8.10工程测量投影面与投影带的选择
浅析公路路线测量投影面与投影带的选择方法

公 路线路 ‘程控 制 网布设 中最关键 的问题 是边长投影 改 变形 , T 即称 为具有i 岛程抵偿面的任意带高斯正形投影 。
正量 的控制 , 根据《 程测量规范 》G 5 0 6 9 ) T _ ( B 0 2 — 3 的要 求 , 测
公路 线路T程往往 跨度很大 ,且在勘 测设计 时需 全线贯
一
线路 工程测 量I 的投影 长度变形值控制方法. I 1 如下介绍 :
、
投 影面和投 影带的 选择
二、 分带投影 法
长距 离线路 工程跨度大 , 线路两端的边长投影 改正量不能
满足工程测量精度要求时 : 在满足 工程测量精 度要 求 的前
提下, 为使得测 量结果的一测多用 , 这时应采用 国家统 一的3 。 就 是说 , 在这种情况下 , 测量控 制网要与 国家测量 系统 相联 系 , 使两者 的测量成果互相利用 。
端横坐标平均值( 移动 中央子午线 )来共 同抵偿两 项归算改正 与Y , m的关系见表2 :
4 .养护 : 三天时间 内, 定期喷洒雾化水进行养护 ;
1 .表 面处理 : 而渗区域 及其外围2 e 处用凿子凿 除2~ 把 0r a 3m, c 该深度不包括衬砌外 沙浆 抹而厚度 , 除的表面不要求平 凿 整光滑 , 以增加堵漏材料和旧混凝土的黏结力 。
系: 当边 长投影改正量 不大 于2 cd ml"采用 岛斯正 形投 影 心的经度为中央子午线 , . Jk q, 5r 2 , l 采用投影于 15 年北京坐标 系椭球 面 94 3 。带平 面直 角坐标系 ; 当边长 投影改正量 大于2 c /m时 , . mk 5 采 上的高斯正形投影任意带平面血角坐标系 . 使线路两端 的边长 用投影于抵 偿高程面上的高斯正形投影 3 。带平面直角坐标 系 投影 改正 量 大 于 1 c /m,远 远 大 于投 影 度 变形 值 大 于 2mk . m/m, / 0 0 5 4 导致每 条放样边 长需 改 或采用投影 于1 5 年北京 坐标 系或 18 西 安坐标 系椭 球面上 2 c k 即 1 0 0 的边长误 差要求 , 94 90 的高斯 正形投影任意带平 面直角坐标系 ; 投影于抵偿高程 面上 正 , 给工程施工放样带来诸 多不便 :本义将结合实际探讨两种 的高斯 正形投影任 意带平 面直 角坐标 系。
工程测量中投影面和投影带选择的概念详解

平面坐标平差计算 各点平面坐标x、y
一般可采用三种方案:
抵偿投影面的高斯正形投影:
改变 来选择合适的高程参考面,来抵偿分带投影变形。
任意带高斯正形投影:
改变 ,即对中央子午线作适当移动,来抵偿由高程面上的长度归 算至参考椭球面上的投影变形。
具有高程抵偿面的任意带高斯正形投影:
既改变 (选择高程参考面),又改变 共同抵偿两项改正的变形。
1.边长投影变形 边长的投影变形分由两部门组成:
➢ 实测边长(加倾斜改正后)归算到椭球面变形影响 ➢ 椭球面边长归算到高斯平面的变形影响
s1
sHm R
• (2)椭球面归算到高斯平面的变形影响
y2
2R D (1
m 2
)S
m
式中:S即 为投影归算边长, 为归算边两端点横坐标平均值, 为
参考椭球面平均曲率半径。
S
=
2
1
(
ym
2
)
S
2 Rm
0.123m
S
+
1
S
=-0.19m
2
Q&A 如何选择该测区合适的投影高程面 ?
