第1章 土木工程材料的基本性质

合集下载

材料的基本性质

材料的基本性质

第一章 土木工程材料的基本性质第一节 土木工程材料的分类一、按材料的化学成分分类按材料的化学成分分类,可分为有机材料、无机材料和复合材料三大类。

二、按功能分类按功能分类,可分为结构材料和功能材料两大类。

结构材料——主要用作承重的材料,如梁、板、柱所用材料。

功能材料——主要利用材料的某些特殊功能,如用于防水、装饰、保温等的材料。

第二节 材料的物理性质一、密度材料在绝对密实状态下单位体积的质量称为密度,公式表示如下:Vm =ρ 式中:ρ——材料的密度,g/cm 3;m ——材料在干燥状态下的质量,g ;V ——材料在绝对密实状态下的体积,cm 3。

所谓绝对密实状态下的体积,是指不包括材料内部孔隙的固体物质的体积。

二、表现密度材料在自然状态下单位体积的质量,称为表观密度,公式表示如下:0V m =ρ 式中:ρ0——材料的表观密度,kg/cm 3;m ——材料的质量,kg ;V 0——材料在自然状态下的体积,m 3。

所谓自然状态下的体积,是指包括材料实体积和内部孔隙的外观几何形状的体积。

三、堆积密度散粒材料在自然堆积状态下单位体积的质量,称为堆积密度,公式表示如下:土木工程材料 有机材料——木材、石油沥青、塑料等 无机材料 金属材料——钢、铁、铝等非金属材料——石材、砖、玻璃、水泥、混凝土等复合材料——聚合物混凝土(1.1.1)(1.1.2)V m'='ρ 式中:ρ0’——散粒材料的堆积密度,kg/cm 3;m ——散粒材料的质量,kg ;V 0’——散粒材料的自然堆积体积,m 3。

散粒材料的自然堆积体积,既包含了颗粒自然状态下的体积,又包含了颗粒之间的空隙体积。

四、孔隙率孔隙率是指材料内部孔隙体积占材料总体积的百分率。

%1000⨯=V V n V式中:n ——材料的孔隙率;V V ——材料的内部孔隙体积,cm 3; V 0——材料的总体积,cm 3。

五、吸水性*吸水性是指材料在水中吸水的性质。

第1章 土木工程材料_基本性质

第1章 土木工程材料_基本性质

第一章土木工程材料的基本性质本章导学学习目的:土木工程材料有无机材料、有机材料及复合材料,它具有结构或功能的作用。

而土木工程包括建筑工程、道路工程、桥梁工程、地下工程、岩土工程等,土木工程材料为这些工程服务,通过学习其基本性质,了解土木工程基本性质与工程特性的关系。

教学要求:通过工程实例说明土木工程材料的分类;通过各种土木工程特点的分析,说明土木工程材料的物理、力学性质及耐久性;重点讲解土木工程材料的密度、与水有关的性质、强度、弹性、粘性与塑性。

1.1土木工程材料的分类土木工程材料是指在土木工程中所使用的各种材料及其制品的总称。

它是一切土木工程的物质基础。

由于组成、结构和构造不同,土木工程材料品种繁多、性能各不相同、在土木工程中的功能各异,而且价格相差悬殊,在土木工程中的用量很大,因此,正确选择和合理使用土木工程材料,对土木工程结构物安全、实用、美观、耐久及造价有着重大的意义。

由于土木工程材料种类繁多,为了研究、使用和论述方便,常从不同角度对它进行分类。

最通常的是按材料的化学成分及其使用功能分类。

1.1.1按化学成分分类根据材料的化学成分,可分为有机材料、无机材料以及复合材料三大类,如表1-1所示。

1.1.2按使用功能分类根据材料在土木工程中的部位或使用性能,大体上可分为二大类,即土木工程结构材料(如钢筋混凝土、预应力混凝土、沥青混凝土、水泥混凝土、墙体材料、路面基层及底基层材料等)和土木工程功能材料(如吸声材料、耐火材料、排水材料等)。

