初中函数解析式与图像画法
第四章一次函数的图像与性质

4.3一次函数的图像与性质及确定一次函数解析式知识点1、一次函数的图像与性质图像:在直角坐标系内,所有这些点组成的图形叫做该函数的图像。
画函数图像的一般步骤:(1)(2)(3)例题1、(1)画出正比例函数y=2x的图像。
(2)画出正比例函数y=-2x的图像。
例题2、(1)画出一次函数y=-2x+2的图像;(2)画出一次函数y=-x+1的图像;例题3 (乐山中考)若实数a 、b 、c 满足0a b c ++=,且a b c <<,则函数y ax c =+的图象可能是( )A B C D例题4 如果一次函数y=(2m -3)x+(3-m )的图象经过第一、二、三象限,则m 的取值范围是 。
例题3 若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么k 和b 的符号是____。
随堂练习:1、对于一次函数y =-2x +4,下列结论错误的是( )A .函数值随自变量的增大而减小B .函数图象不经过第三象限C .函数图象向上平移2个单位得到y =-2x 的图象D .函数图象与y 轴的交点坐标是(0,4)2、已知一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是___________。
知识点2、一次函数(正比例函数)表达式:待定系数法待定系数法:求一次函数y=kx+b 的表达式时,先设出式子中的未知系数,再根据条件求出未知系数,从而求出函数表达式,这种方法叫做待定系数法。
例题1 已知在一次函数b kx y +=(0≠k )中,当x=0时,y =3,当x=2时,y=7。
(1)求y 与x 之间的函数表达式。
(2)计算x =4时,y 的值。
(3)计算y =4时,x 的值。
例题2、若变量 y -3与 x +2 成正比,且当 x =1 时,y =-3, (1)求比例系数k ;(2)y 关于x 的函数解析式为例题3、过点P(8,-2)且与直线y=x+1平行的直线的解析式为例题4、已知直线y=x+b过点A(3,4),(1)求b的值;(2)当x取何值时,y<0 ?随堂练习:1、经过A (-6,5)、B(0,-5) 两点的直线l的解析式为2、如图所示,直线l的解析式为 ( )A.y=3x+3 B.y=3x-3 C.y=-x+3 D.y=-3x+33、如图,把直线l沿x轴正方向向右平移2个单位,得到直线l',则直线l'的解析式为( )A.y=2x+4 B.y=-2x+2 C.y=2x-4 D.y=-2x-2巩固提高部分1、若直线y=kx+b(k≠0)不经过第一象限,则k、b的取值范围是()A.k>0,b<0B.k>0,b≤0C.k<0,b<0D.k<0,b≤02.函数的自变量的取值范围是()A. x≥1B. x=1C. x<1D. x≠13、已知y与x-3成正比例,当x=4时,y=-1,那么当x=-4时,y的值是()A. 1B. 3C. -7D. 74、已知正比例函数y=(3k-1)x,若y随x增大而增大,则k的取值范围是()A. k<0B. k>0C.D.5、直线y=2x-1经过的点是()A. (2,1)B. (0,1)C. (2,0)D.(1,1)6、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y =x+k的图象大致是图中的()7、直线经过第_____象限,y随x的增大而______。
初中二次函数知识点详解助记口诀

知识点一、二次函数的概念和图像1、二次函数的概念一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像 ^二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:…当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
知识点二、二次函数的解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点(1)一般一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
a 的绝对值越大,抛物线的开口越小。
;(3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,知识点三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。
函数图像的画法

x
-3 -2 -1 0 1 2 3
y -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
描点,并画图
y
y=x+0.5
3 2
1
-3 -2 -1-1o 1 2 3 x
-2 -3
你会用描点法画函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点法画函数图象:y=x
X
1、列表
y
2、描点 3、连线
-3 -2 -1 0
-3 -2 -1 0
3y 2 1
1
2
3
1
2
3
y=x
-3 -2 -1 o 1 2 3 x -1 -2 -3
试一试: 画出函数y=x+0.5的图象
解:列表:
x -3 -2 -1 0 1 2 3
y
画出函数y=x+0.5的图象 解:列表:
这些点为(0,0)(0.5,1)(1,2) (1.5,3)(2,4)(2.5,5)(3,6)
y 6 5
4 3 2 1
-3 -2 -1 o 1 2 3 x -1 -2 -3
函数图象的画法
函数y=x
X
-3
-2
-1
0
1
2
3
y
图象法
y=x
X
-3
-2
-1
0
1
2
3
y
-3
-2
