证明平均值公式

证明平均值公式

1. 对于归一化的Gauss分布:

试求

2. 上统计热力学课的共有30个学生,每个学生来上课的几率是0.9,求每次来上课人数大于等于25个的几率是多少,平均上课人数是多少。

3. 105教室里共有100个座位,把这100个位置按离讲台的距离排座,30个学生随机选择座位,问前面5个位置都坐了人,但不管坐的顺序,有多少种可能的选择方式,这些选择方式占总的可能的选择方式的比例是多少。

4. 证明平均值公式

和等价。f为系综分布函数。

5. 对于巨正则系综,推导

统计学原理-计算公式

位值平均数计算公式 1、众数:是一组数据中出现次数最多的变量值 组距式分组下限公式:002 110m m d L M ??+??+= 0m L :代表众数组下限; 1100--=?m m f f :代表众数组频数—众数组前一组频数 0m d :代表组距; 1200+-=?m m f f :代表众数组频数—众数组后一组频数 2、中位数:是一组数据按顺序排序后,处于中间位置上的变量值。 中位数位置2 1+=n 分组向上累计公式:e e e e m m m m e d f S f L M ?-∑+=-12 e m L 代表中位数组下限; 1-e m S :代表中位数所在组之前各组的累计频数; e m f 代表中位数组频数; e m d 代表组距 3、四分位数:也称四分位点,它是通过三个点将全部数据等分为四部分,其中每部分包含 25%,处在25%和75%分位点上的数值就是四分位数。 其公式为:4 11+=n Q 212+=n Q (中位数) 4)1(33+=n Q 实例 数据总量: 7, 15, 36, 39, 40, 41 一共6项 Q1 的位置=(6+1)/4=1.75 Q2 的位置=(6+1)/2=3.5 Q3的位置=3(6+1)/4=5.25 Q1 = 7+(15-7)×(1.75-1)=13, Q2 = 36+(39-36)×(3.5-3)=37.5, Q3 = 40+(41-40)×(5.25-5)=40.25 数值平均数计算公式 1、简单算术平均数:是将总体单位的某一数量标志值之和除以总体单位。 其公式为:n x n x x x X n ∑=??++=21 2、加权算术平均数:受各组组中值及各组变量值出现的频数(即权数f )大小的影响,

泰勒公式的证明及应用

摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。 关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用

绪论 随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到 n 阶的导数,由这些导数构成一个n 次多项式 () 2 0000000()()() ()()()()(),1! 2! ! n n n f x f x f x T x f x x x x x x x n '''=+ -+ -++ - 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有 0()()(()),n n f x T x x x ο=+- 即() 2 00000000()() ()()()()()()(()).2! ! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+ -++ -+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

泰勒公式的证明及应用(1)

一.摘要 (3) 前言 (3) 二、泰勒公式极其极其证明........................ (3) (一)带有皮亚诺型余项的泰勒公式 (3) (二)带有拉格朗日型余项的泰勒公式 (4) (三)带有柯西型余项的泰勒公式 (5) (四)积分型泰勒公式 (6) (五)二元函数的泰勒公式 (7) 三、泰勒公式的若干应用 (8) (一)利用泰勒公式求极限 (8) (二)利用泰勒公式求高阶导数 (9) (三)利用泰勒公式判断敛散性 (10) (四)利用泰勒公式证明中值定理 (12) (五)利用泰勒公式证明不等式 (13) (六)利用泰勒公式求近似和值误差估计 (15) (七)利用泰勒公式研究函数的极值 (16) 四、我对泰勒公式的认识 (16) 参考文献 (17) 英文翻译 (17)

