风力发电机振动监测
风力机结构振动监测与模态分析

风力机结构振动监测与模态分析风力机结构振动监测与模态分析风力机结构振动监测与模态分析是风力发电行业中重要的研究领域之一。
通过对风力机结构振动的监测与模态分析,可以了解风力机的结构特性、故障诊断以及优化设计等方面的问题,为风力机的安全运行和提高发电效率提供重要依据。
以下是风力机结构振动监测与模态分析的步骤。
第一步:建立监测系统首先,需要建立一个风力机结构振动监测系统。
该系统通常由加速度传感器、位移传感器、应变传感器等组成,用于测量风力机结构的振动和变形情况。
传感器的位置和布置需要根据风力机的结构特点和关键位置进行确定。
第二步:数据采集与处理通过监测系统采集到的振动数据,需要进行数据处理和分析。
首先,对采集到的原始数据进行滤波和去噪处理,以提高数据的可靠性和准确性。
然后,对处理后的数据进行时域分析、频域分析和波形分析等,得到风力机结构的振动特性和频谱信息。
第三步:模态识别与分析基于振动数据的特征提取,可以进行模态识别与分析。
模态分析是通过分析风力机结构的固有振动模态(包括自由振动模态和强迫振动模态),来了解风力机结构的动力特性。
常用的模态分析方法包括主成分分析法、最小二乘法和模态参数识别法等。
第四步:故障诊断与预测通过监测和模态分析得到的振动数据,可以进行故障诊断与预测。
根据风力机结构的振动特征和频谱信息,可以判断出可能存在的故障类型,如轴承故障、齿轮故障等。
同时,可以通过分析振动数据的趋势和变化,预测未来可能发生的故障,从而采取相应的维修和保养措施,确保风力机的安全运行。
第五步:优化设计与改进通过振动监测与模态分析,可以发现风力机结构中存在的问题和不足之处。
基于分析结果,可以进行优化设计和改进,以提高风力机的结构强度、降低振动和噪音等。
优化设计可以包括材料选择、结构改进和动力系统调整等方面,以提高风力机的整体性能和可靠性。
综上所述,风力机结构振动监测与模态分析是确保风力机安全运行和提高发电效率的重要手段之一。
风力发电机振动监测

风力发电机振动监测摘要:当前,风力发电已成为世界新能源发电中发展最迅速的行业,我国风电总装机容量已跃居世界第一。
但由于缺乏关键技术,盲目扩大风电场建设,加之环境恶劣,国产风电机组故障发生率明显高于国外,这不仅增加了风力发电机组维修费用,也大大降低了发电可靠性。
开展风电机组的运行状态监测,可以提前发现设备运行隐患,实现风力发电机设备的计划检修,是降低生产维修成本、防止重大事故发生的有效措施。
关键词:风力发电机;振动监测;应用引言为满足风电市场高速增长需要,我国大批新型风力发电机组匆忙投入规模化生产运行,如此短的时间,不可能准确地检验机组的质量,考察运行可靠性,这无疑增加了生产技术风险和机组不正常运行导致的经济风险。
另外,风电场所处的环境和气候条件恶劣,使发生故障的潜在可能性和方式也相应增加,一旦这些设备发生故障而失效,将造成巨大的经济损失。
1、风电机组在线振动状态监测系统1.1系统构成振动监测系统主要是在风力发电机组预先选定的位置安装振动传感器和转速传感器,传感器将其采集的信号通过带编织屏蔽电缆接入到1台智能采集单元,将处理完的数据通过无线网络发送到事先装有分析软件的服务器中,客户可通过多种方式登录服务器察看运行数据,以便进行深入分析。
1.2测点布置对于风力发电机组的振动监测,主要集中在传动链上,而针对传动链,监测又主要集中在主轴、齿轮箱和发电机上。
针对风力发电机组的特定应用,在主轴承、一级行星轮大齿圈处转速较低,需要选用低频加速度传感器,其他位置选用通用型加速度传感器。
对于当前主流的两种齿轮箱类型,通用测量点布置要求如下:①两级行星,一级平行轴结构主轴前轴承1个(径向)、二级行星轮大齿圈1个(径向)、二级行星轮大齿圈1个(径向),齿轮箱低速轴输出端1个(径向)、齿轮箱高速轴输出端2个(轴向和径向)、发电机驱动端2个(轴向和径向)、发电机非驱动端1个(径向)。