-1
0
1
2
3
3y
y=x
2
1
-3 -2 -1 o 1 2 3 x -1 -2 -3
第8讲 二次函数的解析式和图象变换(学生版)

知识导航经典例题1在平面直角坐标系中,抛物线2已知二次函数的图象以3已知抛物线4在平面直角坐标系中,二次函数5若二次函数知识导航经典例题1如果将抛物线2如果将某一抛物线向右平移3将抛物线4已知抛物线知识导航经典例题1将二次函数2抛物线3将二次函数4先作二次函数1在平面直角坐标系中,抛物线2如图,已知抛物线帝通过数来统治宇宙。
这是毕达哥拉斯学派和其他教派的主要区别。
他们很重视数学,企图用数来解释一切。
宣称数是宇宙万物的本原,研究数学的目的并不在于使用而是为了探索自然的奥秘。
他们从五个苹果、五个手指等事物中抽象出了五这个数。
这在今天看来很平常的事,但在当时的哲学和实用数学界,这算是一个巨大的进步。
但是,他们同时任意地把非物质的、抽象的数夸大为宇宙的本原,认为'万物皆数','数是万物的本质',是'存在由之构成的原则',而整个宇宙是数及其关系的和谐的体系。
毕达哥拉斯将数神秘化,说数是众神之母,是普遍的始原,是自然界中对立性和否定性的原则。
毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)著称于世。
这定理早已为巴比伦人所知,不过最早的证明大概可归功于毕达哥拉斯。
他是用演绎法证明了直角三角形斜边平方等于两直角边平方之和,即毕达哥拉斯定理(勾股定理)。
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理。
这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.【毕达哥拉斯定理】毕达哥拉斯对数论作了许多研究,将自然数区分为奇数、偶数、素数、完全数、平方数、三角数和五角数等。
在几何学方面,毕达哥拉斯学派证明了'三角形内角之和等于两个直角'的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体。
【黄金分割】然而,最让毕达哥拉斯学派出名的却是他们中的一个'叛逆者'--希帕索斯,正是他发现了第一个无理数根号2的存在,从而在当时的数学界掀起了一场巨大风暴。
知识必备03 函数及其图像(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备03 函数及其图像(公式、定理、结论图表)考点一、平面直角坐标系点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于;(2)点P(x,y)到y轴的距离等于;(3)点P(x,y)到原点的距离等于.典例1:(2022•淄博)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是 (﹣2023,2022) .【分析】由题意观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),由2022=505×4+2,推出D2022(﹣2023,2022).【解答】解:∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(﹣3,2),D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),……,观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).【点评】本题考查坐标与图形的变化﹣旋转,等腰直角三角形性质,规律型问题,解题的关键是学会探究规律的方法,属于中考选择题中的压轴题.考点二、函数及其图象由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k;确定一个一次函数,典例2:(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为( )A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P在直线y=2上,如图所示,当P为直线y=2与直线y2的交点时,m取最大值,当P为直线y=2与直线y1的交点时,m取最小值,∵y2=﹣x+3中令y=2,则x=1,y1=x+3中令y=2,则x=﹣1,∴m的最大值为1,m的最小值为﹣1.则m的最大值与最小值之差为:1﹣(﹣1)=2.故选:B.【点评】本题考查一次函数的性质,要求符合题意的m值,关键要理解当P在何处时m存在最大值与最小值,由于P的纵坐标为2,故作出直线y=2有助于判断P的位置.需要确定一次函数定义式(k0)中的常数k和b.解这类问题的一般方法是待定系数法.典例3:(2022•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为 m (用含有m的代数式表示);②当0<m<时,S与m的关系式为 m2 ;③当S=时,m的值为 或15﹣2 .【分析】(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C作CF⊥C′D′,易得△CFC′∽△AOB,可用m表达CF和C′F的长度,进而可表达点C′,D′的坐标,由点C的坐标可得出直线OC的解析式,代入可得点E的坐标;②根据题意可知,当0<m<时,点D′未到直线OC上,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m<时,当<m<5时,当5<m<10时,当10<m<15时,S与m的关系式,分别令S=,建立方程,求出m即可.【解答】解:(1)将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴,解得.