:y k(x 3),即kx y 3k 0

2以解析几何中定点、定值为背景的解答题-2017年高考数学备考优生百日闯关系列(江苏专版)含解析

2以解析几何中定点、定值为背景的解答题-2017年高考数学备考优生百日闯关系列(江苏专版)含解析

专题二 压轴解答题【名师综述】解析几何中的定值、定点、定线问题仍是高考考试的重点与难点,都是探求”变中有不变的量”.一般运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法. 类型一 定值问题 典例1 椭圆C :22221x y a b+=(a >b >0)的离心率为35,P(m,0)为C 的长轴上的一个动点,过P 点斜率为45的直线l 交C于A 、B 两点。

当m =0时,412PA PB ⋅=-(1)求C 的方程; (2)证明:22||||PA PB +为定值.【答案】(1)2212516x y +=;(2)41【解析】【名师指点】对于定值问题,可以通过特殊位置、特殊图形、特殊数学来寻求定值再证明,或者可以直接通过运算求解求得;而范围问题需将所求量用变量表示,利用函数与方程思想求解.【举一反三】已知椭圆2222:1(0)x y C a b a b +=>>过点(0,2),且满足32a b +=.(1)求椭圆C 的方程;(2)斜率为12的直线交椭圆C 于两个不同点A ,B ,点M 的坐标为(2,1),设直线MA 与MB 的斜率分别为1k ,2k .① 若直线过椭圆C 的左顶点,求此时1k ,2k 的值;② 试探究21k k+是否为定值?并说明理由.【答案】(1)22182x y+=;(2)①2121--=k,2122-=k ,②021=+k k . 【解析】设),(11y x A .),(22y x B ,则122x x m +=-,42221-=m x x . 又21111--=x y k ,21222--=x y k ,故2121221121--+--=+x y x y k k )2)(2()2)(1()2)(1(211221----+--x x x y x y .又m x y +=1121,m x y +=2221,所以)2)(1()2)(1(1221--+--x y x y )2)(121()2)(121(1221--++--+=x m x x m x)1(4))(2(2121--+-+=m x x m x x 0)1(4)2)(2(422=----+-=m m m m .故021=+k k.类型二 定点问题 典例2 已知椭圆C :22221x y a b+=(a>b 〉0)的上顶点为A ,左,右焦点分别为F 1,F 2,且椭圆C 过点P (43,3b ),以AP 为直径的圆恰好过右焦点F 2.(1)求椭圆C 的方程;(2)若动直线l 与椭圆C 有且只有一个公共点,试问:在轴上是否存在两定点,使其到直线l 的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由. 【答案】(1)22+y =12x ;(2)存在两个定点(1,0),(1,0),使其到直线l 的距离之积为定值1 【解析】(2)①当直线l 斜率存在时,设直线l 方程为y=kx+p,代入椭圆方程得()222124220.k xkpx p +++=-因为直线l 与椭圆C 有只有一个公共点,所以()2222221641222()(810)2k p k p k ―p =+=+=--,即22 2+1k p = 7分设在x 轴上存在两点(s ,0),(t,0),使其到直线l 的距离之积为1,则2222|||||()|==11211ks p kt p k st kp s t p k k k +++++⋅+++, 即(st+1)k+p (s+t )=0(*),或()()2320st k s t kp ++++= (**).由(*)恒成立,得100st s t +=⎧⎨+=⎩,解得11s t =⎧⎨=-⎩,或11s t =-⎧⎨=⎩, 而(**)不恒成立. 10分②当直线l 斜率不存在时,直线方程为x=2定点1F (-1,0)、2F (1,0)到直线l 的距离之积12d d =(2-1)(2+1)=1⋅.综上,存在两个定点(1,0),(1,0),使其到直线l 的距离之积为定值1 12分【名师指点】解析几何中有关定点问题等综合性问题,它涉及到解析几何中的定义、几何性质、直线与圆锥曲线位置关系,同时又与三角函数、函数、不等式、方程、平面向量等代数知识紧密联系,解这类问题时,需要有较强的代数运算能力和图形识别能力,要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整性.【举一反三】已知椭圆()2222:10x y C a b a b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,直线3460x y ++=与圆()222x y b a +-=相切.(1)求椭圆C 的方程;(2)已知椭圆C 的左顶点A 的两条直线12,l l 分别交椭圆C于,M N 两点,且12l l ⊥,求证:直线MN 过定点,并求出定点坐标;(3)在(2)的条件下求AMN ∆面积的最大值.【思路分析】(1)由已知列出方程组2465a bb a =⎧⎪+⎨=⎪⎩,解出,a b 的值即可;(2)设1:2l x my =-,21:2lx y m=--,联立直线与椭圆组成的方程组,求出点222284(,)44m m M m m -++与点222284(,)4141m m N m m --++,当1m =±时,6:5MNl x =-过点6(,0)5-直线256:()4(1)5MN m l y x m =+-过定点6(,0)5-过定点,当1m ≠±时,直线256:()4(1)5MN m l y x m =+-过定点6(,0)5-过定点,所以可得直线MN 过定点6(,0)5-;(3)由(2)写出三角形AMN 的面积表达式22244819544141AMN m mS m m m mm m∆=+=+++++,由基本不等式可求其最大值。