Taylor 公式的证明及应用 【摘要】数学中的著名的公式都是一古典的数学问题,它们在数学,化学与物理领域都有很广泛的运用。在现代数学中Taylor 公式有着重要地位,它对计算极限,敛散性的判断,不等式的证明、中值问题及高阶导的计算以及近似值的计算等方面都有很大的作用。在本文中,我将谈到关于公式的几种形式及其证明方法并对以上几个方面进一步的运用,和我对几者之间的一些联系和差异的看法。并通过具体事例进行具体的说明相关运用方法 【关键词】泰勒公式 佩亚诺余项 拉格朗日余项 极限 级数 1、常见Taylor 公式定义及其证明 我们通常所见的Taylor 公式有皮亚诺型、拉格朗日型、柯西型与积分型,还有常用的二元函数的Taylor 公式和高阶函数的Taylor 公式。 定义:设函数存在n 阶导数,由这些导数构成n 次多项式,称为函数在该点处的泰勒多项式各项系数称为泰勒系数。 1.1首先是带皮亚诺型余项的Taylor 公式: 若函数f 在点0x 存在且有n 阶导数,则有0()()(())n n f x T x x x =+ο-即 "' 200000() ()()()()()2! f x f x f x f x x x x x =+-+-+? ()00() ()! n n f x x x n +-0(())n x x +ο-. (2) 其中()n T x 是由这些导数构造的一个n 次多项式, "()' 2 0000000()()()()()()()()2!! n n n f x f x T x f x f x x x x x x x n =+-+-+?+- (3) 称为函数f 在点0x 处的Taylor 多项式,()n T x 的各项系数 ()0() !k f x k (1,2,,)k n =?称为Taylor 系数。从上易知()f x 与其Taylor 多项式()n T x 在点0x 有相同的函数值和相同

统计学原理常用公式汇总

统计学原理常用公式汇总 第2章统计整理 a)组距=上限-下限 b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距 d)缺上限开口组组中值=下限+1/2邻组组距 e)组数k=1+3.322Lg n n为数据个数 第3章综合指标 i.相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2.比例相对指标=总体中某一部分数值/总体中另一部分数值 3.比较相对指标=甲单位某指标值/乙单位同类指标值 4.强度相对指标=某种现象总量指标/另一个有联系而性质不 同的现象总量指标 5.计划完成程度相对指标=实际数/计划数 =实际完成程度(%)/计划规定的完成程度(%) ii.平均指标 1.简单算术平均数: 2.加权算术平均数或 3调和平均数: ? ? = f X f X h 1 1 式中:, h Xf Xf m X X m f Xf X X m m Xf f X ==== == ??? ??? iii.标志变动度 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ=

3.标准差系数: iiii 抽样推断 1. 抽样平均误差: 重复抽样: n x σ μ= n p p p ) 1(-= μ 不重复抽样: )1(2 N n n x - = σμ 2.抽样极限误差 x x t μ=? 3.重复抽样条件下: 平均数抽样时必要的样本数目 2 22x t n ?= σ 成数抽样时必要的样本数目2 2)1(p p p t n ?-= 不重复抽样条件下: 平均数抽样时必要的样本数目 2222 2σσt N Nt n x +?= 第4章 动态数列分析 一、平均发展水平的计算方法: (1)由总量指标动态数列计算序时平均数 ①由时期数列计算 n a a ∑= ②由时点数列计算 在间断时点数列的条件下计算: 若间断的间隔相等,则采用“首末折半法”计算。公式为: 1 212 11 21-++++=-n a a a a a n n Λ 若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为:

泰勒公式的证明及其应用

泰勒公式的证明及其应用 数学与应用数学专业胡心愿 [摘要]泰勒公式的相关理论是函数逼近论的基础。本文主要探索的是泰勒公式的一些证明方法,并对不同的证明方法进行相应的比较分析,在此基础上讨论泰勒公式在证明不等式、求函数极限、求近似值、求行列式的值、讨论了函数的凹凸性,判别拐点,判断级数敛散性等方面的应用.本文还针对多元函数的泰勒公式的推导和应用做了简单的论述. [关键词]泰勒公式;不等式;应用; Proof of Taylor's Formula and Its Application Mathematics and Appliced Mathematics Major HU Xin-yuan Abstract: The theory about Taylor's Formula is the basic content of Approximation Theory . What this paper explores is some methods that proof the Taylor's Formula, and the paper analyse and compare them. On that basis, the paper discuss the application of Taylor's Formula in some respects,such as Inequality proof, functional limit, approximate value, determinant value, convexity-concavity of function, the decision of inflection point, divergence of the series.The paper explore the derivation of Taylor's Formula of the function of many variables and its application. Key words:Taylor's Formula;inequality;application

