(完整)高中立体几何二面角的几种基本求法例题

(完整)高中立体几何二面角的几种基本求法例题
(完整)高中立体几何二面角的几种基本求法例题

C1

C1

B

二面角的基本求法例题

一、平面与平面的垂直关系

1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

例1.在空间四边形ABCD中,AB=CB,AD=CD,E、F、G分别是AD、DC、CA的中点。

求证:BEF BDG

^

平面平面。

例2.AB BCD BC CD

^=

平面,,90

BCD°

?,E、F分别是AC、AD的中点。

求证:BEF ABC

^

平面平面。

2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线

垂直于另一个平面。

例3.在正方体ABCD—A1B1C1D1中,求A1B和平面A1B1CD所成的角.。

二、二面角的基本求法

1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。

例4.在正方体ABCD—A1B1C1D1中,

求(1)二面角

11

A B C A

--的大小;

(2)平面

11

A DC与平面

11

ADD A所成角的正切值。

练习:过正方形ABCD的顶点A作PA ABCD

^平面,设PA=AB=a,

求二面角B PC D

--的大小。

2.三垂线法

例5.ABCD ABEF ABCD

^

平面平面,是正方形,ABEF是矩

AF=

1

2

AD=a,G是EF的中点,

(1)求证:AGC BGC

^

平面平面;

(2)求GB与平面AGC所成角的正弦值;

C

(3)求二面角B AC G --的大小。

例6.点P 在平面ABC 外,ABC V 是等腰直角三角形,90ABC

°?,PAB V 是正三角形,PA BC ^。

(1)求证:^平面PA B 平面A B C ; (2)求二面角P AC B --的大小。

练习:正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角1A BD P --的大小。

B1

B

A

3.垂面法

例7.SA ABC AB BC SA AB BC ^^==平面,,, (1)求证:SB BC ^;

(2)求二面角C SA B --的大小;

(3)求异面直线SC 与AB 所成角的余弦值。

4.无棱二面角的处理方法 (1)找棱

例8.过正方形ABCD 的顶点A 作PA ABCD ^平面,设PA=AB=a , 求平面PAB 与平面PCD 所成二面角的大小。

(2)射影面积法(cos s S

q =

射影)

例9.正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是棱1AA 的中点, 求平面11PB C 与平面ABCD 所成二面角的大小。

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

反证法练习题

1、用反证法证明一个命题时,下列说法正确的是 A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾 C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件 2、否定“自然数a 、b 、c 中恰有一个偶数”时的正确反正假设为 A .a 、b 、c 都是奇数 B .a 、b 、c 或都是奇数或至少有两个偶数 C .a 、b 、c 都是偶数 D .a 、b 、c 中至少有两个偶数 3、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是 A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至多有一个大于60° D .假设三内角至多有两个大于60° 4、设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中 A .都不大于-2 B .都不小于-2 C .至少有一个不大于-2 D .至少有一个不小于-2 5、若P 是两条异面直线l 、m 外的任意一点,则 A .过点P 有且仅有一条直线与l 、m 都平行 B .过点P 有且仅有一条直线与l 、m 都垂直 C .过点P 有且仅有一条直线与l 、m 都相交 D .过点P 有且仅有一条直线与l 、m 都异面 6、已知x 1>0,x 1≠1且x n +1=x n (x 2 n +3)3x 2n +1 (n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n x n +1”,当此题用反证法否定结论时,应为 A .对任意的正整数n ,都有x n =x n +1 B .存在正整数n ,使x n =x n +1 C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1 D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0 7、设a ,b ,c ,d 均为正数,求证:下列三个不等式①a +b <c +d ,② ()()a b c da b c d ++<+,③()() a b c d a b c d +<+中至少有一个不正确

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

二面角的几种方法及例题

二面角大小的求法(例题) 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. O OA PA OB PAOB OA AOB AOB=120APB=60OB PB PB βαβ⊥⊥∴⊥⊥⊥∴⊥∴⊥∠∠?∠?做交线,交于点,连接平面交线同理交线又交线交线面交线即可得为面的二面角,所以 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 提示:PAB PCD ?,而且是直角三角形 P