3.任意带的高斯正形投影平面直角坐标系
y H S ( R 2
2
m 2
m
m) 0 R
y 2RmH m
y 2 6370 0.5 =80km
S
=-
1
Hm Rm
S
0.0781m
S
=
2
1 2
工程测量中投影面和投影带选择的概念
一、问题的产生
国家分带,一般是6°带或3°带 但在工程测量中,包括城市测量、既有大比例尺地形图的任务, 又有满足各种工程建设和市政建设的施工放样要求。 高斯投影存在变形,会使实测边长和高斯投影的平面边长产生差 异,相差大了则使用不便。
浅谈城市工程测量平面控制网坐标系统投影带、投影面的选择

、
投 影 改化 的基 本 公 式 和 变 化 规 律
^ ^ .2 .
1 .高斯正形投影距离改化公式为 :
A S
薏s s …………1 巍 ( )
式中 : s ——高斯投影 面上的平 面边长 ;
S — 椭 球 上 的边 长 ; —
y ——s边两端点高斯正形投影平面直角坐标横坐标 的中数 ; A y ) ——5边两端点 高斯正形 投影平 面直 角坐标 横坐 标之 y= 2一 , 1
差;
R ——s边中点的平均 曲率半径 。 由( ) 1 式计算 的每公 里长度 变形可 以看 出, 中央 子午线越 远 , 离 投 影变化越大 。当离中央子午线 4 O公里时 , 每公里投影 变形为 2厘米 , 离
中央子午线 7 公里时 , 0 每公 里投影变形 为 6厘米 , 中央子午 线 9 离 0公 里 时, 每公里投影变形 为 l O厘米 , 中央 子午线 18公里 时 , 离 2 每公 里投
一
A2
_
n
l
=
( +) … …( y 蠡. … ‘ m + _ … . 3 )
式中 : , ; p, /2 R —— 边中点的平均曲率半径 ; y—— 边两端点高斯正型投影平面直角坐标 Y 的中数。 'y 2 由 ( ) 计算 出 的投 影 角 度 变 形 可 以 看 出 , , ( m)=10时 的角 3式 在 , k 4 度 变形 情 况 如 下 : 长 在 2公 里 时 , 度 变 形 为 O 1 边 长 在 5公 里 时 , 边 角 7 ; 角度变形 为 l 8; 7 边长在 8公 里时 , 角度变形为 2 4; 8 边长在 1 3公里
( 一h H )
工程测量投影带与投影面的合理选择

了
S 鲁
= 一
( ‘ 2 )
根据 ( )式计算的每公里长度变形值和根据 ( )式计算的不 同高度的相对变形值 ,见表 1 1 2
收稿 日期 : 0 6— 9— 6 20 0 2
基金项 目:贵州大学科研项 目:贵州省高层建筑变形监测系统方案 2O O2年。 作者简介 : 赵 芹 (95一) 1 6 ,女 ,贵州大学矿业学 院讲 师。
于以下两种因素引起的 :
2 1 实量边长归算到参考椭球面上的变形影响 。 . A 1 s / s =一 ・ R 式 中: 为实量边长 ; s () 1
R为测区平均地球曲率半径 ;
’
爿 为归算边两点的平均高程 . r m 根据 ( )式计算归算边长的相对变形为: 1
工程 测量 投 影 带 与 投 影 面 的 合 理 选 择
赵 芹
( 贵州大学 矿业学院 ,贵州 贵阳 500 ) 503
摘
要:根据各种测图比例尺对控制 网提 出的不同精度要 求,结合测区所处的地理位置,以及
工程放样的特殊要求,应合理选择投影带和投影面,使 工程平面控制网控制点之 间的反算边长 与实地量测边长基本一致 ,即投影改正误差不超过规范要 求。 关键词 :控制网;变形 ;放样 ;投影 带; 投影 面
求。《 城市测量规范》规定 ,当测区内国家控制网变形值大于 2 e / i ( 14 00 .5r k 即 / 00 )时 ,需重新选 a n 择合适 的坐标系 , 进行投影变形差值改正 。
2 投影变形的基本公式
平面控制测量投影面和投影带 ,主要是解决长度变形 问题 ,由文献 2可知,这种投影变形主要是 由
3 数 据 分 析