统计学常用公式汇总情况

统计学常用公式汇总 项目三 统计数据的整理与显示 组距=上限-下限 a) 组中值=(上限+下限)÷2 b) 缺下限开口组组中值=上限-邻组组距/2 c) 缺上限开口组组中值=下限+1/2邻组组距 例 按完成净产值分组(万元) 10以下 缺下限: 组中值=10—10/2=5 10—20 组中值=(10+20)/2=15 20—30 组中值=(20+30)/2=25 30—40 组中值=(30+40)/2=35 40—70 组中值=(40+70)/2=55 70以上 缺上限:组中值=70+30/2=85 项目四 统计描述 i. 相对指标 1. 结构相对指标=各组(或部分)总量/总体总量 2. 比例相对指标=总体中某一部分数值/总体中另一部分数值 3. 比较相对指标=甲单位某指标值/乙单位同类指标值 4. 动态相对指标=报告期数值/基期数值 5. 强度相对指标=某种现象总量指标/另一个有联系而性质不同的现 象总量指标 6. 计划完成程度相对指标K = 计划数 实际数 =%%计划规定的完成程度实际完成程度 7. 计划完成程度(提高率):K= %10011?++计划提高百分数实际提高百分数 计划完成程度(降低率):K= %10011?--计划提高百分数 实际提高百分数

ii. 平均指标 1.简单算术平均数: 2.加权算术平均数 或 iii. 变异指标 1. 全距=最大标志值-最小标志值 2.标准差: 简单σ= ; 加权 σ= 成数的标准差(1) p p p σ=-3.标准差系数: 项目五 时间序列的构成分析 一、平均发展水平的计算方法: (1)由总量指标动态数列计算序时平均数 ①由时期数列计算 n a a ∑= ②由时点数列计算 在连续时点数列的条件下计算(判断标志按日登记):∑ ∑=f af a 在间断时点数列的条件下计算(判断标志按月/季度/年等登记): 若间断的间隔相等,则采用“首末折半法”计算。公式为: 1 212 11 21-++++=-n a a a a a n n Λ

泰勒公式的证明及应用 开题报告

题目泰勒公式的证明及推广应用 一、选题背景和意义 在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、 乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。 通过对数学分析的学习,我感觉到泰勒公式是高等数学中的重要内容,在各个 领域有着广泛的应用,例如在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。 除此以外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解。 二、国内外研究现状、发展动态 本人以1999—2010十一年为时间范围,以“泰勒公式”、“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章,发现国内外对泰勒公式的其研究进展主要分配在以下领域: 一、带不同型余项泰勒公式的证明; 二、泰勒公式的应用举例。 三、研究内容及可行性分析 在高等数学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习高等数学的关键一环。本论文将主要研究泰勒公式的证明及其在其他方面的应用。 本文将通过对泰勒公式的探讨,给出了泰勒公式在其它方面的应用,,显现出泰勒公式的应用之广泛。希望其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导。 接下来我将分两方面的应用来阐述本次论文的主要内容。 一、带不同型余项泰勒公式的证明: 本次证明将涉及到三种不同余项的泰勒公式的证明,即: 1.带皮亚诺余项的泰勒公式; 2.带拉格朗日余项的泰勒公式; 3.带积分型余项的泰勒公式; 二、泰勒公式的应用: 本次论文将涉及到泰勒公式在以下七个方面的应用: 1、泰勒公式在极限计算中的应用; 在函数极限运算中,不定式极限的计算始终为我们所注意,因为这是比较困难的一类问题。计算不定式极限我们常常使用洛必达法则或者洛必达法则与等价无穷小结合使用。但对于有些未定式极限问题若采用泰勒公式求解,会更简单明了。我将在论文中就例题进行探讨。 2、泰勒公式在判定级数及广义积分敛散性中的应用;

统计学主要计算公式72485

统计学主要计算公式(第三章) 1 11 1k i i k i i k i k i i i f f f f ====?? ? ???? ? ? ?? ? ? ???? ?? ?∑ ∑ ∑ ∑ ∑ N i i=1i i 一、算术平x 简单x=N x 均数加权x=频数权数x=x 1i i H i i i i m m x m m x x = = ∑∑∑∑二、调和平均数 ? = ?? ? ? =?? G G 简单x 三、几何平均数加权x 11/2/2m e m m e m f S M L i f f S M U i f -+?-=+ ??? ? -?=-???∑∑下限公式四、中位数上限公式 1012 20 12d M L i d d d M U i d d ? =+??+?? ?=-??+? 下限公式五、众数上限公式