转速传感器安装在齿轮箱高速轴输出端位置。
风力发电机设备的振动危害及监测技术

风力发电机设备的振动危害及监测技术摘要:风力发电设备将风能转化为电能,在其电能生产过程中,对环境几乎没有危害,实现了清洁生产,对我国能源事业的发展有着积极的影响。
然而风力发电机设备在运行过程中,时常受到振动问题的困扰,振动在其可承受范围内,对风电设备影响较小,但是一旦振动过大,则会对设备产生极大的危害。
所以,需对风力发电机设备进行实时监测,在其齿轮箱、轴承、机舱等处设置监测点,以形成对风电设备振动的有效控制。
关键词:风力发电机;振动危害;监测技术风力发电机在运行过程中,振动是无法避免的一个问题,需将振动控制在风电设备可承受的范围内。
为了尽可能的降低振动对风电设备的危害程度,维修人员需深入的探寻风电设备发生振动的原因,准确运用监测技术对风电设备的运行状态进行监测,通过对监测数据的分析和研究,以确定振动的原因,并及时的进行处理,以防止振动问题的扩大化,对风电设备产生较大的危害。
1.风力发电机设备的振动危害分析1.1叶片风力发电的叶片会受到多种力的作用,像外部空气动力和重力,或者是自身控制系统的控制力,比如说刹车与偏航,这些力会引起叶片发生不同程度的振动。
一是挥舞,主要是指弯曲振动;二是摆振,叶片向内部来回振动;三是扭转,主要是在变距轴上振动。
产生的危害主要有三点,第一,当风机叶片发生机械振动后,在空气动力的影响下,产生气动弹性,当两者作用力加大至一定程度后,将会引发颤振与发散问题,对发电机的损害极大;第二,如果风向变化幅度过大,叶片在多种力的作用下,叶片振幅加大,频率过快,一旦超出叶片本身可承受的范围后,轻则导致叶片产生裂纹,重则引起叶片断裂,危害程度较高。
1.2齿轮箱第一,比较容易出现的故障是断齿,在未发生断齿之前,通常故障表现是细微裂纹,断齿的故障类型主要有三种,一是过载折断,是由齿轮箱超负荷运行引起的断齿;二是疲劳折断,主要是由齿轮箱运行长期消耗导致;三是随机折断,折断的原因无法预测,像硬物掉落至齿轮箱引起的断齿,或者齿轮本身质量问题等;第二,齿轮点蚀,齿轮和滚动轴在运行过程中,表面会遭到点蚀,如果没有及时的进行处理,点蚀一旦扩大化,导致齿轮与滚动轴消耗增加,使得齿轮遭受较大程度的破坏,影响到啮合精度,促使轴线产生位移,影响到齿轮的正常运行,点蚀过于严重会产生断齿问题。
风能发电保护控制装置的振动监测与控制技术

风能发电保护控制装置的振动监测与控制技术随着对可再生能源的需求不断增加,风能发电作为一种清洁且可再生的能源形式,受到了广泛的关注和应用。
在风能发电系统中,保护控制装置的作用非常重要。
而振动监测与控制技术作为一种有效的手段,可以提高保护控制装置的可靠性和工作效率,在风能发电系统中具有重要的应用价值。
本文将对风能发电保护控制装置的振动监测与控制技术进行详细的介绍与讨论。
1. 振动监测技术振动监测技术是通过对风能发电保护控制装置的振动信号进行实时监测和分析,以判断装置的运行状态和健康状况。
常用的振动监测方法包括加速度传感器和振动传感器等。
通过采集和分析振动信号,可以实时监测风能发电保护控制装置的振动状况,判断是否存在异常振动或故障,并及时采取相应的措施修复或替换受损部件,确保风能发电系统的正常运行。
2. 振动控制技术振动控制技术是通过对风能发电保护控制装置的振动进行控制,降低振动幅值和频率,减小振动对装置的损伤和影响。
常见的振动控制方法包括主动振动控制和被动振动控制等。
主动振动控制通过引入控制力来抵消或减小振动,主动地控制振动的幅值和频率。
被动振动控制则是通过改变系统的结构或材料等手段来减小振动的幅值和频率。
选择合适的振动控制方法,可以有效降低风能发电保护控制装置的振动,延长其使用寿命。
3. 振动监测与控制技术的应用振动监测与控制技术在风能发电系统中有着广泛的应用。