由公式 ( ) 3 1 、( )可以看出 , 投影面 ( 参考椭球面)与投影带 ( 0 3 带)对边长 的投影变形值总是
工程测量投影面和投影带的选择

工程测量坐标系的选择
3、抵偿投影面的30带高斯正形投影平面直角坐标系
• 投影带:为国家30带;投影面:选择抵偿高程面
• 在这个高程参考面上,长度变形为零:
令
s
ym2 2Rm2
Hm
R
H0
s
0
则每公里长度变形
ym2 2
一定时,可求得:
Hm
H0
ym2 2R
H0 • 则抵偿投影面的大地高为:
选择投影面和投影带的原因
2、工程平面控制网的精度要求
《工程测量规范》规定:
1.由归算投影改正带来的长度变形或者改正数, 必须满足施工放样的精度要求 2.相对误差为1/10 000~1/40 000,取1/40000 3.每公里的长度改正数不应该大于10~2.5cm, 取2.5cm/km
第二部分
投影变形的处理方法
s1
sH m R
➢式中: Hm 归算边平均大地高,s为归算边的长度,R为归算边 方向法截弧的曲率半径。相对变形:
s1 H m
s
R
s1 值是负值,表示长度缩短; s1 值与 Hm 成正比,随 Hm 增大而增大
选择投影面和投影带的原因
② 将参考椭球面上的边长归算到高斯投影面上的变形影响,其值为 s2 :
投影变形的处理方法
s1
sH m R
2
s 2
1 2
ym Rm
s0
(1)改变 ,选择合适的高程参考面 ——抵偿投影面的高斯正形投影
Hm
(2)改变 ym ,选择适当的中央子午线
——任意带高斯正形投影
(3)既改变 Hm(选择高程参考面),又改变 ym (选择中央子午线),共
同完成两项归算改正变形
工程测量投影面与投影带选择

工程测量投影面与投影带选择工程测量是一门专业技术,它是建筑、土木学科中不可或缺的一部分。
测量需要精密、细致和高效的处理方法,因此,选择合适的投影面和投影带是非常重要的。
本文将介绍工程测量投影面与投影带的选择方法,并解释它们对精度和效率的影响。
投影面是工程测量中非常常见的概念,它用于将三维世界中的物体在二维平面上表示出来。
当我们将三维物体表示在平面上时,无论是地图、建筑图纸,还是机械图纸,都需要使用投影面。
在选择投影面时,应该考虑以下几点:首先,应选择合适的投影方法。
直角坐标投影和极坐标投影是最常用的两种投影方法。
在直角坐标投影中,为了保证平面上的尺寸准确,应选择选对角线或平均坐标面作为投影面。
对于极坐标投影,应该选取距离最近的点作为基准点,以保证测量精度。
其次,应该选择合适的投影面。
我们可以选择平面投影面或曲面投影面来满足不同的需要。
选择投影面时,需要考虑测量的目标对象。
对于被测量的对象,如果表面是平坦、规整且较小的物体,平面投影面最适用。
但是,如果被测量的对象是大面积的地形或建筑物,则选择曲面投影面会更好,因为它可以更好地反映曲面的特性。
此外,选择曲面投影面时,应考虑曲率半径和平面尺寸的比例。
最后,用途也是选择投影面时的关键问题。
根据使用场景的需要,我们可以选择柱面、圆柱、柱面等不同类型的投影面。
例如,建筑图纸中常用的是垂直于建筑物的正向曲面投影。
测量任务中,我们应该将目标对象和使用场景作为考虑因素,选择适合的投影面。
接下来,我们将介绍工程测量中的另一个重要概念:投影带。
投影带是数字地图及海图制图中的方式之一,常被用于区域规划、城市设计、道路修建等场合。
它以某一中央子午线为界,将地球表面划分为一系列6度带状区域,每个带状区域的宽度为6度。
当我们需要对一片区域进行比例缩放时,就需要选择合适的投影带。
选择投影带时应该考虑以下几个因素:首先,应该考虑被测量区域所处的地理位置。
不同的地理位置位于不同的地理区域,因此需要根据所处地理区域的不同考虑不同的投影带。
工程测量中坐标系及投影面、投影带的选择_secret

工程测量中坐标系及投影面、投影带的选择引言地面点空间位置描述需要选择一定的参照系和坐标系。