() ()x x x x f f AD AD ? -?? ? -??? ∑ ∑∑六、平均差简单=N 加权= σ σ σ σ ??? ???? ??? ??? ????? ??? 七、标准差简单加权 简捷公式 简单 加权 100%100% AD AD V x V x σσ ? ??? ? ???? 平均差系数=八、离散系数标准差系数= 统计学主要计算公式(第五章) ( )( ) 11n n s s t t n αα α α αα σ σ μμμμμμ--?±±?? ?? ±±?? ? ?±±??22 22 22 一、参数估计(随机抽样)1.总体均值估计-单总体 正态总体,方差已知 =x z =x z 正态总体,方差未知=x =x 非正态总体,足够大=x z =x z

统计学公式汇总,推荐文档

第三章统计整理 第四章总量指标和相对指标

第五章平均指标和变异指标

= ∑(x -x)2 n :标准差 p:成数 2 :方差 标准差:开()根号 方差:不开()根号∑(x -x)2 f =∑f =p(1 -p) 2 =∑(x -x) 2 n ∑(x -x)2 f 2 =∑ f V = x V平均差系数

第六章动态数列

第七章统计指数

第八章 抽样调查 公式名称 数学公式 说明 2 n 平均数u = (1- ) x n N 不重复 1、不重置抽样比重置抽样多加个 (1 - n ),此项为修正系数。 N 2、公式中的标准差和成数 P 一般用样本的标准差 s 和成数 p 来代替。 抽样 成数: u = P (1 - P ) (1 - n ) p n N 抽样平均误差 平均数: u = x n 重复 成数: u = P (1 - P ) 抽样 p n 平均数: x - ? ≤ X ≤ x + ? x x 抽样极 重复抽样, ? = t x n ? = t P (1 - P ) ; p n 2 n 不重复抽样, ? = t (1- ) x n N ? = t P (1 - P ) (1 - n ) p n N 区间估计 限误差 成数: x - ? p ≤ X ≤ x + ? p 样本数的确定 平均数: n = t 22 x ? x 2 重复抽样 公式中的标准差和成数 P 一般用样本的标准差 s 和成数 p 来代替。 t 2 P (1 - P ) 成数: n p = ?2p

Taylor公式的唯一性证明

Tayloy 公式的唯一性证明 作者:卢晓峰 1. 引理:设0 lim ()0x x g x →=,()g x 在0x 的某邻域内可导,且()g x ' 在0x 处连续。若0()(())n g x x x ο=-,则10()(())n g x x x ο-'=-。 证明: 00001 11 00 000 ()()()()() () lim lim lim lim lim ()()()()()n n n n n x x x x x x x x x x g x g x g x x x g x g x g x x x x x x x x x x x ---→→→→→-''-===------又 0()(())n g x x x ο=-,0 0lim ()()0x x g x g x →== ∴0 0() lim 0()n x x g x x x →=-;0 00 ()lim 0()n x x g x x x →=- ∴0 1 0()lim 0() n x x g x x x -→'=-,即1 0()(())n g x x x ο-'=-。 2. 唯一性证明: ()f x 在0x 处存在n 阶导,设0()()(())n n f x P x x x ο=+-<1>。(其中() n P x 为n 次多项式) 设<1>式中0(())()n x x g x ο-=。易证:()g x 满足引理的条件。 ∴10()(())n g x x x ο-'=-,20()(())n g x x x ο-''=-, ,(1)0()()n g x x x ο-=-。 ∴ ()()() n f x P x g x '''=+, ()()() n f x P x g x ''''''=+, , (1)(1)(1)()()()n n n n f x P x g x ---=+<2> 对<2>中的所有等式,均取0x x →的极限,则有: 00()()n f x P x ''=,00()()n f x P x ''''=, ,(1)(1)00()()n n n f x P x --= 又