∴直线AB的函数表达式为:y=﹣x+9;(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF∥OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=m,C′F=m,∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),∵C(8,3),∴直线OC的解析式为:y=x,∴E(8﹣m,3﹣m).∴C′E=3+m﹣(3﹣m)=m.故答案为:m.②法一、当点D′落在直线OC上时,有m=(8﹣m),解得m=,∴当0<m<时,点D′未到直线OC,此时S=C′E•CF=•m•m=m2;法二、∵C′D′∥BO,∴△CC′E∽△CBO,∴=()2,即=,∴S=m2.故答案为:m2.③法一、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(m,m),∴D′E=m﹣(3﹣m)=m﹣3,D′M=m﹣(8﹣m)=m﹣8;∴S=m2﹣•(m﹣3)•(m﹣8)=﹣m2+m﹣12,令﹣m2+m﹣12=;整理得,3m2﹣30m+70=0,解得m=或m=>5(舍);当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m≤15时,如图4,此时A′B=15﹣m,∴BN=(15﹣m),A′N=(15﹣m),∴S=•(15﹣m)•(15﹣m)=(15﹣m)2,令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.法二、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);(同法一)当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∵S△A′C′D′=×4×3=6,∴S△A′CM=6﹣=,∵S△AOC=18,∵A′D′∥OA,∴△A′CM∽△ACO,∴=,∴CA′=,∴m=C′A′﹣CA′=5﹣,当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m≤15时,如图4,∵A′D′∥x轴,∴△A′BK∽△ABO,∵S=,S△ABO=54,∴=,解得BA′=2,∴m=BA﹣BA′=15﹣2.故答案为:或15﹣2.【点评】本题属于一次函数综合题,涉及待定系数法求函数解析式,三角形的面积,相似三角形的性质与判定,分类讨论思想等知识,根据△A′C′D′的运动,进行正确的分类讨论是解题关键.考点四、反比例函数反比例函数中反比例系数的几何意义,如下图,过反比例函数图像上任一点作x轴、y轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON的面积S=PM PN=.∴.典例4:(2022•东营)如图,一次函数y1=k1x+b与反比例函数y2=的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为﹣1,则不等式k1x+b<的解集是( )A.﹣1<x<0或x>2B.x<﹣1或0<x<2C.x<﹣1或x>2D.﹣1<x<2【分析】根据两函数图象的上下位置关系结合交点横坐标,即可得出不等式k1x+b<的解集,此题得解.【解答】解:观察函数图象可知,当﹣1<x<0或x>2时,一次函数y1=k1x+b的图象在反比例函数y2=的图象的下方,∴不等式k1x+b<的解集为:﹣1<x<0或x>2,故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.典例5:(2022•徐州)如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.【分析】(1)设点A的坐标为(m,),根据轴对称的性质得到AD⊥CE,AD平分CE,如图,连接CE交AD于H,得到CH=EH,求得E(2m,),于是得到点E在这个反比例函数的图象上;(2)①根据正方形的性质得到AD=CE,AD垂直平分CE,求得CH=AD,设点A的坐标为(m,),得到m=2(负值舍去),求得A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,解方程组即可得到结论;②延长ED交y轴于P,根据已知条件得到点B与点D关于y轴对称,求得|PE﹣PD|=|PE﹣PB|,则点P 即为符合条件的点,求得直线DE的解析式为y=x﹣2,于是得到结论.【解答】解:(1)点E在这个反比例函数的图象上,理由:∵一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,∴设点A的坐标为(m,),∵点C关于直线AD的对称点为点E,∴AD⊥CE,AD平分CE,如图.连接CE交AD于H,∴CH=EH,∵BC=CD,OC⊥BD,∴OB=OD,∴OC=AD,∵AD⊥x轴于D,∴CE∥x轴,∴E(2m,),∵2m×=8,∴点E在这个反比例函数的图象上;(2)①∵四边形ACDE为正方形,∴AD=CE,AD垂直平分CE,∴CH=AD,设点A的坐标为(m,),∴CH=m,AD=,∴m=×,∴m=2(负值舍去),∴A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,∴;②延长ED交y轴于P,∵CB=CD,OC⊥BD,∴点B与点D关于y轴对称,∴|PE﹣PD|=|PE﹣PB|,则点P即为符合条件的点,由①知,A(2,4),C(0,2),∴D(2,0),E(4,2),设直线DE的解析式为y=ax+n,∴,∴,∴直线DE的解析式为y=x﹣2,当x=0时,y=﹣2,∴P(0,﹣2).