二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的tag 大小。 A AH BC BC H PH ABCD PA AB PA BC PHA PHA H ABH=30AB=a AH=a/2 tag PHA 2 PA BC AB ⊥⊥∴⊥⊥∴⊥∴∠∠?∴∴∠=过做,交于,连接面,面为二面角在中 , 例:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 提示:CO ⊥DE ,而且是长方体!!! p A B L H A B C D A 1 B 1 C 1 D 1 E O

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

反证法与数学归纳法

(三)、反证法 反证法证明的主要步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。 【典型例题】 例1、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0 例2、设0 < a, b, c < 1,求证:(1 - a)b, (1 - b)c, (1 - c)a,不可能同时大于41 例3、.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根. 【巩固练习】 1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数 B .a ,b ,c 中至少有两个偶数或都是奇数 C .a ,b ,c 都是奇数 D .a ,b ,c 都是偶数 2.设a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( )A .0 B .1 C .2 D .3 3.若x 、y 、z 均为实数,且a =x 2-2y + 2π,b =y 2-2z +3π,c =z 2-2x +6 π,求证a 、b 、c 中至少有一个大于零. 4.若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0至少有一个方程有实根。试求实数a 的取值范围。

四种命题典型例题

四种命题·典型例题 能力素质 [ ] 分析条件及结论同时否定,位置不变. 答选D. 例2 设原命题为:“对顶角相等”,把它写成“若p则q”形式为________.它的逆命题为________,否命题为________,逆否命题为________.分析只要确定了“p”和“q”,则四种命题形式都好写了. 解若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角. 例3 “若P={x|x|<1},则0∈P”的等价命题是________. 分析等价命题可以是多个,我们这里是确定命题的逆否命题. ≠{x||x|<1}” 例4 分别写出命题“若x2+y2=0,则x、y全为0”的逆命题、否命题 和逆否命题. 分析根据命题的四种形式的结构确定. 解逆命题:若x、y全为0,则x2+y2=0; 否命题:若x2+y2≠0,则x,y不全为0; 逆否命题:若x、y不全为0,则x2+y2≠0. 说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y 不全为0”,这要特别小心. 例5 有下列四个命题: ①“若xy=1,则x、y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题; ③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题; [ ] A.①②B.②③ C.①③D.③④ 分析应用相应知识分别验证. 解写出相应命题并判定真假 ①“若x,y互为倒数,则xy=1”为真命题; ②“不相似三角形周长不相等”为假命题; ③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题; 选C.

二面角求法及经典题 专题训练

立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L垂直平面α,取直线L的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法:(1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(3)、三垂线法:过一个半平面内一点(记为A)

α βa O A B 做另一个半平面的一条垂线,过这个垂足(记为B)再做棱的垂线,记垂足为C,连接AC,则∠ACB即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图 形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取 点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S—AM—B中半平面ABM上的一已知点(B)向棱AM作垂线,得垂足(F);在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD—A1B1C1D1中,求(1)二面

反证法练习题

2.2.2反证法 双基达标(限时20分钟) 1.实数a,b,c不全为0等价于 ().A.a,b,c均不为0 B.a,b,c中至多有一个为0 C.a,b,c中至少有一个为0 D.a,b,c中至少有一个不为0 解析不全为0即至少有一个不为0,故选D. 答案 D 2.下列命题错误的是 ().A.三角形中至少有一个内角不小于60° B.四面体的三组对棱都是异面直线 C.闭区间[a,b]上的单调函数f(x)至多有一个零点 D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数 解析a+b为奇数?a、b中有一个为奇数,另一个为偶数,故D错误.答案 D 3.设x,y,z都是正实数,a=x+1 y,b=y+ 1 z,c=z+ 1 x,则a,b,c三个数 (). A.至少有一个不大于2 B.都小于2 C.至少有一个不小于2 D.都大于2 解析若a,b,c都小于2,则a+b+c<6①, 而a+b+c=x+1 x+y+ 1 y+z+ 1 z≥6②, 显然①,②矛盾,所以C正确. 答案 C 4.命题“△ABC中,若A>B,则a>b”的结论的否定应该是________.答案a≤b