统计学主要计算公式

统计学主要计算公式(第三章) 统计学主要计算公式(第五章) 010220102001001111221012221 22((((1,1)(1,1)(H H Z Z H H H Z Z H H H Z Z H H H F n n F F n n H S F S ααααασσσσχσσσσσσσσσσσσσ-?≠≥??>≥??<≤??≠--≤≤--22220022222002222002222224.方差检验(正态总体) 单总体: :=:拒绝双侧)(n-1)S =:=:拒绝单侧):=:拒绝单侧) 两方差之比检验 :=:拒绝=011112001111210(1,1)((1,1)(H H F F n n H H H F F n n H αασσσσσσσσ-???>≥--??<≤--??222222222222双侧):=:拒绝单侧):=:拒绝单侧) 统计学主要计算公式(第六章) 统计学主要计算公式(第七章) 统计学主要计算公式(第八章) d L d U 2 4-d U 4-d L d

01'201201101???????(1)(1)(1)t t t t t t t t t y y b b t y y b b t b t y ab b b y y a y a a a a -???=+???=++???=?? =++++=+-=-+-t t-1t t-1t-2t-n t+1t t 六、时间序列预测 一阶差分大致相同,趋势外推法模型测定二阶差分大致相同, (同回归模型)y 环比发展速度大体相同,y 自回归预测y (同回归模型) y y y 移动平均n 指数平滑y =ay y y 201(1)(1)n a a a a ++-++-t-1t-2t-n-1 y y 统计学主要计算公式(第九章)

统计学公式汇总

统计学公式汇总 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

统计学原理常用公式汇总第三章统计整理 a)组距=上限-下限 b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距 d)缺上限开口组组中值=下限+1/2邻组组距

第四章综合指标 i.相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2.比例相对指标=总体中某一部分数值/总体中另一部分数值 3.比较相对指标=甲单位某指标值/乙单位同类指标值 4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指 标 5.计划完成程度相对指标=实际数/计划数 =实际完成程度(%)/计划规定的完成程度(%) ii.平均指标 1.简单算术平均数: 2.加权算术平均数或 iii.变异指标 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ= 3.标准差系数:

第五章 抽样推断 1. 抽样平均误差: 重复抽样: n x σ μ= n p p p ) 1(-= μ 不重复抽样: )1(2 N n n x - = σμ 2.抽样极限误差 x x t μ=? 3.重复抽样条件下: 平均数抽样时必要的样本数目 2 22x t n ?= σ 成数抽样时必要的样本数目2 2) 1(p p p t n ?-= 不重复抽样条件下:平均数抽样时必要的样本数目 2222 2σσt N Nt n x +?=

第七章 相关分析 1.相关系数 [][ ] ∑∑∑∑∑∑∑---= 2 2 2 2 ) ()(y y n x x n y x xy n γ 2.配合回归方程 y=a+bx ∑∑∑∑∑--= 2 2 ) (x x n y x xy n b x b y a -= 3.估计标准误:2 2 ---= ∑∑∑n xy b y a y s y

统计学重要公式

1.样本平均数: X 统计学重要公式 5.标准差: (1总体标准差: 2. 总体平均数: 3. 四分位差:Q IQR Q u Q L 4.方差: (1总体方差: (2) 样本方差: S 2 X i 7.标准分数 X i (2)样本标准差: S 6.变异系数 总体:CV 100% 标准差 100% 平均数 样本:CV S X 100% (Z 分数 )Z 8.样本协方差 Cov ( X 9.皮尔逊相关系数 n 2 L XX i 1 X i X n L XY i 1 X i X Y n 2 Y ) S XY S XY X i X Y i Y n 1 L XY S X S Y n X 2 L XX L YY 2 n X i i 1 i 1 J n X i X i S ,或Z i r XY n n n X i 丫 丫一 X i Y i i 1 i 1 i 1 n YY Y i Y i 2 Y i 1 Y i 10. 加权平均数 11. 分组数据样本平均数 F i X i F i 12. 分组数据样本方差 13. 排列组合公式 n ! C m n m ! 2 P m 厂n m ! C m n C n m n