1.土木工程结构材料土木工程结构材料主要指构成土木工程受力构件和结构所用的材料。

如梁、板、柱、基础、框架、墙体、拱圈、沥青混凝土路面、无机结合料稳定基层及底基层和其它受力构件、结构等所用的材料都属于这一类。

对这类材料主要技术性能的要求是强度和耐久性。

目前所用的土木工程结构材料主要有砖、石、水泥、水泥混凝土、钢材、钢筋混凝土和预应力钢筋混凝土、沥青和沥青混凝土。

在相当长的时期内,钢材、钢筋混凝土及预应力钢筋混凝土仍是我国土木工程中主要结构材料;沥青、沥青混凝土、水泥混凝土、无机结合料稳定基层及底基层则是我国交通土建工程中主要路面材料。

《土木工程材料(第3版)》教学课件第1章 绪论 土木工程材料的基本性质

《土木工程材料(第3版)》教学课件第1章 绪论 土木工程材料的基本性质
18世纪至19世纪,资本主义兴起,促进了工商业及交通运输业 的蓬勃发展,原有的土木工程材料已不能与此相适应,在其他科学技 术进步的推动下,土木工程材料进入到一个新的发展阶段,钢材、水 泥、混凝土及其他材料相继问世,为现代土木工程材料奠定了基础。
进入20世纪后,由于社会生产力突飞猛进,以及材料科学与工 程学的形成和发展,土木工程材料不仅性能和质量不断改善,而且品 种不断增加,以有机材料为主的化学建材异军突起,一些具有特殊功 能的新型土木工程材料也应运而生。
五、抗渗性
材料抵抗压力水或其他液体渗透的性质。
材料的抗渗性用渗透系数K表示,一般用抗渗标号P表示。如 P2、P4、P10分别表示可抵抗0.2、0.4、1.0 MPa 压力水不 渗漏。
1.3 材料与水有关的性质
六、抗冻性
材料在含水状态下能经受多次冻融循环而不破坏、强 度不显著下降,且质量也不显著减少的性质。
P+D=1
开口孔隙率PK 材料内开口孔隙体积占总体积的百分率。 PK=VK/V0 闭口孔隙率PB 材料内闭口孔隙体积占总体积的百分率。 PB=VB/V0
VP=VK+VB P=PK+PB
1.1 材料的基本物理性质
3.空隙率(P’)--散粒或粉状材料在堆积状 态下,颗粒间空隙体积(VS)占材料堆积体积 (V’0)的百分率。
材料在吸水饱和状态下,所吸水的体积占材料干燥状态
下的体积的百分比。
Wv=
mb-mg× V0
1 ρw
×100%
ρw -水的密度; V0 -材料干燥状态下的体积,
cm3或m3。
1.3 材料与水有关的性质
2.吸湿性:材料在潮湿空气中吸收水分的性质,用含水率
表示。
Wh=

土木工程材料第1章第1节——材料的基本物理性质

土木工程材料第1章第1节——材料的基本物理性质

解:
实体体积 V实=170cm3 V实+V闭=190cm3
表观体积 V0=V实+=450/170=2.65 g/cm3;
V实
表观密度ρ0= m=450/230=1.956 g/cm3=1956 kg/m3
V0
开口孔隙率PK