坐标系的建立是一切测量计算与地形测绘的基础。
本文主要介绍建立大地坐标系的基础和常用测量坐标系及其投影面的投影带的选择。
为了使工程控制网的网点坐标能不加改正的用于实际放样就必须限制投影后的边长变形。
当边长的综合变形较大而不能满足相应要求时可采用“抵偿高程面”或“任意带高斯正形投影”的方法来改善测区内边长经投影后的综合变形,通常根据工程测量的特点和要求,建立自己的区域坐标系。
而区域坐标系的建立,关键在于合理地选择投影带和投影面。
工程测量中几种可能采用的坐标系及选用方法选择坐标系的主要目的是解决长度变形问题,这种变形是由经过实测边长归化到椭球面上,再由椭球面化算到高斯平面上两次化算引起的。
1、坐标系1.1、坐标系的作用对于国家平面控制网而言,坐标系的主要任务和作用是满足我国各行各业基本建设和军事用途的需要。
为了对我国所有版图进行有效的测量和控制,全国必须布设一个统一的坐标系,以保证全国版图内坐标的统一、测绘资料管理和利用以及图纸的拼接。
1.2、常用坐标的表示形式1.2.1、空间直角坐标系坐标系原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上,且按右手系与X轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
表示形式:X,Y,Z空间直角坐标系空间大地坐标系1.2.2、空间大地坐标系采用大地经度(L)、大地纬度(B)和大地高(H)来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角,经度是空间中的点与参考椭球自转轴所在的面与参考椭球的起始子午面的夹角,大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。
表示形式:B,L,H1.2.3、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标(空间直角坐标或空间大地坐标)通过某种数学变换映射到平面上,这种变换又称为投影变换。
工程测量投影面与投影带选择

工程测量投影面与投影带选择前言工程测量中,投影面与投影带的选择是十分重要的一环。
合理选择投影面和投影带,能够帮助保证测量结果的准确性和可靠性。
本文将介绍工程测量中投影面与投影带的选择方法,并提供一些实际应用案例。
1. 什么是投影面?投影面是指在工程测量中为了便于进行坐标计算和测量解算而选择的一个平面。
在工程测量中,通常使用的投影面有以下几种:•水平投影面:垂直于引线方向的平面。
•垂直投影面:垂直于水平方向的平面。
•斜面投影面:既不垂直于引线方向,也不垂直于水平方向的平面。
在实际应用中,根据具体的测量任务和地理环境,选择合适的投影面十分重要,能够提高测量效率和减小误差。
2. 如何选择投影面?选择合适的投影面需要考虑以下几个因素:2.1 测量任务不同的测量任务需要选择不同的投影面。
例如,在测量平面区域时,可以选择水平投影面;而在测量单个建筑物时,可以选择垂直投影面。
根据具体测量任务的要求,选择适当的投影面可以方便后续的数据处理和计算。
2.2 地理环境地理环境是选择投影面的重要参考因素。
在地理环境比较复杂的情况下,如山区或河网络区域,选择合适的投影面可以减小测量误差。
根据实地的地形和地貌情况,选择能够更好地适应地理环境的投影面。
2.3 测量仪器测量仪器的测量原理和使用要求也会对选择投影面产生影响。
不同的测量仪器对投影面的选择有不同的要求,因此需要根据测量仪器的特点选择合适的投影面。
在现代工程测量中,常用的测量仪器包括全站仪、GPS等。
3. 什么是投影带?投影带是指在经纬度坐标系下,为了进行坐标计算和测量解算而划定的一个区域。
投影带的划定是为了简化测量计算和减小误差。
在工程测量中,常用的投影带有以下两种:•高斯-克吕格投影带:在高斯-克吕格坐标系中使用,适用于较小的区域。