首先,它可以帮助监测风能发电保护控制装置的运行状态,及时发现故障并采取措施进行修复,提高系统的可靠性和稳定性。
其次,通过控制装置的振动,可以减小振动对装置的损伤和影响,延长其使用寿命,降低维护和更换成本。
此外,振动监测与控制技术还可以优化风能发电系统的运行参数,提高发电效率,降低能耗和环境污染。
因此,振动监测与控制技术在风能发电系统中具有重要的应用价值。
4. 振动监测与控制技术的挑战与展望尽管振动监测与控制技术在风能发电系统中的应用已取得了一定的成绩,但仍然面临一些挑战。
风力发电机振动在线监测系统

风力发电机振动在线监测系统风力发电机是将风能转换成电能的设备,风能通过叶轮带动主轴、增速箱、发电机组转换成电能。
发电机组的状态监测和故障预测、诊断是目前风力发电机设备维修、维护管理的主要手段,其状态监测的方法很多,主要有力、位移、振动、噪声、温度、压力等监测。
由于振动引起的机械损坏比率很高,目前在诊断技术上应用最多的是机械振动信号检测, 风力发电机运行状态通常可从振动数据上体现出来,目前国内大型风力发电机组振动监测设备基本上是整机进口,价格昂贵。
为此我们开发了基于加速度传感器MMA7260QT、C8051F350型单片机的振动在线监测系统,具有振动数据实时监测、分析以及超限报警制动等功能。
1 系统整体设计风力发电机故障诊断的基本方法是时域监测、频域分析诊断,核心思想是利用加速度传感器检测振动情况,由计算机对振动数据进行采样、滤波,提取有效振动频带内的信号,通过分析有效频带内的峰值振动频率来判断风机运行是否正常[1]。
采集系统主要包括传感器、电源电路、单片机系统和通讯电路。
图1为系统硬件框图。
振动测量采用MMA7260QT 作为振动传感器,MMA7260QT采用了信号调理、单极低通滤波器和温度补偿技术,并且提供4个量程可选,同时带有低通滤波并已做零g补偿。
芯片提供休眠模式,最低供电电流3μA 。
MMA7260QT的关键组成部分加速度感应单元,利用半导体材料经过刻蚀加工成基于可变电容原理的机械结构。
当芯片受到外力产生加速度时,相当于两个极板之间的发生了相对变化,从而将加速度变化以电容值变化的形式体现出来。
再通过内部电路将电容转化为电压变化,经过滤波、放大处理后输出。
通过引脚1 、2 的输入搭配,可实现对加速度范围和灵敏度的选择。
1.2 单片机系统C8051F350是一款完全集成的混合信号片上系统型MCU,具有高速、低功耗、集成度高、功能强大、体积小巧等优点,其内部有一个全差分24位A/D转换器,该转换器具有在片内校准功能。
风力发电机振动测试与控制

风力发电机振动测试与控制风力发电机振动测试与控制随着环境保护意识的增强和可再生能源的重要性日益凸显,风能作为一种清洁、可再生的能源形式,受到了广泛的关注与应用。
然而,风力发电机在运行过程中存在着振动问题,这不仅会影响设备的安全性和寿命,还会对发电效率产生负面影响。
因此,风力发电机振动测试与控制成为了当前研究的热点之一。
风力发电机振动测试主要通过安装振动传感器来实时监测设备的振动情况。
振动传感器可以测量发电机在运行过程中的振动幅度、频率等参数,从而了解设备的工作状态。
通过对振动数据的分析和处理,可以判断出是否存在异常振动,及时发现并解决潜在问题,保证设备的正常运行。
在风力发电机振动控制方面,目前主要采用主动控制和被动控制两种方式。
主动控制是指通过在发电机结构中安装执行器等设备,通过对振动信号进行反馈控制,实现对振动的主动抑制。
被动控制则是通过增加结构加强件、调整结构参数等 passively inhibiting vibration. 两种方式各有优劣,需要根据具体情况进行选择。
风力发电机振动测试与控制的研究不仅可以提高设备的安全性、可靠性和寿命,还可以提高发电效率,减少能源浪费,对于推动风能产业的发展具有重要意义。