江苏高考 解析几何 定值定点问题 含答案解析

江苏高考  解析几何   定值定点问题  含答案解析

第2课时 定点、定值问题题型一 定点问题例1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1,2=-8km ±16(4k 2-m 2+1)2(4k 2+1), 所以x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设知k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)· 4m 2-44k 2+1+(m -1)· -8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 跟踪训练1 已知焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C交于P ,Q 两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形. (1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .①若直线l 过原点且与坐标轴不重合,E 是直线3x +3y -2=0上一点,且△EMN 是以E 为直角顶点的等腰直角三角形,求k 的值;②若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM ,点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点. (1)解 由题意可得2c =22,即c =2, 设Q ⎝⎛⎭⎫n ,43,因为四边形ABPQ 为平行四边形, PQ =2n ,AB =a -n ,所以2n =a -n ,n =a 3,则⎝⎛⎭⎫a 32a 2+169b2=1,解得b 2=2,a 2=b 2+c 2=4, 可得椭圆C 的方程为x 24+y 22=1.(2)①解 将直线y =kx (k ≠0)代入椭圆方程, 可得(1+2k 2)x 2=4, 解得x =±21+2k2,可设M ⎝ ⎛⎭⎪⎫21+2k 2,2k 1+2k 2, 由E 是3x +3y -2=0上一点, 可设E ⎝⎛⎭⎫m ,23-m ⎝⎛⎭⎫m ≠0,且m ≠23, E 到直线kx -y =0的距离为d =⎪⎪⎪⎪km +m -231+k2,因为△EMN 是以E 为直角顶点的等腰直角三角形, 所以OE ⊥MN ,OM =d , 即有23-m m =-1k,①4+4k21+2k 2=⎪⎪⎪⎪km +m -231+k2,②由①得m =2k3(k -1)(k ≠1),代入②式,化简整理可得7k 2-18k +8=0,解得k =2或47.②证明 由M (-2,0),可得直线MN 的方程为y =k (x +2)(k ≠0),代入椭圆方程可得(1+2k 2)x 2+8k 2x +8k 2-4=0, 解得x N =2-4k 21+2k 2,y N =k (x N +2)=4k1+2k 2,即N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2, 设G (t,0)(t ≠-2),由题意可得D (2,4k ),A (2,0), 以DN 为直径的圆恒过直线AN 和DG 的交点, 可得AN ⊥DG ,即有AN →·DG →=0,即为⎝ ⎛⎭⎪⎫-8k 21+2k 2,4k 1+2k 2·(t -2,-4k )=0,解得t =0. 故点G 是定点,即为原点(0,0).题型二 定值问题例2 (2018·苏锡常镇模拟)在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2,离心率为22,椭圆的右顶点为A .(1)求该椭圆的方程;(2)如图,过点D (2,-2)作直线PQ 交椭圆于两个不同点P ,Q ,求证:直线AP ,AQ 的斜率之和为定值.(1)解 由题意可知,椭圆x 2a 2+y 2b 2=1(a >b >0),焦点在x 轴上,2c =2,c =1,椭圆的离心率e =c a =22,则a =2,b 2=a 2-c 2=1,则椭圆的标准方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2),A (2,0), 由题意知直线PQ 斜率存在, 设其方程为y =k (x -2)-2,则⎩⎪⎨⎪⎧y =k (x -2)-2,x 22+y 2=1,整理得(2k 2+1)x 2-(42k 2+42k )x +4k 2+8k +2=0.所以x 1,2=(42k 2+42k )±[-(42k 2+42k )]2-4(2k 2+1)(4k 2+8k +2)2(2k 2+1),所以x 1+x 2=42k 2+42k 2k 2+1,x 1x 2=4k 2+8k +22k 2+1, 则y 1+y 2=k (x 1+x 2)-22k -22=-22-22k2k 2+1,则k AP +k AQ =y 1x 1-2+y 2x 2-2=y 1x 2+y 2x 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+2.由y 1x 2+y 2x 1=[k (x 1-2)-2]x 2+[k (x 2-2)-2]x 1 =2kx 1x 2-(2k +2)(x 1+x 2)=-4k2k 2+1, k AP +k AQ =y 1x 2+y 2x 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+2=-4k2k 2+1-2×-22-22k 2k 2+14k 2+8k +22k 2+1-2×42k 2+42k2k 2+1+2=1,∴直线AP ,AQ 的斜率之和为定值1.思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2 (2018·南通考试)如图,已知圆O 的方程为x 2+y 2=4,过点P (0,1)的直线与圆O 交于点A ,B ,与x 轴交于点Q ,设QA →=λP A →,QB →=uPB →,求证:λ+u 为定值.证明 当AB 与x 轴垂直时,此时点Q 与点O 重合, 从而λ=2,u =23,λ+u =83.当点Q 与点O 不重合时,直线AB 的斜率存在. 设直线AB 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2), 则Q ⎝⎛⎭⎫-1k ,0. 