•UTM投影带:在通用横轴墨卡托投影中使用,适用于较大的区域。
根据具体的测量区域和测量要求,选择合适的投影带能够提高坐标计算的精度和减小误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.10工程测量投影面与投影带的选择
我国有关测量规范中明确规定,国家大地测量控制网依高斯投影方法按06带或03带进行分带和计算。
对于城市测量,既有测制大比例尺地形图的任务,又有满足各种工程建设和市政建设施工放样工作的要求。
1999年《城市测量规范》规定:
一个城市只应建立一个与国家坐标系统相联系的、相对独立和统一的城市坐标系统,并经上级行政主管部门审查批准后方可使用。
城市平面控制测量坐标系统的选择应以投影长度变形值不大于2.5cm/km为原则,并根据城市地理位置和平均高程而定。
可按下列次序选择城市平面控制网的坐标系统:
1当长度变形值不大于2.5cm/km时,应采用高斯正形投影统一03带的
75起,每隔03至东经平面直角坐标系统。
统一03带的主子午线经度由东经0
135。
2当长度变形值大于2.5cm/km 时,可依次采用:
1)投影于抵偿高程面上的高斯正形投影03带的平面直角坐标系
统;
2)高斯正形投影任意带的平面直角坐标系统,投影面可采用黄海平均海水面或城市平均高程面。
3面积小于25km2的城镇,可不经投影采用假定平面直角坐标系统在平面上直接进行计算。
8.10.1工程测量中投影面和投影带选择的基本出发点
1. 有关投影变形的基本概念
平面控制测量投影面和投影带的选择,主要是解决长度变形问题。
这种投影变形主要由以下两方面因素引起:
1).实量边长归算到参考椭球体面上的变形影响,其值依(8-100)式有:
R
H s s m ⋅-=∆1 (8-176) 式中,m H 为归算边高出参考椭球面的平均高程;
s 为归算边的长度 ;
R 为归算边方向参考椭球法截弧的曲率半径。
归算边的相对变形为:
R
H s s m -=∆1 (8-177) 由公式可以看出:1s ∆的值总为负,即地面实量长度归算至参考椭球体面上,总是缩短的;1s ∆值与m H 成正比,随m H 增大而增大。
2).将参考椭球面上边长归算到高斯投影面上的变形影响,其值依(8-138)式有:
02
221s R y s m m ⋅⎪⎪⎭⎫ ⎝⎛=∆ (8-178) 式中,10s s s ∆+=,即0s 为投影归算边长,
m y 为归算边两端点横坐标平均值,
m R 为参考椭球面平均曲率半径。
投影边的相对变形为:
2
0221⎪⎪⎭⎫ ⎝⎛=∆m m R y s s (8-179) 由公式可以看出:2s ∆的值总为正,即椭球面上长度归算至高斯面上,总是增大的,2s ∆值与2m y 成正比而增大,离中央子午线愈远变形愈大。
2. 有关工程测量平面控制网的精度要求的概念
为便于施工放样的顺利进行,要求由控制点坐标直接反算的边长与实地量得的边长,在长度上应该相等,即由上述两项归算投影改正而带来的变形或改正数,不得大于施工放样的精度要求。
一般地,施工放样的方格网和建筑轴线的测量精度为1/5000~1/20000。
因此,由归算引起的控制网长度变形应小于施工放样允许误差的1/2,即相对误差为1/10000~1/40000,也就是说,每公里的长度改正数,不应该大于10~2.5cm 。
3. 工程测量投影面和投影带选择的基本出发点
(1) 在满足精度要求的前提下,为使测量结果一测多用,应采用国家统一03带高斯平面直角坐标系,将观测结果归算至参考椭球面上。
即工程测量控制网应同国家测量系统相联系;
(2) 当边长的两次归算投影改正不能满足上述要求时,为保证测量结果的直接利用和计算的方便,可采用任意带的独立高斯平面直角坐标系,归算测量结果的参考面可自己选定。
为此可用以下手段实现:(a) 通过改变m H 从而选择合适的高程参考面,将抵偿分带投影变形(称为抵偿投影面