然而,目前该领域的研究还存在一些挑战和问题,如振动传感器的选型和安装、振动数据的分析和处理算法等。
因此,未来的研究需要进一步深入,以提出更加有效的解决方案。
综上所述,风力发电机振动测试与控制是一个重要而复杂的领域,对于风能产业的发展具有积极的推动作用。
通过对设备振动情况的实时监测和控制,可以提高设备的性能和可靠性,为清洁能源的发展做出贡献。
然而,该领域仍面临一些挑战和问题,需要进一步的研究和探索。
相信随着科技的不断进步和研究的深入,风力发电机振动测试与控制技术将得到更好的发展和应用。
风力发电机振动监测系统维修手册

风力发电机振动监测系统维修手册引言:风力发电机作为一种现代化的可再生能源发电设备,具有环保、高效、可持续的特点,在全球范围内得到广泛应用。
而风力发电机振动监测系统作为该设备的核心部件,对于确保设备的正常运行和减少损耗具有重要意义。
本维修手册旨在提供风力发电机振动监测系统的维修指导,从而帮助用户有效解决设备故障和提高系统性能。
一、系统概述风力发电机振动监测系统通过测量风力发电机振动参数,如振动加速度、振动速度和振动位移等,实时监测设备的运行状态,从而及时识别问题和进行预警。
该系统由传感器、数据采集模块、数据处理单元和显示控制终端等组成。
其主要功能包括:1. 监测风力发电机的振动水平,判断设备的工作状态和软硬件性能;2. 分析和识别设备振动异常,预警设备发生故障的潜在风险;3. 提供实时数据和报表,为维修和调试工作提供数据支持;4. 进行设备故障诊断,提供维修建议和方案。
二、振动监测系统的维护与维修振动监测系统的正常维护和维修对于确保其长期稳定运行和准确监测非常重要。
以下是相关的维护和维修指南:1. 传感器维护传感器是振动监测系统中非常关键的组成部分,其灵敏度和准确性直接影响系统的监测效果。
因此,传感器的维护非常重要。
(1)定期校准传感器的灵敏度,确保其准确度和可靠性;(2)检查传感器与设备的连接接头,确保传感器与设备之间的电气连接良好;(3)在传感器正常工作时,及时清洁传感器并保持传感器周围环境清洁,防止灰尘和杂质影响传感器的运行。
2. 数据采集模块维护数据采集模块负责将传感器采集的数据进行模拟/数字转换,并传输至数据处理单元。
以下是数据采集模块的维护要点:(1)检查数据采集模块的电源和信号连接,确保其正常工作;(2)定期清理数据采集模块和连接线路的灰尘和杂质,保持其通畅和良好的接触性能;(3)及时更换损坏的数据采集模块,确保其正常功能。
3. 数据处理单元维护数据处理单元负责接收和处理数据采集模块传输的数据,并进行分析和判断。
风力发电机组振动状态监测导则

在国外比国内领先的状况。各厂家的区别主要在 于在风电场使用的经验不同,诊断故障的能力也 有所不同。还有的设备生产厂家是从石化等其他 行业转向风电领域的,要充分考虑风电的特殊 性,不能完全等同采用。关键是提高运营人员的 素质《导则》本身没有特别高的要求,没有难以 做到的环节,执行的难点在于运行人员要学会运 用这些设备专家说。参与起草的专家向记者打了 个比方,振动状态监测系统相当于医生手里的温 度计或者 X 光机,这些设备不能直接为发电机组振 动状态监测是根据所监测风电机组类型,选择不 同的监测部位,监测风电机组振动状态的改变, 评估风电机组的状态,早期发现并跟踪设备故障 的一种方法。某业内人士告诉记者,目前,风机 振动状态监测系统还没有被广泛采用,但是各个 发电运营商和制造商都已经开始试用该系统,大 家对这个技术已经比较了解。记者从《导则》条 文中看到,标准对风电机组振动状态监测系统作 了极其详细的规定,包括系统类型、传感器安装