由题设,得x 1+1k =λx 1,x 2+1k=ux 2,即λ=1+1x 1k ,u =1+1x 2k.所以λ+u =1+1x 1k +1+1kx 2=2+x 1+x 2kx 1x 2,将y =kx +1代入x 2+y 2=4,得(1+k 2)x 2+2kx -3=0, 则Δ>0,x 1,2=-2k ±4k 2+12(1+k 2)2(1+k 2), x 1+x 2=-2k1+k 2,x 1x 2=-31+k2, 所以λ+u =2+-2k1+k 2k · ⎝ ⎛⎭⎪⎫-31+k 2=83. 综上,λ+u 为定值83.直线与圆锥曲线的综合问题数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等.例 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连结PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2的斜率分别为k 1,k 2,若k 2≠0,证明1kk 1+1kk 2为定值,并求出这个定值. 解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)设P (x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为1PF l :y 0x -(x 0+3)y +3y 0=0,2PF l :y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2.由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|⎝⎛⎭⎫32x 0+22=|m -3|⎝⎛⎭⎫32x 0-22.因为-3<m <3,-2<x 0<2, 可得m +332x 0+2=3-m 2-32x 0,所以m =34x 0,因此-32<m <32.(3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0). 联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 24+y 20=1,所以16y 02k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0· 2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.素养提升 典例的解题过程体现了数学运算素养,其中设出P 点的坐标而不求解又体现了数学运算素养中的一个运算技巧——设而不求,从而简化了运算过程.1.(2019·江苏省明德实验学校调研)如图,已知A ,B 是圆x 2+y 2=4与x 轴的交点,P 为直线l :x =4上的动点,P A ,PB 与圆的另一个交点分别为M ,N .(1)若P 点坐标为(4,6),求直线MN 的方程; (2)求证:直线MN 过定点.(1)解 由题意可知直线P A 的方程为y =x +2,由⎩⎪⎨⎪⎧ y =x +2,x 2+y 2=4,解得M (0,2),直线PB 的方程为y =3x -6,由⎩⎪⎨⎪⎧y =3x -6,x 2+y 2=4,解得N ⎝⎛⎭⎫85,-65,所以MN 的方程为y =-2x +2, 即2x +y -2=0.(2)证明 设P (4,t ),则直线P A 的方程为y =t6(x +2),直线PB 的方程为y =t2(x -2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =t 6(x +2),得M ⎝ ⎛⎭⎪⎫72-2t 236+t 2,24t 36+t 2, 同理N ⎝ ⎛⎭⎪⎫2t 2-84+t 2,-8t 4+t 2, 直线MN 的斜率k =24t36+t 2--8t4+t 272-2t 236+t 2-2t 2-84+t 2=8t 12-t2, 直线MN 的方程为y =8t 12-t 2⎝ ⎛⎭⎪⎫x -2t 2-84+t 2-8t4+t 2, 化简得y =8t 12-t 2x -8t12-t 2, 所以直线MN 过定点(1,0).2.设F 1,F 2为椭圆C :x 24+y 2b 2=1(b >0)的左、右焦点,M 为椭圆上一点,满足MF 1⊥MF 2,已知△MF 1F 2的面积为1. (1)求C 的方程;(2)设C 的上顶点为H ,过点(2,-1)的直线与椭圆交于R ,S 两点(异于H ),求证:直线HR 和HS 的斜率之和为定值,并求出这个定值. 解 (1)由椭圆定义得MF 1+MF 2=4,①由垂直得MF 21+MF 22=F 1F 22=4(4-b 2),②由题意得12MF F S=12MF 1· MF 2=1,③ 由①②③,可得b 2=1,C 的方程为x 24+y 2=1.(2)依题意,H (0,1),显然直线的斜率存在且不为0,设直线RS 的方程为y =kx +m (k ≠0),因为直线RS 过点(2,-1),所以-1=2k +m ,即2k =-m -1,代入椭圆方程化简得(4k 2+1)x 2+8kmx +4m 2-4=0.由题意知,Δ=16(4k 2-m 2+1)>0,设R (x 1,y 1),S (x 2,y 2),x 1x 2≠0,故x 1,2=-8km ±16(4k 2-m 2+1)2(4k 2+1), 所以x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1. k HR +k HS =y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2k +(m -1)x 1+x 2x 1x 2=2k +(m -1)-8km 4m 2-4=2k -2kmm +1=2k m +1=-1. 故k HR +k HS 为定值-1.3.(2018·苏北四市期末)如图,在平面直角坐标系xOy 中,已知点A (-3,4),B (9,0),C ,D 分别为线段OA ,OB 上的动点,且满足AC =BD .(1)若AC =4,求直线CD 的方程;(2)求证:△OCD 的外接圆恒过定点(异于原点O ).(1)解 由题意可知OA =5,因为AC =4,所以OC =1,所以C ⎝⎛⎭⎫-35,45, 由题意可知D (5,0),显然,直线CD 的斜率存在,设直线CD 的方程为y =kx +b ,将C ,D 两点坐标代入方程得直线CD 的方程为x +7y -5=0.