14.事件补的概率 P(A) 1 P(A) 15.加法公式 P(A B) P(A) P(B)-P(A B) 16.条件概率 P(A|B) P( A (B) B) , P(A B) P(B) P(A) 17.乘法公式 P(A B) P(B) P(A|B) P(A) P(B|A) 18.独立事件 P(A B) P(A)P(B) 19.全概率公式 P(B ) n P(A i ) P(B|A i ) i 1 20?贝叶斯公式P(A i |B) P(A )P(B| A i ).啥小叫) P(B) P(A j ) P(B|A j ) j i 33总体均值的区间估计 21. 离散型随机变量的数学期望 E(X) 22. 离散型随机变量的方差 Var(X) 2 23. 二项分布的概率函数 p(x) C ;p x q 24. 二项分 布的数学期望和方差 E (X ) x x e e x! x! x n x C C 25.泊松分布p(x) 27.超几何分布p(x) ,x xp(x) 2 x p(x) 0,1,2,..., n,q 1 p np,Var(X) 2 n p(1 p) 28.正态概率密度函数 29.标准正态分布变换 x 2 f (x) ^2— e 2 2 Z x 30. X 的数学期望和标准差 32估计时的抽样误差:X E(X) 有限总体时 (1)大样本且方差已知:X 无限总体时 31比例P 的数学期望和标准差 E(p) p, 有限总体时 无限总体时 P p(1 p) n ⑵大样本且方差未知:X Vn , "JI (3) 总体正态,小样本,方差已知X Z 2 — — S (4) 总体正态,小样本,方差未知X t 2 2 2 Z 2 34估计 时所需的样本容量:n X N n N 1 .n N n N 1

统计学公式 贾俊平 精华版

() ()()()() 扁平 尖峰分布;,3s *n 组数 *X -分组峰态系数正值,右偏分布越大偏斜越大, ,该组的中值;s *n 组数 *X -SK 分组s *2-n 1-n X -n SK 未分组偏态系数04.%99/%95/%68个标准差3/2/1经验法则:.03,越大,离散系数越大 X s 小) 离散系数(衡量差异大-离散程度标准差 /数值型数据:方差顺序数据:四分位差 总频数 (众数频数) f -1V 分类数据:异众比率 离散程度 02.x 几何平均X 加权平均数.014 4 3 33 3 s m r n <>= = = ±=== =∑∑∑∏∑∑i i i i i i i M K SK M M X V G W X W PS :()0.3P x μ-≤=1919x P n σ?? -≤≤ ? ?? 双侧:H 0≠A 无显著差异,同α/2比较 左单侧:希望数值越大越好H 0 μ ≥A 右单侧:希望数值越小越好 H 0 μ ≤A ;同α比较 P 值检验方法,求出Z ,若x >μ,计算P (Z>Z 值)值 双侧:P<α/2 拒绝原假设 单侧P<α 拒绝原假设 运用置信区上下限比较 n Z σα2 (边际误差)=?(单侧为α) n 总体标准差 抽样标准误差= 若?>0-x μ,则拒绝H 若σ未知,用s 代替,使用t 分布 ()() 遇小数点向前进一)() 1(定 估计比例时样本量的确.22(边际误差): 定一个估计时样本量的确.211 -n 自由度s )1n (s )1n (总体方差.13) 1(总量)的区间估计 (样本样本比率.12)1(方差未知,小样本,总体正态)2(置信区间为。。 即,该样本平均或:未知/大样本且方差已知)1(计 一个总体均值的区间估.112 2 2 222 22 22 2 /122 22 /22 22E P P Z n n Z E E Z n n P P Z P P n S n t X n S Z X -?= ???? ? ?== -≤≤--±÷-±?±-αααααααασσ λλσλσ