电机微电脑保护器《风力发电机组振动状态 监测导则》对风电机组振动状态监测系统的选择 作出了规定,海上风电机组应选择采用固定安装 系统,陆上 2 兆瓦(及以上)风电机组选择采用固 定安装系统,陆上 2 兆瓦以下风电机组可选择半 固定安装系统或便携式系统。《导则》对风电机 组震动状态监测系统作出了极其详细的规定,业 内人士认为,该《导则》对风电振动状态监测环 节进行统一,可以更精细化的掌握机组的运行状 态,合理安排检修时间,减少风电事故。振动状
标准的产品和生产线要遭到淘汰。该业内人士 说。标准是否强制执行?《导则》指出,海上风 电机组应选择采用固定安装系统,陆上 2 兆瓦以 上(含 2 兆瓦)风电机组选择采用固定安装系统。 固定安装系统是振动状态监测系统类型之一,系 统传感器、数据采集装置采用固定安装方式,数 据采集可连续性或周期性采集,通常用于具有复 杂监测任务的风电机组。陆上 2 兆瓦以下风电机 组可选择半固定安装系统或便携式系统。《导则》 适用于单机容量大于 1.5 兆瓦的水平轴风力发电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电机振动监测
发表时间:2018-06-21T10:26:49.693Z 来源:《电力设备》2018年第6期作者:孟永辉
[导读] 摘要:当前,风力发电已成为世界新能源发电中发展最迅速的行业,我国风电总装机容量已跃居世界第一。
(东方电气(天津)风电科技有限公司天津 300462)
摘要:当前,风力发电已成为世界新能源发电中发展最迅速的行业,我国风电总装机容量已跃居世界第一。
但由于缺乏关键技术,盲目扩大风电场建设,加之环境恶劣,国产风电机组故障发生率明显高于国外,这不仅增加了风力发电机组维修费用,也大大降低了发电可靠性。
开展风电机组的运行状态监测,可以提前发现设备运行隐患,实现风力发电机设备的计划检修,是降低生产维修成本、防止重大事故发生的有效措施。
关键词:风力发电机;振动监测;应用
引言
为满足风电市场高速增长需要,我国大批新型风力发电机组匆忙投入规模化生产运行,如此短的时间,不可能准确地检验机组的质量,考察运行可靠性,这无疑增加了生产技术风险和机组不正常运行导致的经济风险。
另外,风电场所处的环境和气候条件恶劣,使发生故障的潜在可能性和方式也相应增加,一旦这些设备发生故障而失效,将造成巨大的经济损失。
1、风电机组在线振动状态监测系统
1.1系统构成
振动监测系统主要是在风力发电机组预先选定的位置安装振动传感器和转速传感器,传感器将其采集的信号通过带编织屏蔽电缆接入到1台智能采集单元,将处理完的数据通过无线网络发送到事先装有分析软件的服务器中,客户可通过多种方式登录服务器察看运行数据,以便进行深入分析。
1.2测点布置
对于风力发电机组的振动监测,主要集中在传动链上,而针对传动链,监测又主要集中在主轴、齿轮箱和发电机上。
针对风力发电机组的特定应用,在主轴承、一级行星轮大齿圈处转速较低,需要选用低频加速度传感器,其他位置选用通用型加速度传感器。
对于当前主流的两种齿轮箱类型,通用测量点布置要求如下:①两级行星,一级平行轴结构主轴前轴承1个(径向)、二级行星轮大齿圈1个(径向)、二级行星轮大齿圈1个(径向),齿轮箱低速轴输出端1个(径向)、齿轮箱高速轴输出端2个(轴向和径向)、发电机驱动端2个(轴向和径向)、发电机非驱动端1个(径向)。
转速传感器安装在齿轮箱高速轴输出端位置。
②一级行星,两级平行轴结构主轴承1个(径向)、齿轮箱输入轴1个(径向)、行星轮大齿圈1个(径向)、齿轮箱低速轴输出端1个(径向)、齿轮箱高速轴输出端2个(轴向和径向)、发电机驱动端2个(轴向和径向)、发电机非驱动端1个(径向)。
转速传感器安装在齿轮箱高速轴输出端位置。
1.3分析功能描述
主要是通过测取齿轮箱、发电机的整体总振值,根据ISO10816标准评估总体设备状况。
主要技术方法有:①采用频谱分析技术,对齿轮箱、发电机的平衡、对中、连接、齿轮啮合等状态进行评估。
常规的频谱分析技术,皆采用“窄带报警”,在特定频段范围内进行幅值报警,借助人工进行分析。