V开 V0
×100%=(230-190)/230×100%=17.4%
分为若干个强度等级。如烧结普通砖按抗压强度值分为MU30、MU25 、MU20、MU15、MU10五个强度等级。
2、 比强度 由于不同材料的强度、表观密度均存在较大差异,为了便
于比较不同表观密度材料的强度,常用比强度指标来评价材料 强度与表观密度的综合性状。比强度是按单位体积质量计算的 材料强度,其值等于材料的抗压强度与其表观密度之比,它是 衡量材料轻质高强性能的重要指标。
l 韧性材料特征 韧性材料的特点是变形大,特别是塑性变形大,破坏前有明显预兆;
抗拉强度与抗压强度接近。
抗震结构、承受动荷载的结构需要考虑材料的韧性 静荷载——作用时不产生加速度的荷载。如结构自重; 动荷载——作用时产生加速度的荷载。如冲击、振动荷载;
指标——渗透系数、抗渗等级 材料的抗渗性主要与材料内部的孔隙率(尤其是开口孔隙率) 和材料的憎水性或亲水性等因素有关。材料的抗渗能力直接或间接 影响材料的耐久性、抗冻性和耐腐蚀性。 6、材料的含水状态——干燥、气干、饱和面干及湿润状态
三、与热有关的性质
1、 导热性 导热性是指当材料的两侧存在温度差时,热量由高温侧向低温
常将防止室内热量向室外散失称为保温;把防止外部热量进 入室内称为隔热。工程上把导热系数小于0.23W/(m·K)的材料称为 保温隔热材料。
在热工学中,将导热系数的倒数称为材料的导热阻。导热系数和导 热阻均是评定材料导热能力的重要指标,材料的导热系数越小或导热阻 越大,其保温隔热及其节能效果越好。

土木工程材料基本性质

土木工程材料基本性质

式中:
W m1 m 100% m
m1—材料吸湿状态下旳质量(g或kg) m—材料在干燥状态下旳质量(g或kg)。
(3)含水对材料性质旳影响 材料吸水后,强度下降 材料体积密度和导热性增长 几何尺寸略有增长 材料保温性、吸声性下降、并使材料受到旳冻害、
腐蚀加剧
材料旳含水率受所处环境中空气湿度旳影响。当空气 中湿度在较长时间内稳定时,材料旳吸湿和干燥过程处于 平衡状态,此时材料旳含水率保持不变,其含水率叫作材 料旳平衡含水率。
V0'
0
ρ0—材料旳表观密度;ρ0,—材料旳堆积密度
(2)填充率
定义:是指在某堆积体积中,被散粒材料旳颗粒所填 充旳程度。
计算式:
D'
V
100%
' 0
100%
V0'
0
填充率和空隙率旳关系:
P' D' 1
三、材料与水有关旳性质
1.材料旳亲水性与憎水性 材料与水接触时,能被水润湿,为亲水性材料。 材料与水接触时,不能被水润湿,为憎水性材料。 表达措施:润湿角
思索:硬度、耐磨性与强度旳关系。
第四节 材料旳耐久性
一.耐久性
材料旳耐久性是泛指材料在使用条件下,受多种内在 或外来自然原因及有害介质旳作用,能长久地保持其使 用性能旳性质。
二.影响耐久性旳主要原因
1.内部原因:构成、构造
2.外部原因:
材料在建筑物之中,除要受到多种外力旳作用之外, 还经常要受到环境中许多自然原因旳破坏作用。这些破 坏作用涉及物理、化学、机械及生物旳作用。
比强度越大,材料轻质高强性能越好。
几种材料旳比强度: 低碳钢—0.045 一般混凝土—0.017 松木(顺纹抗拉)—0.2 粘土砖—0.006