泰勒公式的证明

泰勒公式 定理(peano 余项型,洛必达法则法证明) 若()0()n f x 存在, 则0()x x ?∈ , 0()(,)n f x T x x =+()0()n x x - . ()200000000()()(,)()()()()()2!! n n n f x f x T x x f x f x x x x x x x n '''=+-+-++- . 0(,)n T x x 叫做f 在0x 的n 次泰勒多项式,也叫f 在0x 的n 次密切( “切线”). 证法 洛必达法则法的分析. 按照洛必达法则往证0()()lim 0()n n x a f x T x x x →-=-即可. 记()()()n n R x f x T x =-,0()()n n Q x x x =-, 注意到 (1)()000()()()0n n n n n R x R x R x -==== , (1)00()()0n n n Q x Q x -=== ,()0()!n n Q x n = ()0()n f x 存在,意味着(1)()n f x -在0()U x 内还可导.允许()0lim ()0n x a n R x Q x →?? ???反复使用洛必达法则1n -次. 证明 连续1n -次使用洛必达法则,得 (1)(1)()()00lim lim ()0()0n n n n x a x a n n R x R x Q x Q x --→→????= ? ?????不断添入0,使结论成为两个函数值之差的比. (1)(1)()0000()()()()lim (1)2() n n n x a f x f x f x x x n n x x --→---=-- (1)(1)()000()()1lim ()0!n n n x a f x f x f x n x x --→??-=-= ?-?? . 注1 即使函数能表成()00()(,)()n n f x P x x x x =+- ,0(,)n P x x 不一定是泰勒多项式. 如1()(),n f x x D x n N ++=∈,由100()()lim lim 0n n n x x f x x D x x x +→→==,故()()(0)n f x x x =→ . 虽然能写成()2()0000n n f x x x x x =+++++ ,但是,根据海因定理,1()()n f x x D x += ,n N +∈仅在0点仅1阶可导(0)0f '=(0的邻域内()f x '无定义). 故2()0000n n p x x x x =++++ 并不是()f x 在0处的泰勒多项式. 注2 若f 能表成()00()(,)()n n f x P x x x x =+- ,则多项式0(,)n P x x 是唯一的 (不论可导性). 因为 若 () 00()(,)()n n f x P x x x x =+- ()20102000()()()()n n n a a x x a x x a x x x x =+-+-++-+- (1) 则由(1) 00lim ()x x f x a →=, 反代入(1)式又得 0010 ()lim x x f x a a x x →-=-, 反代入(1)式又得 0010220()[()]lim ()x x f x a a x x a x x →-+-=-

泰勒公式证明及应用讲解

泰勒公式及其应用 佟梅 (渤海大学数学系辽宁锦州121000 中国) 摘要:数学是一门很重要的学科,许多的数学家研究出了各种定理、公式,并且都证实了它们的正确性,应用这些定理公式解决了许多疑难问题,泰勒公式就是其一。泰勒公式是数学分析中的一个重要公式,它在解决分析中的问题时应用广泛、灵活,也是解决各种数学问题的一个强有力的工具之一,本文对泰勒公式进行了简单的介绍,重点介绍了它的各种应用,作了一个较系统和规律性的分析综述。首先,介绍了泰勒定理及其几种表示形式的泰勒公式,在后面的应用中会应用到。其次,就是本文的重点——泰勒公式的应用,介绍了九个方面,主要包括:研究级数和广义积分的敛散性、利用泰勒公式求极限、近似计算和误差估计、确定和比较无穷小的阶、证明不等式等等,通过许多的例题分析,体现出了泰勒公式在解决数学问题时的重要性和简洁性。 关键词:泰勒公式,极限,误差估计,敛散性,不等式。 Taylor’s formula and its application Tong Mei (Department of Mathematics Bohai University,Liaoning Jinzhou 121000 China) Abstract:Mathematics is a very important discipline. Many mathematicians studied all kinds of theorem and formula, proved their correctness, and applied them to solve a number of difficult problems. Taylor formula is one of them.Taylor’s formula is a important formula in mathematical analysis. It can be used widely and conveniently to solve the problems in analysis. In addition, it is one of powerful tools to solve all kinds of mathematics problems. This article provides a simple introdu ction to Taylor’s formula, emphasizes its various applications, and makes a systematic and inerratic analysis summary. Firstly, this article introduces the Taylor theorem and some Taylor’s formula of different _expression forms, which will be applied later. Next, it is the emphasis of this article -- the application of Taylor’s formula. Here nine aspects are introduced: studying the convergence and divergence of series and the improper integral, using the Taylor’s formnla to calculate limit, the approximate calculation and error estimate, determining and comparing the order of infinitesimals, the application in theorem proof, proving inequality, and so on. Through many example analysis, the importance and conciseness of Taylor’s formula in solving mathematic s questions are well illustrated. Key Words: Taylor’s formula; limit; error estimate ;convergent or divergent; inequality.