②采用时域分析技术,可以得到振动加速度、速度、位移、Crest峰值因子、峭度、歪度,以及4个等级的摩擦因子,连同预设的征兆匹配指标,按照ISO10816标准,综合在一张图表上,把复杂的人工分析变成简单的专家诊断结果。
③采用频域征兆拟合技术,例如,对齿轮箱一级齿轮的啮合频率及边频进行拟合,对各级拟合值进行均方根运算,从而得到齿轮啮合的总征兆值,再根据ISO 标准,直接给出“绿、黄、红”专家评估。
将振动时域分析与高效的征兆评估频域分析方法结合,可直接得到不平衡、不对中、松动、齿轮啮合不良、轴承外圈、内圈、滚动体、保持架故障等数十个征兆评估值及“绿、黄、红”状态,从而达到综合评估与智能诊断的目的。
④变速变载的智能评判,由于风力发电设备工作在多种工况下,不能采取统一的评判标准,智能评估可采取变速变载分析技术,根据风速、转速、功率等参数进行相关性评估,智能调整评估标准,并做出归一化的评估值,从而得到可靠的分析结论。
由以上功能描述可以看出,在线系统可以预测分析风力发电机组如下故障及征兆:动平衡、对中、轴承问题、齿轮啮合问题、轴弯曲、机械松动、共振问题。
2、风力发电机振动监测系统实施效果
目前,荣成、东台、呼伦贝尔风电场在线振动监测系统已经安装调试完成,试运行近半年,完成了系统软件的参数设置,如转速触发范围、加速度包络频谱的频宽范围、趋势数据和频谱图的保存时间间隔等;收集风机各部件(包括主轴、齿轮箱、发电机)振动的基础数据,了解风机在不同风况下运行时的振动数据趋势,为风机量身定做了振动预警和报警标准,达到逐步实现智能监测的目的。
通过在线系统的监测,目前已发现个别风机存在一定的机械故障隐患。
下面针对荣成风电场30106号风机的振动监测情况进行分析。
2.1主轴承
主轴承加速度包络频谱。
主轴承加速度包络频谱显示运行时主轴承冲击能量平缓,未发现有故障频率,轴承情况良好,但在包络时域波形中有很弱的杂乱的冲击信号,应为润滑油中的杂质所产生,暂不影响设备的运行,应注意润滑维护。
2.2齿轮箱
齿轮箱高速轴输出端振动频谱。
分析振动速度频谱,发现有轻微不对中征兆,均存在低于1倍与2倍峰值,但通过对发电机振动的分析,认为高速要定期润滑维护。
轴不对中征兆是由发电机振动引起,需要进行后续跟踪确认。
不对中对轴承状态影响较大,建议跟踪查看轴承的振动值趋势。
2.3发电机
2.3.1驱动端振动
从驱动端的振动频谱来看,1~6倍发电机转频处均存在峰值,且峰值相对较高,符合机械松动的征兆,表明发电机驱动端轴承处存在一定的磨损,为轴磨损或者轴承座磨损。
整体振动值处于黄色预警期,可继续运行,但要经常跟踪振动变化趋势,需要定期润滑维护。
2.3.2非驱动端振动
从非驱动端的振动频谱来看,存在与驱动端相同的征兆,1~6倍发电机转频处均存在峰值,符合机械松动的征兆,表明发电机驱动端轴承处存在一定的磨损,为轴磨损或者轴承座磨损。
在对风力发电机进行故障沴断方法的分析中,只是使用了常见的时域分析、频域分析以及共振解调分析。
这些方法需要在实际的情况下相互结合使用,而不是单纯的使用一种,因为通常情况下故障的发生往往伴随着多个故
障的混合,需要综合各种信息才能对风力发电机的工作状态做出准确的判断。
结束语
振动监测是一项技术与经验相结合的设备故障诊断方法,通过对数据的分析、运行状态的对比可提高状态监测的有效性。
因此,建议从设备使用的初期开始,逐步做到熟练使用、培养人才、诊断分析、形成标准、推广使用,最终达到指导运行维护、提高设备可靠性和利用率的目的。
参考文献:
[1]封新建.风力发电机组齿轮箱振动监测与故障诊断方法研究[D].东北电力大学,2017.
[2]钱显毅,陈鹏飞.压电传感器在风电发电机振动测试中的应用研究[J].科技创业月刊,2017,30(05):132-134.
[3]郭梅.风力发电机传动系统振动监测与故障诊断系统研究[D].浙江大学,2017.。