高等数学函数极限与连续习题及答案

合集下载

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)

专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)

专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.下列四组函数中f(x)与g(x)表示同一函数的是( )A.f(x)=tanx,g(x)=B.f(x)=lnx3,g(x)=3lnxC.f(x)=,g(x)=D.f(x)=ln(x2一1),g(x)=ln(x一1)+ln(x+1)正确答案:B解析:A、D选项中,两函数的定义域不同,C选项中,当x<0时,f(x)≠g(x),B选项中,f(x)=lnx3=3lnx=g(x),定义域均为x>0,故选B.知识模块:函数、极限与连续2.函数f(x)=是( )A.奇函数B.偶函数C.非奇非偶函数D.不能确定奇偶性正确答案:B解析:由于一1<x<1,从而定义域关于原点对称,又f(一x)==f(x),所以函数f(x)为偶函数.知识模块:函数、极限与连续3.= ( )A.B.1C.D.3正确答案:C解析:.知识模块:函数、极限与连续4.极限等于( )A.0B.1C.2D.+∞正确答案:D解析:因该极限属“”型不定式,用洛必达法则求极限.原式=(ex+e-x)=+∞.知识模块:函数、极限与连续5.当x→0时,无穷小x+sinx是比x ( )A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:=2,故选C.知识模块:函数、极限与连续6.=6,则a的值为( )A.一1B.1C.D.2正确答案:A解析:因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故[(1+x)(1+2x)(1+3x)+a]=1+a=0,解得a=一1,所以=6.知识模块:函数、极限与连续7.下列四种趋向中,函数y=不是无穷小的为( ) A.x→0B.x→1C.x→一1D.x→+∞正确答案:B解析:知识模块:函数、极限与连续8.设f(x)== ( )A.4B.7C.5D.不存在正确答案:A解析:知识模块:函数、极限与连续填空题9.函数y=ln(lnx)的定义域是_________.正确答案:(1,+∞)解析:y=ln(lnx),所以解得x>1,故函数的定义域为(1,+∞).知识模块:函数、极限与连续10.已知f(x)=2x2+1,则f(2x+1)= _________.正确答案:8x2+8x+3解析:用代入法得f(2x+1)=2(2x+1)2+1=8x2+8x+3.知识模块:函数、极限与连续11.=________.正确答案:解析:令.也可直接利用无穷小量代换.知识模块:函数、极限与连续12.=________.正确答案:e2解析:=e2.知识模块:函数、极限与连续13.设函数f(x)=在x=0处连续,则a=________.正确答案:3解析:因为函数f(x)在x=0处连续,则=a=f(0)=3.知识模块:函数、极限与连续14.设f(x)=在x=0处连续,则常数a与b满足的关系是________.正确答案:a=b解析:函数f(x)在x=0处连续,则有=b,即a=b.知识模块:函数、极限与连续解答题15.已知函数f(x)的定义域是[0,1],求函数f(x+4)的定义域.正确答案:因为f(x)的定义域是[0,1],所以在函数f(x+4)中,0≤x+4≤1,即一4≤x≤一3,所以f(x+4)的定义域为[一4,一3].涉及知识点:函数、极限与连续16.计算.正确答案:函数-x复合而成,利用有理化求得.故.涉及知识点:函数、极限与连续17.求.正确答案:0.∞型,先变形为,再求极限.=1.涉及知识点:函数、极限与连续18.求极限.正确答案:=1.涉及知识点:函数、极限与连续19.求极限.正确答案:原式==一15π2.涉及知识点:函数、极限与连续20.求极限.正确答案:所求极限为∞一∞型,不能直接用洛必达法则,通分变成型.涉及知识点:函数、极限与连续21.求.正确答案:涉及知识点:函数、极限与连续22.求极限.正确答案:1一,则有原式=.涉及知识点:函数、极限与连续23.若函数f(x)=在x=0处连续,求a.正确答案:由=一1.又因f(0)=a,所以当a=一1时,f(x)在x=0连续.涉及知识点:函数、极限与连续24.设f(x)=问a为何值时,f(x)在x=0连续;a 为何值时,x=0是f(x)的可去间断点.正确答案:f(0)=6,(1)若f(x)在x=0处连续,应有2a2+4=一6a=6,故a=一1;(2)若x=0是f(x)的可去间断点,则应有≠f(0),即2a2+4=一6a≠6,故a≠一1,所以a=一2时,x=0是可去间断点.涉及知识点:函数、极限与连续25.证明方程x3+x2+3x=一1至少有一个大于一1的负根.正确答案:令f(x)=x3+x2+3x+1,f(一1)=一2<0,f(0)一1>0,f(x)在(一1,0)上连续,由零点定理知,在(一1,0)内至少存在一点ξ,使得f(ξ)=0,所以方程在(一1,0)内至少有一根,即方程至少有一个大于一1的负根.涉及知识点:函数、极限与连续。