故当|PE﹣PB|最大时,点P的坐标为(0,﹣2).【点评】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.考点五、二次函数1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法)如图:点A坐标为(x1,y1),点B坐标为(x2,y2),则AB间的距离,即线段AB的长度为.2、函数平移规律:左加右减、上加下减.3、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,,当时,;如果在此范围内,y随x的增大而减小,则当时,,当时,.4、抛物线的对称变换①关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是.②关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是.③关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是.④关于顶点对称关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.⑤关于点对称关于点对称后,得到的解析式是.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称图象的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.典例6:(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图象知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图象看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.考点六、函数的应用分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.典例7:(2022•德州)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为y=x2﹣4x+1.已知二次函数y=ax2+bx+c的图象经过点A(0,1),B(1,﹣2),.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件: C(2,﹣3)(答案不唯一) ;(2)当函数值y<6时,自变量x的取值范围: ﹣1<x<5 ;(3)如图1,将函数y=x2﹣4x+1(x<0)的图象向右平移4个单位长度,与y=x2﹣4x+1(x≥4)的图象组成一个新的函数图象,记为L.若点P(3,m)在L上,求m的值;(4)如图2,在(3)的条件下,点A的坐标为(2,0),在L上是否存在点Q,使得S△OAQ=9.若存在,求出所有满足条件的点Q的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出y=6时,对应的x值,再结合图象写出x的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为y=(x﹣6)2﹣3,根据题意可知x=3时,P点在抛物线y=(x﹣6)2﹣3的部分上,再求m的值即可;(4)分两种情况讨论:当Q点在抛物线y=(x﹣6)2﹣3的部分上时,设Q(t,t2﹣12x+33),由S△OAQ=2×(t2﹣12x+33)=9,求出Q点坐标即可;当Q点在抛物线y=x2﹣4x+1的部分上时,设Q (m,m2﹣4m+1),由S△OAQ=2×(m2﹣4m+1)=9,求出Q点坐标即可.【解答】解:(1)C(2,﹣3),故答案为:C(2,﹣3)(答案不唯一);(2)∵y=x2﹣4x+1,∴当x2﹣4x+1=6时,解得x=5或x=﹣1,∴当y<6时,﹣1<x<5,故答案为:﹣1<x<5;(3)∵y=x2﹣4x+1=(x﹣2)2﹣3,∴抛物线向右平移4个单位后的解析式为y=(x﹣6)2﹣3,当x=3时,点P在抛物线y=(x﹣6)2﹣3的部分上,∴m=6;(4)存在点Q,使得S△OAQ=9,理由如下:当Q点在抛物线y=(x﹣6)2﹣3的部分上时,设Q(t,t2﹣12x+33),∴S△OAQ=2×(t2﹣12x+33)=9,解得t=6+2或t=6﹣2,∴t<4,∴t=6﹣2,∴Q(6﹣2,9);当Q点在抛物线y=x2﹣4x+1的部分上时,设Q(m,m2﹣4m+1),∴S△OAQ=2×(m2﹣4m+1)=9,解得m=2+2或m=﹣2,∵m≥4,∴m=2+2,∴Q(2+2,9);综上所述:Q点坐标为(6﹣2,9)或(2+2,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.。
初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。
二次函数的图象、解析式和性质

二次函数的系数与图象的关系
二次函数的解析式为y=ax^2+bx+c,其中a、b、c为系数 a的符号决定了抛物线的开口方向,a>0时开口向上,a<0时开口向下 a的绝对值决定了抛物线的开口大小,|a|越大,开口越小 b和c决定了抛物线的位置,b和c的值越大,抛物线越往y轴正方向移动
二次函数的开口大小与二次项系数的关系
XX
二次函数的图象、解析式和性质
单击添加副标题
汇报人:XX
目录
01
单击添加目录项标题
02
03
二次函数的解析式
04
二次函数的图象 二次函数的性质
01
添加章节标题
02
二次函数的图象
二次函数的标准形式