土木工程材料材料基本性质

土木工程材料材料基本性质

火烧
难碳化
防火处理的 木材和刨花板
可燃材料
高温 火烧
立即起火 或微燃
木材
42
1.1.4 热工性质
• 耐燃性
钢铁、铝、玻璃等材料受到火烧或高温作 用会发生变形、熔融,所以虽然是非燃烧
材料,但不是耐燃的材料
43
1.1.4 热工性质
• 耐燃性
44
1.1.4 热工性质
• 耐燃性案例
某在建住宅楼不慎发生火灾,混凝土被破坏
组成相同,其构造不同,强度也不同。
孔隙率愈大
强度愈低
53 6-23
1.2.1 强度
• 影响材料强度的几个因素
2. 材料的强度也与其含水状态有关, 含有水分的材料,其强度较干燥时的低
3. 材料的强度也与其温度有关 一般温度高时,材料的强度将降低
例如:沥青混凝土,钢铁
54 7-23
1.2.1 强度
• 影响材料强度的几个因素
• 耐水性
材料长期在水作用下不破坏,强度也不显著降低的性质
耐水性用 软化系数
KR的大小表明材料在浸 水饱和强度降低的程度。
KR值愈小,表示材料吸水饱和后 强度下降愈多,即耐水性愈差。
28
1.1.3 与水有关的性质
• 耐水性
一般来说,材料被水浸湿后,强度均会有所降低。这是 因为水分被组成材料的微粒表面吸附,形成水膜,削弱
对于细微连通的孔隙,孔隙率愈大,则吸水率愈大。 封闭的孔隙内水分不易进去,而开口大孔虽然水分易进入,
但不易存留,只能润湿孔壁,所以吸水率仍然较小。
24
1.1.3 与水有关的性质
•吸水性与吸湿性
空气湿度 环境温度
吸湿性
微小开口孔隙

第1章 土木工程材料基本性质1

第1章  土木工程材料基本性质1

θ
σsl
(b)憎水性材料
σ sg − σ sl cos θ = σ lg
θ--润湿角(接触角)
土木工程材料
1、亲水性与憎水性
根据水与材料表面的润湿角 的大小, 根据水与材料表面的润湿角θ的大小,有:
亲水性 0≤θ≤ 90°时,材料表面可被水所湿润; 90° 材料表面可被水所湿润; 材料表面被水湿润,水可被材料所吸附; 材料表面被水湿润,水可被材料所吸附; 材料的这种性能称为亲水性,这种材料称为亲 材料的这种性能称为亲水性,这种材料称为亲 水性材料。 水性材料。 憎水性 90o< θ≤180o时,材料表面不可被水湿润; 材料表面不可被水湿润; 材料称为憎水性材料, 材料称为憎水性材料,这种性能称为材料的憎 水性。 水性。
土木工程材料
m ρ '0 = V '0
(3)堆积密度 (3)堆积密度
• 松堆积方式测得的堆积密度值要明显小于紧堆积时 的测定值。 的测定值。 • 工程中通常采用松散堆积密度,确定颗粒状材料的 工程中通常采用松散堆积密度, 堆放空间。 堆放空间。
土木工程材料
密度、 密度、表观密度和堆积密度测量方法
土木工程材料
(2)表观密度 (2)表观密度
• 表观密度的大小除取决于密度外,还与材料孔隙率 表观密度的大小除取决于密度外, 及孔隙的含水程度有关。 及孔隙的含水程度有关。 • 材料孔隙越多,表观密度越小; 材料孔隙越多,表观密度越小; • 当孔隙中含有水分时,其质量和体积均有所变 当孔隙中含有水分时, 因此在测定表观密度时,须注明含水情况, 化。因此在测定表观密度时,须注明含水情况, 没有特别标明时常指气干状态下的表观密度, 没有特别标明时常指气干状态下的表观密度, 在进行材料对比试验时, 在进行材料对比试验时,则以绝对干燥状态下 测得的表观密度值(干表观密度)为准。 测得的表观密度值(干表观密度)为准。 • 工程上可以利用表观密度推算材料用量,计算构件 工程上可以利用表观密度推算材料用量, 自重,确定材料的堆放空间。 自重,确定材料的堆放空间。

第1章 土木工程材料的基本性质

第1章 土木工程材料的基本性质
大的变形而不至于破坏的性能,称为韧性。 特点:其应力—应变曲线下的面积较大,这个面积就 是其破坏前吸收的总能量。 具有这种性质的材料称为韧性材料,
32
1.6.4 硬度和耐磨性
• 硬度