(2)证明 设C (-3m,4m )(0<m ≤1),则OC =5m .则AC =OA -OC =5-5m ,所以OD =OB -BD =5m +4,所以D 点坐标为(5m +4,0).设△OCD 的外接圆的方程为x 2+y 2+Dx +Ey +F =0,则有⎩⎪⎨⎪⎧ F =0,9m 2+16m 2-3mD +4mE +F =0,(5m +4)2+(5m +4)D +F =0,所以△OCD 的外接圆的方程为x 2+y 2-4x -3y -5m (x +2y )=0,令⎩⎪⎨⎪⎧x 2+y 2-4x -3y =0,x +2y =0, 解得x =0,y =0(舍)或x =2,y =-1.△OCD 的外接圆恒过定点(2,-1).4.已知动圆E 经过定点D (1,0),且与直线x =-1相切,设动圆圆心E 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点P (1,2)的直线l 1,l 2分别与曲线C 交于A ,B 两点,直线l 1,l 2的斜率存在,且倾斜角互补,证明:直线AB 的斜率为定值.(1)解 由已知,动点E 到定点D (1,0)的距离等于E 到直线x =-1的距离,由抛物线的定义知E 点的轨迹是以D (1,0)为焦点,以x =-1为准线的抛物线,故曲线C 的方程为y 2=4x .(2)证明 由题意直线l 1,l 2的斜率存在,倾斜角互补,得斜率互为相反数,且不等于零. 设A (x 1,y 1),B (x 2,y 2),直线l 1的方程为y =k (x -1)+2,k ≠0.直线l 2的方程为y =-k (x -1)+2,由⎩⎪⎨⎪⎧y =k (x -1)+2,y 2=4x 得k 2x 2-(2k 2-4k +4)x +(k -2)2=0,Δ=16(k -1)2>0,∴x 1=k 2-4k +4k 2, 同理x 2=k 2+4k +4k 2, ∴x 1+x 2=2k 2+8k 2,x 1-x 2=-8k k 2=-8k, ∴y 1-y 2=[k (x 1-1)+2]-[-k (x 2-1)+2]=k (x 1+x 2)-2k=k · 2k 2+8k 2-2k =8k, ∴k AB =y 1-y 2x 1-x 2=8k -8k=-1, ∴直线AB 的斜率为定值-1.5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O 为坐标原点.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值.(1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b=1, 即到直线bx +ay -ab =0的距离d =455, 得|b (-a )-ab |a 2+b 2=455,即2aba 2+b 2=455, 把a =2b 代入上式,得4b 25b=455,解得b =1. 所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. (2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,由椭圆的对称性,可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →· OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214+y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1,2=-8km ±64k 2m 2-4(1+4k 2)(4m 2-4)2(1+4k 2), 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2. 因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB ,所以OA →· OB →=x 1x 2+y 1y 2=0,所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0,所以(1+k 2)· 4m 2-41+4k 2-8k 2m 21+4k 2+m 2=0, 整理得5m 2=4(k 2+1),所以点O 到直线AB 的距离d 1=|m |k 2+1=255. 综上所述,点O 到直线AB 的距离为定值255.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点.(1)求椭圆C 的方程;(2)过原点的直线l 与椭圆C 交于A ,B 两点,椭圆C 上一点M 满足MA =MB .求证:1OA 2+1OB2+2OM 2为定值. (1)解 将⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点代入椭圆C 的方程,得⎩⎪⎨⎪⎧ 1a 2+94b 2=1,32a 2+3016b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3. 所以椭圆C 的方程为x 24+y 23=1. (2)证明 由MA =MB ,知M 在线段AB 的垂直平分线上,由椭圆的对称性知点A ,B 关于原点对称.①若点A ,B 是椭圆的短轴顶点,则点M 是椭圆的一个长轴顶点,此时1OA 2+1OB 2+2OM 2=1b 2+1b 2+2a 2=2⎝⎛⎭⎫1a 2+1b 2=76. 同理,若点A ,B 是椭圆的长轴顶点,则点M 是椭圆的一个短轴顶点,此时1OA 2+1OB 2+2OM 2=1a 2+1a 2+2b 2=2⎝⎛⎭⎫1a 2+1b 2=76. ②若点A ,B ,M 不是椭圆的顶点,设直线l 的方程为y =kx (k ≠0),则直线OM 的方程为y =-1kx , 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y =kx ,x 24+y 23=1,解得x 12=123+4k 2,y 12=12k 23+4k 2,所以OA 2=OB 2=x 12+y 12=12(1+k 2)3+4k 2, 同理,OM 2=12(1+k 2)4+3k 2. 所以1OA 2+1OB 2+2OM 2=2×3+4k 212(1+k 2)+2(4+3k 2)12(1+k 2)=76.1 OA2+1OB2+2OM2为定值76.综上,。