高等数学(大一)题库

高等数学(大一)题库

(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。

(A);1+=x y (B);2x x y -= (C)34+-=x y(D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小4、 x =0是函数1()arctanf x x=的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限: (1)x x x x sin 2cos 1lim0-→; (2)xxx x -+→11ln 1lim 0;(3))11(lim 220--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则t t x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n fx . 7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。

高等数学题库第01章(函数,极限,连续).

高等数学题库第01章(函数,极限,连续).

第一章函数、极限、连续习题一一.选择题1.下列各组中的函数f(x)与g(x)表示同一个函数的是() A.f(x)=x,g(x)=x2B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2C.f(x)=xD.f(x)=x,g(x)=-x2.函数y=4-x+sinx的定义域是( )A.[0,1]B.[0,1)(1,4]C.[0,+∞)D.[0,4]3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-1323 B.y=x2 C. y=x3 D.y=x-24.函数y=x2-1单调增且有界的区间是( )A. [-1,1]B. [0,+∞)C. [1,+∞)D. [1,2]5.设y=f(x)=1+logx+32,则y=f-(x)=( )A.2x+3B. 2x-1-3C. 2x+1-3D. 2x-1+36.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=(A.-4B.-2C.-3D.6二.填空题1.f(x)=3-xx+2的定义域是2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。

3.设f(2x)=x+1,且f(a)=4,则a= 。

4.设f(x+11x)=x2+x2,则f(x)5.y=arcsin1-x2的反函数是。

6.函数y=cos2πx-sin2πx的周期T。

)⎧π⎪sinx,x<17.设f(x)=⎨则f(-)=。

4⎪⎩0,x≥12⎧⎧1,x≤12-x,x≤1⎪⎪8.设f(x)=⎨,g(x)=⎨,当x>1时,g[f(x)]= 。

x>1x>1⎪⎪⎩0⎩29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。

10.设f(x)=2x,g(x)=x2,则f[g(x)]=。

三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-33.limx→52x-1-3+2x2-14. lim x→0xx-5x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-27.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1sinx2-49. lim2 x→2x+x-6()习题二1.下列数列中,发散的是( ) 1π2n-11+(-1)n(-1)nA.xn=sinB.xn=5+C.xn=D.xn= nn3n+22n22设limf(x)=A(A为常数),则在点x0处f(x)( ) x→x0A. 一定有定义且f(x0)=AB.有定义但f(x0)可为不等于A的值B. 不能有定义 D.可以有定义,也可以没有定义f(x)=limf(x)是limf(x)存在的( ) 3.lim+-x→x0x→0x→x0A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件4.limh→0x+h-x=() hA.0 B.12x C.2x D.不存在x3(1+a)+1+bx2=-1则a,b的值为( ) 5.若limx→∞x2+1A.a=-1,b=-1B. a=1,b=-1C. a=-1,b=1D. a=1,b=16.设limf(x)=A,limg(x)=B,且A>B,则当x充分接近xo时,必有( ) x→x0x→x0A.f(x)≥g(x)B. f(x)>g(x)C. f(x)≤g(x)D. f(x)<g(x)7.数列{xn}有界是收敛的( )A.充分必要条件B. 必要而非充分条件C.充分而非必要条件D.既非充分也非必要条件8.设f(x)=1-x,g(x)=1-x,当x→1时,( )A.f(x)是比g(x)较高阶的无穷小量B. f(x)是比g(x)较低阶的无穷小量C.f(x)与g(x)同阶无穷小量D. f(x)与g(x)等价无穷小量9.当x→0时,为无穷小量的是()-1A.lnsinx B.sin C.cotx D.ex x1⎧n,n为奇数⎪10.设数列xn=⎨1,则{xn}是( ) ,n为偶数⎪⎩nA.无穷大量B. 无穷小量C.有界变量D. 无界变量二.填空题lnx= 。