的高斯正形投影);(b) 改变m y 从而对中央子午线作适当移动,以抵偿由高程面的边长归算到参考椭球面上的投影变形(称为任意带高斯正形投影);(c) 通过既改变m H (选择高程参考面),又改变m y (移动中央子午线),来抵偿两项归算改正变形(称为具有高程抵偿面的任意带高斯正形投影)。
8.10.2工程测量中几种可能采用的直角坐标系
目前,在工程测量中主要有以下几种常用的平面直角坐标系:
1. 国家03带高斯正形投影平面直角坐标系
据计算,当测区平均高程在100m 以下,且m y 值不大于40km 时,其投影变形值21s s ∆∆和均小于 2.5cm ,可以满足大比例尺测图和工程放样的精度要求。
因此在偏离中央子午线不远和地面平均高程不大的地区,无
需参考投影变形问题,直接采用国家统一的03带高斯正形投影平面直角坐
标系作为工程测量的坐标系,使两者一致。
2. 抵偿投影面的03带高斯正形投影平面直角坐标系
此时仍采用国家03带高斯投影,但投影的高程面不是参考椭球面
而是依据补偿高斯投影长度变形而选择的高程参考面。
在该参考面上长度变形为零。
当采用第一种坐标系时,有
s s s ∆=∆+∆21
且s ∆超过允许的精度要求时(10~2.5cm),我们可令0=∆s ,即
0)2(2122=∆=∆+∆=+s s s R H R y s m m
m (8-180)
于是当m y 一定时,由上式可求得:
m m R y H 22=∆ (8-181)
比如某测区海拔m H m 2000=,最边缘中央子午线100km ,当m s 1000=时,则有
m s R H s m m 313.01-=⋅-=∆, m s R y s m
m 123.0)(21222=⋅=∆, 而 m s s 19.021-=∆+∆
超过允许值(10~2.5cm)。
此时不改变中央子午线位置,而选择一个合适的高程参考面,使(8-180)式成立,于是依(8-181)式算得高差m H 780≈∆,即将地面实测距离归算到2000-780=1220(m)的高程面上,此时两项长度改正得到完全补偿。
事实上:
m s 122.010*********
7801-=⋅-=∆ m s 123.01000)6370100(2122=⋅=
∆ 即 021=∆=∆+∆s s s
3. 任意带高斯正形投影平面直角坐标系
该坐标系中,仍把地面观测结果归算到参考椭球面上,但投影带的中央子午线不按国家03带的划分方法,而是依据补偿高程面归算长度变形而选择的某一条子午线作为中央子午线。
即在(8-180)式中,保持m H 不变,于是得
m m H R y 2= (8-182)
比如某测区相对参考椭球面的高程m H m 500=,为抵偿地面观测值向参考椭球面上归算的改正值,依上式算得 )(805.0637022km H R y m m =⨯⨯==
即选择与该测区相距80km 处的子午线。
此时在km y m 80=处,两项改正项得到完全补偿。
事实上:
m s 078.010*********
5001-=⋅-=∆ m s 078.01000)6370
80(2122=⋅=∆ 即 021=∆=∆+∆s s s
但在实际应用这种坐标系时,往往是选取过测区边缘、或测区中央、或测区内某一点的子午线作为中央子午线,而不经过上述计算。
4. 具有高程抵偿面的任意带高斯正形投影平面直角坐标系
该坐标系中,往往是指投影的中央子午线选在测区的中央,地面观测值归算到测区平均高程面上,按高斯正形投影计算平面直角坐标系。
因此,这是综合第二、三两种坐标系长处的一种任意高斯直角坐标系。
显然这种坐标系更能有效地实现两种长度变形改正的补偿。
5. 假定平面直角坐标系
当测区面积小于2100km 时,可不进行方向和距离改正,直接把局部地球表面作为平面建立独立的平面直角坐标系。
这时起算坐标和起算方位角最好能与国家网联测,如果联测有困难可自行测定边长和方位,而起始点坐
标可假定。
这种假定平面直角坐标系只限于某种工程建筑施工之用。