高考解析几何定点、定值问题例题以及答案详解

高考解析几何定点、定值问题例题以及答案详解

解析几何定点、定值问题1、已知椭圆C :(22221>>0)y x a b a b +=的离心率为21,以原点为圆点,椭圆的短半轴为半径的圆与直线06=+-y x 相切。

(Ⅰ)求椭圆的标准方程;(Ⅱ)设P (4,0),A,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;2、斜率为1的直线l 过抛物线2:2(0)y px p Ω=>的焦点F ,与抛物线交于两点A ,B 。

(1)若|AB|=8,求抛物线Ω的方程;(2)设P 是抛物线Ω上异于A ,B 的任意一点,直线PA ,PB 分别交抛物线的准线于M ,N 两点,证明M ,N 两点的纵坐标之积为定值(仅与p 有关)。

3、在平面直角坐标系中,点(,)P x y 为动点,已知点A,(B ,直线PA 与PB的斜率之积为12-.(I )求动点P 轨迹E 的方程;(II )过点(1,0)F 的直线l 交曲线E 于,M N 两点,设点N 关于x 轴的对称点为Q (Q M 、不重合),求证:直线MQ 过定点.4、如图,曲线C 1是以原点O 为中心,F 1、F 2为焦点的椭圆的一部分,曲线C 2是以原点O为顶点,F 2为焦点的抛物线的一部分,3(2A 是曲线C 1和C 2的交点.(Ⅰ)求曲线C 1和C 2所在的椭圆和抛物线的方程;(Ⅱ)过F 2作一条与x 轴不垂直的直线,分别与曲线C 1、C 2依次交于B 、C 、D 、E 四点,若G 为CD 中点,H 为BE 中点,问22||||||||BE GF CD HF ⋅⋅是否为定值,若是,求出定值;若不是,请说明理由.5、已知抛物线)0(22>-=p px y 的焦点为F ,过F 的直线交y 轴正半轴于P 点,交抛物线于,A B 两点,其中A 在第二象限。