高等数学习题详解-第2章 极限与连续(精品范文).doc

高等数学习题详解-第2章 极限与连续(精品范文).doc

【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。

(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。

(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。

(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。

(2) 错误 例如数列{}(-1)n 有界,但它不收敛。

(3) 正确。

(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。

*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。

高等数学习题详解-第2章 极限与连续

高等数学习题详解-第2章 极限与连续

习题2-11. 观察下列数列的变化趋势,写出其极限:(1) 1n nx n =+ ;(2) 2(1)n n x =--;(3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。

(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。

(3) 1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+- 所以lim 3n n x →∞=。

(4) 12342111111,1,1,1,,1,4916n x x x x x n=-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。

(2) 错误 例如数列{}(-1)n有界,但它不收敛。

(3) 正确。

(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。

*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3) 323125lim-=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=.(2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n n ε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3) 对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n .习题2-2 1. 利用函数图像,观察变化趋势,写出下列极限: (1) 21limx x →∞ ;(2) -lim xx e →∞;(3) +lim xx e-→∞;(4) +lim cot x arc x →∞;(5) lim 2x →∞;(6) 2-2lim(1)x x →+;(7) 1lim(ln 1)x x →+;(8) lim(cos 1)x x π→-解:(1) 21lim0x x →∞= ;(2) -lim 0xx e →∞=;(3) +lim 0xx e-→∞=;(4) +lim cot 0x arc x →∞=;(5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=;(7) 1lim(ln 1)1x x →+=;(8) lim(cos 1)2x x π→-=-2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。

高等数学函数的极限与连续习题精选和答案

高等数学函数的极限与连续习题精选和答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域恒有()M x f ≤(M 是正数),则函数()x f 在该邻域( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。

高等数学第1章课后习题答案(科学出版社)

高等数学第1章课后习题答案(科学出版社)

第一章 函数、极限、连续习题1-11.求下列函数的自然定义域:(1)321x y x=+-(2) 1arctany x=+(3) 1arccosx y -=;(4) 313 , 1x y x ⎧≠⎪=⎨⎪=⎩. 解:(1)解不等式组23010x x +≥⎧⎨-≠⎩得函数定义域为[3,1)(1,1)(1,)---+∞U U ; (2)解不等式组230x x ⎧-≥⎨≠⎩得函数定义域为[U ;(3)解不等式组2111560x x x -⎧-≤≤⎪⎨⎪-->⎩得函数定义域为[4,2)(3,6]--U ; (4)函数定义域为(,1]-∞.2.已知函数()f x 定义域为[0,1],求(cos ),()() (0)f f x f x c f x c c ++->的定义域.解:函数f要有意义,必须01≤≤,因此f 的定义域为[0,1];同理得函数(cos )f x 定义域为[2π-,2π]22k k ππ+;函数()()f x c f x c ++-要有意义,必须0101x c x c ≤+≤⎧⎨≤-≤⎩,因此,(1)若12c <,定义域为:[],1c c -;(2)若12c =,定义域为:1{}2;(3)若12c >,定义域为:∅. 3.设21()1,||x a f x x x a ⎛⎫-=- ⎪-⎝⎭0,a >求函数值(2),(1)f a f .解:因为21()1||x a f x x x a ⎛⎫-=- ⎪-⎝⎭,所以 21(2)104a f a a a ⎛⎫=-= ⎪⎝⎭,22 ,>1,11(1)10 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4. 证明下列不等式:(1) 对任何x R ∈有 |1||2|1x x -+-≥; (2) 对任何n Z +∈有 111(1)(1)1n n n n++>++;(3) 对任何n Z +∈及实数1a >有 111na a n--≤.证明:(1)由三角不等式得|1||2||1(2)|1x x x x -+-≥---= (2)要证111(1)(1)1n n n n++>++,即要证111n +>+= 111(1)(1)(1)11111n n n n n +++++++<=+++L 得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学函数极限与连续习题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]1、函数()12++=x xx f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大.错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()n n a 1-=,1)1(lim =-∞→n n ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小).正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim =αβ,是∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xx y =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值. 错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭ );(3)()x f lg 的定义域是( (1,10) ).答案:(1)∵10<<x e (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ). 3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nx n n sin lim ∞→=( x ).∵x x nx n xn n x n x n n n n =⋅==∞→∞→∞→sinlim 1sinlimsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ).∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-).∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222欲使上式成立,令012=-a ,∴1a =±, 上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()xx f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→xxax x ,则=a ( 2 ).()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim ( 0 ),=∞→xx x 1sin lim ( 1 ),()=-→xx x 11lim ( 1-e ),=⎪⎭⎫⎝⎛+∞→kxx x 11lim ( k e ).∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa3、当0→x 时,1-x e 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在∵1sin lim sin lim sin lim000000-=-=-=-→-→-→xxx x x x x x x 根据极限存在定理知:()x f x 0lim →不存在。