材料表面抵抗被刻划、擦伤和磨损的能力,称为硬 度。
按测定方法分为:压痕硬度、冲击硬度、回弹硬度、 刻痕硬度等。
实体体积 ——李氏比重瓶法(粉末)
表观体积(实体+闭口) —— 排水法(水中重法) 毛体积(实体+闭口+开口)
——规则试件:计算法;
不规则试件:饱和排水法、封蜡排液法 堆积体积(实体+闭口+开口+间隙)——密度筒法
8
1.2.2
材料的孔隙率与密实度 ——单块材料
V0 V 0 孔隙体积 100 % 100 % (1 ) 100 % 孔隙率 P 总体积 V0
m1——材料湿质量,g mo——材料干质量,g
☺ 材料湿度与空气湿度达平衡时的含水率称为平衡含水率。 ☺ 影响材料含水率的因素有:环境温度和湿度、材料亲水性、 孔隙率、孔隙特征。 思考题:含水率为4%的湿砂重100g,其中水的重量 为4 g?
19
1.3.3
耐水性(Water resistance)
卸载后材料的变形行为:
变形可完全恢复 变形不可恢复或部分恢复
29
• 弹性
当撤去外力或外力恢复到原受力状态,材料能够完全 恢复原来变形的性质称为弹性; 具有这种性质的材料称为弹性材料; 根据其应力—应变曲线,有:线弹性和非线弹性。
• 塑性 非线性特征:
当撤去外力或外力恢复到原受力状态,材料仍保持变 应力~应变曲线不是直线 应力与应变成正比; 形后形状和尺寸、并不发生裂缝的性质称为塑性; 而是曲线 应力~应变曲线是一条直 具有这种性质的材料称为塑性材料; 应力与应变之比——弹性 线 模量不是常数 其应力—应变曲线是非线性的,且不连续,每一点的 应力与应变之比(直线斜率) 应力与应变之比都不相同。 是弹性模量,为常数。 E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 砖浸水后强度下降
某地发生历史罕见的洪水。洪水退后,许 多砖房倒塌,其砌筑用的砖多为未烧透的 多孔的红砖,见下图。请分析原因。

原因分析:这些红砖没有烧透,砖
内开口孔隙率大,吸水率高。吸水
后,红砖强度下降,特别是当有水
进入砖内时,未烧透的粘土遇水分

散,强度下降更大,不能承受房屋

未烧透的的重红量,砖从而导致房屋倒塌。
保温层的目的是较少外界温度变化对住户的 影响,材料保温性能的主要描述指标为导热 系数和热容量,其中导热系数越小越好。观
A B 察两种材料的剖面,可见A材料为多孔结构, B材料为密实结构,多孔材料的导热系数较 小,适于作保温层材料。
7.其它性质
1 耐火性
耐火材料、难熔材料、易熔材料
2 耐燃性
韧性材料:低碳钢、木材、玻璃钢等。
1.2.4 材料的硬度和耐磨性(了解性内容)
1.硬度——抵抗外物压入或刻划的能力。 可采用:莫氏硬度(石料、陶瓷等); 布氏、洛氏硬度(金属材料)。 特点:硬度高,耐磨性强,但不易加工。
2.耐磨性——材料表面抵抗磨损的能力。
(路面材料要求)
1.3 材料的耐久性
材料在各种环境因素作用下,在长期使用过程中 保持其性能稳定的性质。
5. 材料的抗冻性
——材料饱水状态下<,思能考经>:受孔多隙次率冻越融交替作用, 既不破坏,强度又不大显,著材降料低的的抗性冻质性。
抗冻等级:能经受冻融是否循越环差的?最大次数,