(1)求证:以线段FA 为直径的圆与y 轴相切; (2)若12FA AP,BF FA λλ==,求21λλ-的值.6、已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)过圆心M 的直线交抛物线C 于P 、Q 两点,求OP OQ ⋅的值。

2019江苏高考压轴题(中篇)专题01.04 解析几何中的定值问题

2019江苏高考压轴题(中篇)专题01.04 解析几何中的定值问题

专题01.04--解析几何中的定值问题一、问题概述定值问题是解析几何中的常见题型也是江苏高考中的热点问题.在解析几何中,当几何量与参数无关时,这就构成了定值问题.解决此类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻找定值的“不变”性,一种思路是进行一般的计算推理求出结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中的定义,列出方程,再用根与系数的关系,“点在曲线上”,点差法等导出所求定值的关系所需要的表达式,化简整理求出结果(例1,例2);另一种思路是通过考查极端位置,探索出“定值”是多少(例1,例3),用特殊探索法(特殊值,特殊位置,特殊图形)先确定出定值,揭开神秘面纱,这样可将盲目的探索问题转化为有方向有目标的一般的证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时,有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索,如果试题以客观形式出现,特殊化方法往往比较凑效. 二、释疑拓展1.【南京市2018届高三第三次模拟考试.18题】如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (85,35),离心率为32.已知过点M (25,0)的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的方程;(2)试问x 轴上是否存在定点N ,使得NA →·NB →为定值.若存在,求出点N 的坐标;若不存在,请说明理由.2.【苏锡常镇四市2014届高三教学情况调研(一).18题】如图,在平面直角坐标系xOy中,已知A,B,C是椭圆22221(0)x ya ba b+=>>上不同的三点,A,(3,3)B--,C在第三象限,线段BC的中点在直线OA上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A,B,C)且直线PB,PC分别交直线OA于M,N两点,证明OM ON⋅为定值并求出该定值.3.【盐城市2015届高三第三次模拟考试.18题】如图,在平面直角坐标系xoy中,椭圆2222:1(0)x yC a ba b+=>>直线l与x轴交于点E,与椭圆C交于A、B两点.当直线l垂直于x轴且点E为椭圆C的右焦点时,弦AB的长为3.(1)求椭圆C的方程;(2)若点E的坐标为,点AA与原点O的直线交椭圆C于另一点P,求PAB∆的面积;(3)是否存在点E,使得2211EA EB+为定值?若存在,请指出点E的坐标,并求出该定值;若不存在,请说明理由.三、专题反思(你学到了什么?还想继续研究什么?)四、巩固训练1.【镇江市2014届高三第一学期期末调研.18题】椭圆12222=+by a x (0>>b a )的左、右焦点分别为21,F F ,右顶点为A ,直线l 过2F 交椭圆于B ,C 两点。

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型——《解析几何中的定值定点问题》题型特点:定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。

解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

这类试题考查的是在运动变化过程中寻找不变量的方法。

典例 1 如图,已知双曲线)0(1:222>=-a y ax C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。

(1)求双曲线C 的方程;(2)过C 上一点),(00y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF恒为定值,并求此定值。