5.命题“三角形中最多只有一个内角是直角”的结论的否定是________.答案至少有两个内角是直角 6.设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直. 证明假设AC⊥平面SOB,如图, ∵直线SO在平面SOB内, ∴SO⊥AC. ∵SO⊥底面圆O,∴SO⊥AB. ∴SO⊥平面SAB. ∴平面SAB∥底面圆O. 这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直. 综合提高(限时25分钟) 7.已知α∩β=l,a?α,b?β,若a,b为异面直线,则 ().A.a,b都与l相交 B.a,b中至少有一条与l相交 C.a,b中至多有一条与l相交 D.a,b都不与l相交 解析逐一从假设选项成立入手分析,易得B是正确选项,故选B. 答案 B 8.以下各数不能构成等差数列的是 ().A.3,4,5 B.2,3, 5 C.3,6,9 D.2,2, 2 解析假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列. 答案 B 9.“任何三角形的外角都至少有两个钝角”的否定应是________.解析“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否

(完整)高中立体几何二面角的几种基本求法例题.doc

二面角的基本求法例题 一、平面与平面的垂直关系 1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 例 1.在空间四边形ABCD 中, AB=CB ,AD=CD ,E、F、G 分别是 AD 、 DC、CA 的中点。 求证:平面 BEF ^ 平面 BDG 。 A A F E E G D B F D B C C 例 2. AB ^ 平面 BCD,BC = CD ,? BCD 90°,E、F分别是AC、AD的中点。 求证:平面 BEF ^ 平面 ABC 。D1 C1 A1 B1 2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线 垂直于另一个平面。中,求和平面所成的角。 例 3.在正方体 ABCD—A1 1 1 1 1 1 1 B C D A B A B CD . D C A B 二、二面角的基本求法D1 C1 1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。A1 B1 例4.在正方体 ABCD—A1B1 C1D1中, 求( 1)二面角A- B1C - A1的大小; ( 2)平面A1DC1与平面 ADD1 A1所成角的正切值。 D C A B P 练习:过正方形ABCD 的顶点 A 作 PA ^ 平面 ABCD ,设 PA=AB= a,求 二面角 B - PC - D 的大小。 A D 2.三垂线法 B C 例 5 .平面ABCD ^平面ABEF,ABCD是正方形, ABEF 是矩形且 D C AF= 1 AD= a,G 是 EF 的中点, 2 ( 1)求证:平面AGC ^平面BGC; ( 2)求 GB 与平面 AGC 所成角的正弦值;A B 1 G E

反证法的有关题型

1.用反证法证明“至多有两个解”的说法中,正确的第一步是假设() A.有一个解B.有两个解 C.至少有三个解D.至少有两个解 2.否定“自然数a、b、c中恰有一个偶数”时的正确假设为()A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设正确的是() A.假设三内角都不大于60° B.假设三内角都大于60° C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60° 4.用反证法证明命题:正整数X、Y、Z的和为偶数,那么X、Y、Z中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是() A.a180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立; ②所以一个三角形中不能有两个直角; ③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________,故只有a+b≥0.逆命题得证.7.用反证法证明命题“ab C.a=b D.a=b或a>b 8.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 9.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等”时,应假设___________. 10.用反证法证明“若│a│<2,则a<2”时,应假设. 11.如下左图,直线AB,CD相交,求证:AB,CD 只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则. 12.完成下列证明:如上右图,在△ABC中,若∠ C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是 ______或______. 当∠B是____时,则_________,这 与________矛盾; 当∠B是____时,则_________,这 与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角. 13.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45?°”时,应假设_______________. 14.下列语句中,属于命题的是().A.直线AB 和CD垂直吗 B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行 D.连结A,B 两点 15.下列命题中,属于假命题的是() A.若a⊥c,b⊥c,则a⊥b B.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c 16.下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边 B.同旁内角互补C.同位角不相等,两直线不平行 D.一个角的补角大于这个角 17.命题“垂直于同一条直线的两条直线互相平行”的题设是().A.垂直 B.两条直线 C.同一条直线 D.两条直线垂直于同一条直线18.“两直线平行,同位角互补”是______命题(填“真”或“假”). 19.?把命题“等角的补有相等”改写成“如果…… 那么……”的形式是结果_________,那么 __________. 20.命题“直角都相等”的题设是________,结论是____________. 21.判断下列命题的真假,若是假命题,举出反例.(1)若两个角不是对顶角,则这两个角不相等;(2)若a+b=0,则ab=0; (3)若ab=0,则a+b=0.