记为F50、F100、F200、F300 …
材料的孔隙包括开口孔隙和闭口孔隙两种,材料的孔 隙率则是开口孔隙率和闭口孔隙率之和。材料受冻融 破坏主要是因其孔隙中的水结冰所致。进入孔隙的水 越多,材料的抗冻性越差。水较难进入材料的闭口孔 隙中。若材料的孔隙主要是闭口孔隙,即使材料的孔 隙率大,进入材料内部的水分也不会很多。在这样的
塑性材料:具有塑性的材料。
完全的弹性材料或塑性材料是很少的。
1)有的材料在应力水平较低时,变形特征主要表 现为弹性,而应力水平较高时,主要为塑性。例 如钢材。
图1.2.1 低碳钢受拉的应力—应变曲线
2)有的材料受力后,弹塑性变形同时产生,取消 外力,弹性变形可以恢复,塑性变形不能恢复。
憎水性材料:润湿角θ >90°(表现为憎水性) 水分子间内聚力>水分子与材料分子间吸引力
2. 材料的吸水性与吸湿性
(1) 吸水性:材料在水中能吸收水分的性质——饱水状态 (吸水饱和)
质量吸水率:材料饱水状态,所吸水分质量占干质量的百
分率
Wm

mb mg mg
100%
体积吸水率:材料饱水状态,所吸收水分体积占干体积百
情况下,材料的抗冻性不会差。
6.材料的热工性质
6.1 热容量 热容量是指材料在温度变化时吸收或放出热量的能
力。其大小用比热容来表示。
c Q m(T1 T2 )
比热容的大小直接影响建筑内部空间的温度变化率。 设计过程中选用导热系数较小而热容量较大的材料,
有利于保持建筑物室内温度的稳定性。
《土木工程材料》 第一章 土木工程材料的基本性质
第1章 土木工程材料的基本性质
1.1 材料的基本物理性质 ▲
本节的学习目标 1)掌握密度、表观密度以及堆积密
度之间的区别 2)掌握孔隙率及孔的形状对材料性
能的影响。 3)掌握与水有关的性质 4)了解材料的热工性质
1.1 材料的物理性质
Thanks !
第1章 土木工程材料的基本性质
1.2 材料的力学性质▲ 及材料耐久性
本节的学习目标 1)掌握材料的强度和比强度概念。
认识到材料的实际强度与实验强度的 关系。 2)理解影响强度的因素。 3)掌握弹性材料与塑性材料的差别。 4)掌握脆性材料与韧性材料的差别, 并知道强度与硬度的关联。 5)了解材料的耐久性 。
两种密度异同:m为材料的烘干质量; 体积不同,为实体体积,表观体积。
密度
表观密度

(3)堆积密度 :
散粒状材料在自然状态下单位堆积体积 (开口+闭口+实体+空隙)的质量。
0

m V0

V
VB
m VK
VJ
反映散粒堆积的紧密(压实)程度及可能的堆放空间。
思考:
颗粒材料的密度为ρ,表观密度为ρ0,堆积 密度ρ0 ’,则三种密度的关系?
1.1.1 1.几种密度
1.固体(实体) 2.闭口孔隙 3.开口孔隙
(1)密度 : 材料在绝对密实状态下,固体物质本身的干质
量。 (不包括开口和闭口孔隙体积)
m
v
V V0
(2)表观密度 :
材料单位表观体积(闭口孔隙+开口孔隙+ 固体物质本身)的干质量。
V
V0
0
m V0