典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。

(1)求动圆圆心的轨迹C 的方程;(2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

典例3 已知直线6:+=x y l ,圆5:22=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。

(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。

典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(-。

(1)求椭圆方程;(2)过点)0,56(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优等生�江苏版高考数学专题28:以解析几何中定点、定值为背景的解答题学校:___________姓名:___________班级:___________考号:___________一、解答题 1.如图,在平面直角坐标系中,已知椭圆的离心率为,左焦点,直线与椭圆交于两点, 为椭圆上异于的点.(1)求椭圆的方程; (2)若,以为直径的圆过点,求圆的标准方程;(3)设直线与轴分别交于,证明: 为定值. 2.如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为12,且过点312⎛⎫ ⎪⎝⎭,. F 为椭圆的右焦点, ,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点.⑴求椭圆的标准方程;⑵若AF FC =,求BF FD的值; ⑶设直线AB , CD 的斜率分别为1k , 2k ,是否存在实数m ,使得21k mk =,若存在,求出m 的值;若不存在,请说明理由.3.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F , 2F , B 为椭圆的上顶点, 12BF F ∆ A 为椭圆的右顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,M N 两点(,M N 不是左、右顶点),且满足MA NA ⊥,试问:直线l 是否过定点?若过定点,求出该定点的坐标,否则说明理由.4.已知定点()3,0A -、()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点()1,0T 的直线l 与曲线C 交于P 、Q 两点,是否存在定点(),0S s ,使得直线SP 与SQ 斜率之积为定值,若存在求出S 坐标;若不存在请说明理由.5.已知抛物线C : 22y px =(0p >)的焦点是椭圆M : 22221x y a b +=(0a b >>)的右焦点,且两曲线有公共点23⎛ ⎝⎭(1)求椭圆M 的方程; (2)椭圆M 的左、右顶点分别为1A , 2A ,若过点()40B ,且斜率不为零的直线l 与椭圆M 交于P , Q 两点,已知直线1A P 与2A Q 相较于点G ,试判断点G 是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.6.如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥, 121F F DF = 12DF F ∆. (1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.7.在平面直角坐标系xOy 中,已知直线y x =与椭圆22221(0)x y a b a b+=>>交于点A ,B (A 在x 轴上方),且3AB a =.设点A 在x 轴上的射影为N ,三角形ABN 的面积为2(如图1).(1)求椭圆的方程;(2)设平行于AB 的直线与椭圆相交,其弦的中点为Q .①求证:直线OQ 的斜率为定值;②设直线OQ 与椭圆相交于两点C , D (D 在x 轴上方),点P 为椭圆上异于A , B , C , D 一点,直线PA 交CD 于点E , PC 交AB 于点F ,如图2,求证: AF CE ⋅为定值.8.如图,在平面直角坐标系xOy 中,过椭圆C : 2214x y +=的左顶点A 作直线l ,与椭圆C 和y 轴正半轴分别交于点P , Q .(1)若AP PQ =,求直线l 的斜率;(2)过原点O 作直线l 的平行线,与椭圆C 交于点M N ,,求证: 2AP AQ MN ⋅为定值. 9.已知椭圆C : 22221(0)y x a b a b +=>>的离心率为12,且上焦点为()0,1F ,过F 的动直线l 与椭圆C 相交于M 、N 两点.设点()3,4P ,记PM 、PN 的斜率分别为1k 和2k .(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求12k k ⋅的值;(3)探索1211k k +是否为定值?如果是,求出该定值;如果不是,求出1211k k +的取值范围.10.已知椭圆2222:1(0)x y C a b a b +=>>的离心率是12,其左、右顶点分别为1A 、2A ,B 为短轴的一个端点, 12A BA ∆的面积为(1)求椭圆C 的方程;(2)直线:l x =x 轴交于D , P 是椭圆C 上异于1A 、2A 的动点,直线1A P 、2A P 分别交直线l 于E 、F 两点,求证: DE DF ⋅为定值.11.已知圆22:1O x y +=与x 轴负半轴相交于点A ,与y 轴正半轴相交于点B .(1)若过点12C ⎛ ⎝⎭的直线l 被圆O l 的方程;(2)若在以B 为圆心半径为r 的圆上存在点P ,使得PA =(O 为坐标原点),求r 的取值范围; (3)设()()1122,,,M x y Q x y 是圆O 上的两个动点,点M 关于原点的对称点为1M ,点M 关于x 轴的对称点为2M ,如果直线12QM QM 、与y 轴分别交于()0,m 和()0,n ,问m n ⋅是否为定值?若是求出该定值;若不是,请说明理由.12.在平面直角坐标系xOy 中,已知点()2,0A ,点()0,2B ,点()1C -. (1)求经过A ,B ,C 三点的圆P 的方程;(2)过直线4y x =-上一点Q ,作圆P 的两条切线,切点分别为A ,B ,求证:直线AB 恒过定点,并求出定点坐标.参考答案1.(1)(2)(3)见解析【解析】试题分析:(1)根据离心率为,左焦点,可求出和,从而求出椭圆的方程;(2)设,则,且,由,以为直径的圆过点可得即,从而可求出圆的标准方程;(3)设,则的方程为,求出两点的纵坐标,则,化简求得. 试题解析:(1)∵且∴,.∴椭圆方程为.(2)设,则,且.①∵以为直径的圆过点∴∴,又∵,∴.②由①②解得:,或(舍)∴.又∵圆的圆心为的中点,半径为,∴圆的标准方程为.(3)设,则的方程为,若不存在,显然不符合条件. 令得;同理, ∴为定值.点睛:圆锥曲线中的定点、定值问题是考查的重点,一般难度较大,计算较复杂,考查较强的分析能力和计算能力.求定值问题常见的方法:(1)从特殊入手,求出定值,再证明这个定值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解题时,要将问题合理的进行转化,转化成易于计算的方向.2.(1)22143x y +=(2)73 (3)53m = 【解析】试题分析:(1)22143x y +=;(2)由椭圆对称性,知31,2A ⎛⎫ ⎪⎝⎭,所以31,2B ⎛⎫-- ⎪⎝⎭,此时直线BF 方程为3430x y --=,故()11713317BF FD --==-. (3)设00,)A x y (,则()00,B x y --,通过直线和椭圆方程,解得00000085385,(525252x y x C D x x x ⎛⎫--+ ⎪--+⎝⎭,, 003)52y x +,所以000002100000335252558585335252y y x x y k k x x x x x --+-===+--+-,即存在53m =。