二次函数的一般形式为y=ax^2+bx+c 二次函数的标准形式是y=ax^2+c,其中a和c是常数,且a≠0 二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下 二次函数的顶点坐标为(0,c),对称轴为y轴
b和c决定了抛物线的位置,其中 b和c的值可以根据具体的函数表 达式来确定。
添加标题
添加标题
添加标题
添加标题
a的符号决定了抛物线的开口方向, 当a>0时,抛物线开口向上;当 a<0时,抛物线开口向下。
二次函数的顶点坐标可以通过配 方的方法求得,顶点的横坐标为 x=-b/2a,纵坐标为y=(4acb^2)/4a。
感谢观看
汇报人:XX
二次函数的开口方向
二次函数的一般形式为y=ax^2+bx+c,其中a决定了开口方向 当a>0时,开口向上 当a<0时,开口向下 开口方向与函数的极值和最值有关
函数的图像及解析式

正比例函数
01
图像
正比例函数图像是一条过原点的 直线。
02
03
解析式
性质
$y = kx$,其中$k$是常数且$k neq 0$。
当$k > 0$时,图像位于第一、 三象限;当$k < 0$时,图像位 于第二、四象限。
一次函数
图像
一次函数图像是一条直线。
解析式
$y = ax +
分式
通过分式表示函数关系,如y=1/x。
对数式
通过对数运算表示函数关系,如y=log_a x。
函数解析式的应用示例
线性函数
y=kx+b,用于描述匀速直线运动、 弹簧的伸长量等。
幂函数
y=x^n,用于描述物体随时间加速 或减速运动。
三角函数
y=sin x、y=cos x,用于描述简谐振 动、交流电等周期性现象。
函数的图像及解析式
contents
目录
• 函数图像的绘制 • 函数的解析式 • 函数的性质与图像关系 • 常见函数的图像与解析式 • 函数图像与解析式的应用
01 函数图像的绘制
函数图像的基本概念
01
02
03
函数图像
表示函数中自变量与因变 量之间关系的曲线或曲面。
坐标系
确定函数图像在平面或空 间中的位置和方向。
解析式
以10为底的对数函数为$y = log_{10} x$,以自 然数e为底的对数函数为$y = ln x$。
3
性质
定义域为$(0, +infty)$,值域为$(-infty, +infty)$。
05 函数图像与解析式的应用
解决实际问题
预测模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中函数解析式及图象画法
一、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
1、一次函数:y=kx+b(k、b是常数,k 0)
说明:①k 0的常数
②x指数为1
③b取任意实数
④自变量x的取值为一切实数。
【x的取值范围(定义域):x € R】
⑤函数y的取值是一切实数。
【y的取值范围(值域):y€ R】
k
2、反比例函数:y (k为常数,k 0)
x
说明:① 常数k不为零(也叫做比例系数k)②分母中含有自变量x,且指数为1.
③自变量X的取值为一切非零实数。
【x的取值范围(定义域):{X € R I x丰0}】(反比例函数
有
意义的条件:分母工0)④函数y的取值是一切非零实数。
【y的取值范围(值域):{y € R I y丰0}】
3、二次函数:一般式:y ax2bx c (a 0 , a , b ,c是常数):
说明:⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
⑵a ,b ,c是常数,a是二次项系数,b是一次项系数,c是常数项.
、函数图象的常规画法:(描点法画函数图形的一般步骤)
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)
1、一次函数y=kx+b图像(直线)的画法:两点法
①计算必过点(0, b)和(-—,0)[当x=0,时,y= b,过点(0, b);当y=o,时,x=-—过点(-一,0)]
k k k
②描点(有小到大的顺序)
③连线(从左到右光滑的直线)
k
2、反比例函数y k图像(双曲线)的画法:---五点绘图法:
x
①列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)
②描点(有小到大的顺序)
③连线(从左到右光滑的曲线)
3、二次函数y ax2 bx c图象(抛物线)的画法---五点绘图法:
2
①配方变形:对于二次函数y ax2 bx c经过配方变形为顶点式:y=a(x+■一)2 j4ac_—,其顶点坐标为(
2a 4a
2 ②确定三特征:开口方向(a正朝上;b负朝下);对称轴(直线x=-—);其顶点坐标为(-■一 ,4ac b)
2a 2a 4a ③然后在对称轴两侧,左右对称地描点画图
④选取五点为:顶点、与y轴的交点0,c、以及0, c关于对称轴对称的点-,c、与x轴的交
a b 4ac b 2a' 4a
点X1, 0 ,x,0 (x,,X2是方程ax bx c=0的解,若与x轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点(无/有),与y轴的交点•
10、特征点:
①一定有的点:前3个占;
八、、,
②可能有的点:当△> 0时,才有后两个点
(b 4ac b2)
(-—,----- )o c b 顶点2a 4a ;与y轴的交点0,c;o, c关于对称轴对称的点_ , c ;与x轴的
a 两个交点:x1 ,0 ,x2,0
注意:三点可画出大致图象(该三点为:前三个特征点),高中常用些方法。
画图练习:(1)y x2 2x 1 , (2) y x2 2x 2 , (3)y 2x2 x 1 , ⑷y 2x2 4x 1 (5)y (x 2)2 1。