V
m VB VK
材料的含水率反映材料在自然状态下含水的状态, 不一定已经达到吸水饱和,当材料与空气湿度达 到平衡时就不再吸收空气中水分,此时含水率称 为平衡含水率。是变值。
3.材料的耐水性
材料长期在水的作用下既不破坏,强度又不显著降低 的性质称为耐久性。
指标:软化系数
KR

fb fd
fb——材料饱水状态抗压强度,MPa fd——材料干燥状态抗压强度,MPa
三种受力方式
抗压强度、抗拉强度、抗剪强度表示公式
f F A
(MPa)
F——破坏时的最大荷载,N
A——受力截面面积,mm2
(2)抗弯强度(抗折强度)
L/2 L/2
3FL 单点加荷: f 2bh2
FL 三分点加荷: f bh2
第四种受力方式
2.影响材料强度的因素:
材料的组成 材料分子结合力 存在缺陷 孔隙率 增加 强度降低
3.比强度 ——指材料强度与其表观密度之比。 意义:反映材料轻质高强的指标。 值越大,材料越轻质高强
1.2.2 材料的弹性与塑性
1.弹性:外力作用产生变形,外力取消变形完全 恢复。
可恢复的材料变形称为弹性变形——可逆变形。 弹性材料:具有弹性的材料。
指标:弹性模量(常数) E
6.材料的热工性质
6.2导热性 导热性是指材料传导热量的能力。用导热系数来表示。
Qa
(T1 T2 ) At
材料的导热系数越小,表示其绝热性能越好。 通常气体的导热系数<液体的导热系数<固体的导热系数
思考
某工程顶层欲加保温层,以下两图为两种材料的剖面,请问 选择何种材料?
原因:随含水量增加,减弱其内部结合力,导致强度 下降。KR的范围在0~1之间。
KR>0.85, 称为耐水材料
4.材料的抗渗性
——抵抗压力水渗透的性质
(1)渗透系数
渗透系数:
KS

Qd AtH
Ks的意义:抗渗系数越小,表明抗渗性能越好。
(2)抗渗等级:抗渗等级越高,其抗渗性越好。
指石料、砼或砂浆所能承受的最大水压力。 如:最大承水压力为0.2MPa,表示为P2,另有P4、P6 、P8、P10…
不燃材料、难燃材料、易燃材料
3 温度变形 线膨胀系数 L
(t1 t2 )L
回顾本节内容
1.材料吸水饱和状态时水占的体积可视为开口 孔隙体积。
2.在空气中吸收水分的性质称为材料的吸湿性。 3.材料的导热系数越小,其保温隔热性能越好。
某材料的体积吸水率为10%,密度为 3.0g/cm3,表观密度为1500kg/m3。试求该 材料的质量吸水率、开口孔隙率、闭口孔 隙率?
分率
WV

Vw V0
100%

mb mg
w
0
mg
100%
mb mg mg

0 w
100%
WV Wm0 / w
思考:
质量吸水率和体积吸水率可以大于100%吗? 材料的孔隙率越大,吸水率越大,对吗?
材料的吸水性不仅与材料的亲水性或憎水性有关, 而且与孔隙率的大小和孔隙特征有关。对于孔特
Wh

ms mg mg
100%
有一块砖重2625g,其含水率为5% ,该湿砖 所含水量为多少?
解:
Wh

ms m
m
100 %

x 2625

x
100 %

5%
x 125 g
吸水率与含水率的异同:
材料的吸水率反映了材料在标准测试方法之下吸 收水分的能力的大小,是恒值。
密实度
D

实体体积 总体积
100%

V V0
100%

0
100%
1
P0
2.空隙率与填充率 ——散粒状材料
空隙率是指散粒材料堆积体积中,颗粒间空隙体积 占总体积的百分率。
空隙率
p0'

空隙体积 堆积体积100% Nhomakorabea
V0' V V0'
0
100%

(1
0' ) 0
100%
填充率是指散粒材料堆积体积中,颗粒填充的程度。
意义:E表示材料抵抗变形的指标,E值越大, 材料越不易变形,即抵抗变形的能力越强。
弹性变形
塑性变形
2.塑性——外力作用产生变形,外力取消变形不能 恢复。
外力作用下产生变形,外力取消后,仍保持变形 后的形状和尺寸,并且不产生裂纹的性质。
材料不能恢复的残留变形称为塑性变形——不 可逆变形(永久变形)。
相关文档
最新文档