《统计学》名词解释及公式

第1章统计与统计数据 一、学习指导 统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。本章各节的主要内容和学习要点如下表所示。 概念:统计学,描述统计,推断统计。 统计在工商管理中的应用。 统计的其他应用领域。 概念:分类数据,顺序数据,数值型数据。 不同数据的特点。 概念:观测数据,实验数据。 概念:截面数据,时间序列数据。 统计数据的间接来源。 二手数据的特点。 概念:抽样调查,普查。 数据的间接来源。 数据的收集方法。 调查方案的内容。 概念。抽样误差,非抽样误差。 统计数据的质量。 概念:总体,样本。 概念:参数,统计量。

概念:变量,分类变量,顺序变量,数值 型变量,连续型变量,离散型变量。 二、主要术语 1.统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。 2.描述统计:研究数据收集、处理和描述的统计学分支。 3.推断统计:研究如何利用样本数据来推断总体特征的统计学分支。 4.分类数据:只能归于某一类别的非数字型数据。 5.顺序数据:只能归于某一有序类别的非数字型数据。 6.数值型数据:按数字尺度测量的观察值。 7.观测数据:通过调查或观测而收集到的数据。 8.实验数据:在实验中控制实验对象而收集到的数据。 9.截面数据:在相同或近似相同的时间点上收集的数据。 10.时间序列数据:在不同时间上收集到的数据。 11.抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推 断总体特征的数据收集方法。 12.普查:为特定目的而专门组织的全面调查。 13.总体:包含所研究的全部个体(数据)的集合。 14.样本:从总体中抽取的一部分元素的集合。 15.样本容量:也称样本量,是构成样本的元素数目。 16.参数:用来描述总体特征的概括性数字度量。 17.统计量:用来描述样本特征的概括性数字度量。 18.变量:说明现象某种特征的概念。 19.分类变量:说明事物类别的一个名称。 20.顺序变量:说明事物有序类别的一个名称。 21.数值型变量:说明事物数字特征的一个名称。

泰勒公式的几种证明法及其应用 -毕业论文

泰勒公式的几种证明法及其应用 -毕业论文 【标题】泰勒公式的几种证明法及其应用 【作者】张廷兵 【关键词】泰勒公式构造函数法数学归纳法柯西中值定理应用【指导老师】陈波涛 【专业】数学与应用数学 【正文】 1引言 泰勒公式在分析和研究数学问题方面有着重要的应用。但是它的证明大多数是重复运用柯西中值定理来推导,这给初学者从理解到接受有一定的困难。为了给不同层次的学习者理解和接受泰勒公式提供方便。本文研究不同的证明方法,给学习者提供了选择的余地。归根结底,使学习者更好运用泰勒公式,为此就对泰勒公式的应用及技巧的总结。 2 带佩亚诺型余项泰勒公式的证明方法 在初等函数中,最简单的函数就是多项式,对于数值计算和理论分析都很方便。如果将一类复杂的函数用多项式来近似表示出来,其误差又能满足一定的要求。那么,我们就可以表示出此函数。若函数是n次多项式 令 .于是 对任意一个函数,只要函数在a点存在n阶导数,我们就可以写出一个相应的多项式 称为函数在a点的n次泰勒多项式,那么n次泰勒多项式与函数在在点a 的邻域上有什么联系呢,下面的定理回答了这个问题( 定理1[1] 若函数在a点存在n阶导数 ,则 其中 ,则上式就为在a点的泰勒公式, 为泰勒公式的余项.

2.1方法一 证明:将上式改为 ,有 分子是函数 ,分母是函数 .应用n-1次柯西中值定理[2] 其中 其中 其中 (至此已应用了n-1次柯西定理) 当根据右导数定义,有 同法可证: 于是 , 表示余项是佩亚诺型. 证毕. 2.2方法二 证明在的一个邻域内有一阶导数,则存在且在处连续,即有则由极限与无穷小量的关系有: ( 是无穷小量), 又 则 (2—1) 从(2—1)式推出: 比较无穷小量与 = = (因为二阶可导) 又由极限与无穷小量的关系有: 将上边代入(2—1)式: 设 .则在处有阶导数,且设当时仍有: + (2—2) 从(2—2)中推出 比较与 :

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

相关文档
最新文档