7、如果函数()x f 当0x x →时极限存在,则函数()x f 在0x 点( c )a .有定义b .无定义c .不一定有定义∵()x f 当0x x →时极限存在与否与函数在该点有无定义没有关系。

8、数列1,1,21,2,31,3,…,n1,n ,…当∞→n 时为( c ) a .无穷大 b .无穷小 c .发散但不是无穷大9、函数()x f 在0x 点有极限是函数()x f 在0x 点连续的( b )a .充分条件b .必要条件c .充分必要条件 10、点0=x 是函数1arctan x的( b )a .连续点b .第一类间断点c .第二类间断点∵001lim arctan 2x x π→-=- 001lim arctan 2x x π→+=根据左右极限存在的点为第一类间断点。

11、点0=x 是函数x1sin 的( c )a .连续点b .第一类间断点c .第二类间断点 四、计算下列极限:1、()nn nn 31lim -+∞→ 解 ()31))1(3131(lim 31lim =-⋅+=-+∞→∞→n n n n n nn 2、0tan 3limsin 2x xx→解 0tan 3lim sin 2x x x →2323lim 0==→x x x (∵x x 2sin ,0→~2,tan3x x ~x 3) 3、⎪⎭⎫ ⎝⎛+--+∞→x x x x x lim4、()n n n n n --++∞→221lim解 ()()()nn n n nn n nnn n n n nn nn n -+++-+++--++=--++∞→∞→22222222111lim1lim5、xx x x x sin lim 2300+++→6、11sin lim 20-+→x xx x7、11lim 0--→x x x8、1lim1--→x xx x9、30tan sin lim x x xx →-(∵210,1cos 2x x x →-,sin x )10、xx x 2cos 1lim0--→解()21221lim2cos 1lim20000-==--→-→x x xx x x(∵x x cos 1,0-→~221x )11、1lim 1xx x x →∞-⎛⎫⎪+⎝⎭解121111lim lim 111xx x x x x e x x e e x -→∞→∞⎛⎫- ⎪-⎛⎫⎝⎭=== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭12、⎪⎭⎫ ⎝⎛+∞→x x x 11ln lim解 ⎪⎭⎫⎝⎛+∞→x x x 11ln lim 111lim ln 11ln lim =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=∞→∞→xx xx x x 13、xx xx x cos cos lim+-∞→解 cos 1cos lim lim 1cos cos 1x x x x x x x x x x→∞→∞--==++14、⎪⎭⎫⎝⎛---→1112lim 21x x x 解 2211121111lim lim lim 11112x x x x x x x x →→→-⎛⎫-==-=- ⎪---+⎝⎭ 15、x 解lim lim 1x x →∞→∞==16、x x x cos 1sin lim 00-+→ 解000000sin sin lim lim lim x x x x x x →+→+→+===17、()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n 解 ()⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→11321211lim n n n。

相关文档
最新文档