初二数学 几何证明初步经典练习题 含答案

初二数学几何证明初步经典练习题含答案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800 ( ,∴∠A+∠B+∠ACB=1800. ○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800 ,∴∠BAC+∠B+∠C=1800. 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC= 13求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得: 18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴ CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于 D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. C B A D E F D A B C B A E D N M B D A C

高中数学二面角求法及经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A --的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

不等式证明方法专项+典型例题

不等式证明方法专项+典型例题 不等式的证明是数学证题中的难点,其原因是证明无固定的程序可循,方法多样,技巧性强。 1、比较法(作差法) 在比较两个实数a 和b 的大小时,可借助b a -的符号来判断。步骤一般为:作差——变形——判断(正号、负号、零)。变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。 例1、已知:0>a ,0>b ,求证:ab b a ≥+。 2、分析法(逆推法) 从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。 例2、求证:15175+>+。 3、综合法 证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。 例3、已知:a ,b 同号,求证:2≥+b a 。 4、作商法(作比法) 在证题时,一般在a ,b 均为正数时,借助 1>b a 或1> b a ,求证:a b b a b a b a >。

a b b a b a b a >。 5、反证法 先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。 例5、已知0>>b a ,n 是大于1的整数,求证:n n b a >。 6、迭合法(降元法) 把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。 例6、已知:122221=+++n a a a ,12 2221=+++n b b b ,求证:12211≤+++n n b a b a b a 。 证明:因为122221=+++n a a a ,12 2221=+++n b b b , 所以原不等式获证。 7、放缩法(增减法、加强不等式法) 在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。 例7、求证:01.09999531

最新版,二面角求法与经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A --的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

异面直线典型例题

典型例题一 例1 若b a //,A c b = ,则a ,c 的位置关系是( ). A .异面直线 B .相交直线 C .平行直线 D .相交直线或异面直线 分析:判断两条直线的位置关系,可以通过观察满足已知条件的模型或图形而得出正确结论. 解:如图所示,在正方体1111D C B A ABCD -中,设a B A =11,b AB =,则b a //. 若设c B B =1,则a 与c 相交.若设c BC =,则a 与c 异面. 故选D . 说明:利用具体模型或图形解决问题的方法既直观又易于理解.一般以正方体、四面体等为具体模型.例如,a ,b 相交,b ,c 相交,则a ,c 的位置 b 异面,b , c 异面,则 关系是相交、平行或异面.类似地;a , a ,c 的位置关系是平行、相交或异 面.这些都可以用正方 体模型来判断. 典型例题二 例2 已知直线a 和点A ,α?A ,求证:过点A 有且只有一条直线和a 平行. 分析:“有且只有”的含义表明既有又惟一,因而这里要证明的有两个方面,即存在性和惟一性. 存在性,即证明满足条件的对象是存在的,它常用构造法(即找到满足条件的对象来证明);惟一性,即证明满足条件的对象只有..一个,换句话说,说是不存在第二个满足条件的对象.

因此,这是否定性...命题,常用反证法. 证明:(1)存在性. ∵ a A ?,∴ a 和A 可确定一个平面α, 由平面几何知识知,在α内存在着过点A 和a 平行的直线. (2)惟一性 假设在空间过点A 有两条直线b 和c 满足a b //和a c //.根据公理4,必有c b //与 A c b = 矛盾, ∴ 过点A 有一条且只有一条直线和a 平行. 说明:对于证明“有且只有”这类问题,一定要注意证明它的存在性和惟一性. 典型例题三 例3 如图所示,设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且 λ==AD AH AB AE ,μ==CD CG CB CF ,求证: (1)当μλ=时,四边形EFGH 是平行四边形; (2)当μλ≠时,四边形EFGH 是梯形. 分析:只需利用空间等角定理证明FG EH //即可. 证明:连结BD , 在ABD ?中,λ==AD AH AB AE ,∴ BD EH //,且BD EH λ=. 在CBD ?中,μ==CD CG CB CF ,∴ BD FG //,且BD FG μ=. ∴ FG EH //, ∴ 顶点E ,F ,G ,H 在由EH 和FG 确定的平面内. (1)当μλ=时,FG EH =,故四边形EFGH 为平行四边形; (2)当μλ≠时,FG EH ≠,故四边形EFGH 是梯形. 说明:显然,课本第11页的例题就是本题(2)的特殊情况.

相关文档
最新文档