试题解析:(1)设椭圆方程为22221(0)x y a b a b +=>>,由题意知: 2212{ 1914c a a b =+= 解之得:2{a b ==,所以椭圆方程为: 22143x y += (2)若AF FC =,由椭圆对称性,知31,2A ⎛⎫ ⎪⎝⎭,所以31,2B ⎛⎫-- ⎪⎝⎭, 此时直线BF 方程为3430x y --=, 由223430,{ 1,43x y x y --=+=,得276130x x --=,解得137x =(1x =-舍去), 故()11713317BF FD --==-. (3)设00,)Ax y (,则()00,B x y --, 直线AF 的方程为()0011y y x x =--,代入椭圆方程22143x y +=,得 ()2220000156815240x x y x x ---+=, 因为0x x =是该方程的一个解,所以C 点的横坐标008552C x x x -=-, 又(),c C C x y 在直线()0011y y x x =--上,所以()000031152C c y y y x x x -=-=--, 同理, D 点坐标为0085(52x x ++, 003)52y x +, 所以000002100000335252558585335252y y x x y k k x x x x x --+-===+--+-, 即存在53m =,使得2153k k =.3.(Ⅰ) 22143x y +=;(Ⅱ)直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,. 【解析】试题分析:⑴由12BF F ∆为等边三角形,,可以得1c =,b =从而计算出结果;⑵设()11M x y ,, ()22N x y ,,联立直线与椭圆方程得12x x +, 12x x ,又因为MA NA ⊥, 1MA NA k k =-,代入化简得2271640m mk k ++=,解出m 与k 的关系代入求解即可解析:(Ⅰ)由已知()122{{12c 4BF F b b c S ∆==⇒=== ∴2224a b c =+=.∴椭圆的标准方程为22143x y +=. (Ⅱ)设()11M x y ,, ()22N x y ,, 联立22{ 1.43y kx m x y =++=,得()()222348430k x mkx m +++-=, ()()22222264163430340m k k m k m ∆=-+->+->,即 ()1222122834{ 43·.34mk x x k m x x k +=-+-=+, 又()()()()22221212121223434m k y y kx m kx m k x x mk x x m k -=++=+++=+, 因为椭圆的右顶点为()20A ,,∴1MA NA k k =-,即1212·122y y x x =---, ∴()121212240y y x x x x +-++=,∴()()22222234431640343434m k m mk k k k --+++=+++,∴2271640m mk k ++=. 解得: 12m k =-, 227km =-,且均满足22340k m +->, 当12m k =-时, l 的方程为()2y k x =-,直线过定点()20,,与已知矛盾; 当227k m =-时, l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,.所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,点睛:本题是道解析几何综合题目,利用已知条件中的等边三角形及其面积求得椭圆方程,在求直线恒过定点时的方法,需要联立直线与椭圆方程,建立k 与m 的关系,然后根据直线特征计算出定点。

相关文档
最新文档