ansys耦合场 压电梁的模态分析

合集下载

ansys模态分析及详细过程

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。

ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。

2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。

(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。

(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。

指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。

指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。

ANSYS耦合场分析

ANSYS耦合场分析

ANSYS耦合场分析指南第三章2007-11-20 作者:安世亚太来源:e-works发表时间:关键字:ANSYS耦合场分析CAE教程3.141 静态分析对于静态分析,施加在换能器上的电压将产生一个作用在结构上的力。

例如如图 3 —3给机电换能器单元(TRANS126 )施加电压(V l>V2 )将产生静电力使扭梁旋转。

转换器单元本身就同时具有稳定和非稳定解,根据开始位置(初始间隙值),该单元可以收敛到任一个解。

静电换能器的静平衡可能是不稳定的。

增加电压电容板间的吸力增加间隙减少。

对间隙距离d,弹簧的恢复力正比于1/d静电力正比于1/d 2。

当电容间隙减少到一定值,静电吸引力大于弹簧恢复力电容板贴在一起。

相反地,当电压减小到一定值,静电吸引力小于弹簧恢复力电容板张开。

如图3 —4换能器单元有迟滞现象。

电压渐变到牵引值然后回复到释放值。

PositionPULL-IN 陽尸RELEASE__PULL-IN 忠赫療图3 —4机电迟滞如图及3 —5换能器单元本身有稳定及非稳定解。

该单元收敛到哪一个解依赖于起始位置(初始间隙大小)Force 8PULL-INVOLTAGEPOEASEFKJLLIM RELEASE图3 —5 TRANS126 单元静态稳定特性系统刚度由结构刚度和静电刚度组成,它可能是负的。

结构刚度是正的因为当弹簧拉长力增加。

但是平行板电容器的静电刚度是负的。

随间隙增加平行板间的吸力减少。

如果系统刚度是负的,在接近不稳定解时可能有收敛问题。

如果遇到收敛问题,用增强的刚度方法(KEYOPT(6)= 1)。

这个方法静电刚度设置为零保证正的系统刚度。

达到收敛之后,静电刚度自动重新建立可以进行后处理及后续的分析。

在静态分析中,必须完整定义横跨换能器的电压。

还可以施加节点位移和力,使用IC命令来施加初始位移可有助于问题收敛。

《ANSYSStructural Analysis Guide 》第二章对静力分析有详细描述。

ANSYS-模态分析 介绍

ANSYS-模态分析 介绍

模态分析总论
• 运动学基本方程: }+ [C]{u }+ [K ]{u} = {F(t )} [M ]{ u • 假定自由振动并忽略阻尼:
}+ [K ]{u} = {0} [M ]{ u
2
Training Manual
DYNAMICS 11.0
• 假定谐波形式响应 (u = U sin( ωt ) )
其它分析选项
• 集中质量矩阵:
– –
Training Manual
DYNAMICS 11.0
主要用于细长梁或薄壳,或者波传播问题; 对 PowerDynamics 法,自动选择集中质量矩阵。 用于计算具有预应力结构的模态(以后讨论)。 阻尼仅在选用阻尼模态提取法时使用; 可以使用阻尼比α阻尼和β阻尼; 对BEAM4 和 PIPE16 单元,允许使用陀螺阻尼。
Training Manual
第二章 模态分析
模态分析总论
Training Manual
DYNAMICS 11.0
• 模态分析用来确定结构的振动特性的一种技术:
– 固有频率 – 振型 – 模态参与因子(结构振型在给定方向的参与程度)
• 是其他动力学分析的起点和基础.
模态分析总论
• 模态分析工程应用
DYNAMICS 11.0
子空间法
Training Manual
DYNAMICS 11.0
• 子空间法 :比较适合于提取类似中型到大型 模型的较少的振型 (<40)
– 需要相对较少的内存; – 实体单元和壳单元应当具有较好的单元形状,要对 任何关于单元形状的警告信息予以注意; – 在具有刚体振型时可能会出现收敛问题; – 建议在具有约束方程时不要用此方法。

ANSYS 模态分析

ANSYS 模态分析

ANSYS 模态分析中如何提取指定方向的模态问题::一个圆形梁结构,一端固定,另一端自由。

在进行模态分析时,分析出来的结果包括绕轴向(假设为X轴)的扭转振动、另两个方向的弯曲振动,沿轴向的纵向振动,有没有办法从所有频率中提取出某个特定方向的振动频率,如只提取绕Y 轴的弯曲振动频率?回答:在求解模态的过程中,接近求解结束时,求解器会输出各个模态在6 个自由度方向的参与因子、有效质量等数据,可以用来判断不同固有频率的主要振动方向,就可以满足你的要求了。

如下是我做的一个试验模型,各固有频率在X 方向的相应数据,其中:第4 列- 参与因子partic.factor、第5 列- RATIO 比率倒数第2 列- EFFECTIVE MASS 有效质量都可以用来判断该自由度方向的主要振动频率。

其中数值较大的频率即为x 方向的主要振动频率:***** PARTICIPATION FACTOR CALCULATION ***** X DIRECTION - X 方向参与因子计算CUMULATIVEMODE FREQUENCY PERIOD PARTIC.FACTOR RATIO EFFECTIVE MASS MASSFRACTION1 0.222317E-02 449.81 0.39705E-07 0.000000 0.157649E-14 0.628139E-232 0.331743E-02 301.44 14588. 1.000000 0.212818E+09 0.8479573 0.332245E-02 300.98 0.86343E-06 0.000000 0.745503E-12 0.8479574 0.413432E-02 241.88 0.11602E-08 0.000000 0.134596E-17 0.8479575 0.451291E-02 221.59 6143.4 0.421117 0.377411E+08 0.9983346 0.544085E-02 183.79 0.50899E-09 0.000000 0.259072E-18 0.9983347 0.982385E-02 101.79 -0.48139E-08 0.000000 0.231739E-16 0.9983348 0.109711E-01 91.148 -0.11082E-09 0.000000 0.122817E-19 0.9983349 0.146079E-01 68.456 -542.28 0.037172 294063. 0.99950510 0.152870E-01 65.415 -0.93445E-09 0.000000 0.873195E-18 0.99950511 0.153817E-01 65.012 0.48326E-09 0.000000 0.233540E-18 0.99950512 0.194497E-01 51.415 352.40 0.024156 124187. 1.0000013 0.203595E-01 49.117 0.83660E-07 0.000000 0.699905E-14 1.0000014 0.216013E-01 46.293 -0.29377E-06 0.000000 0.863011E-13 1.0000015 0.221281E-01 45.191 0.10871E-05 0.000000 0.118169E-11 1.00000SUM OF EFFECTIVE MASSES= 0.250978E+09例如,使用其中的有效质量(EFFECTIVE MASS) 来判断X 方向的主要振动模态,即几个有效质量较大的模态,在此为频率2,5,9,12。

基于ANSYS的纯压电振子瞬态特性分析

基于ANSYS的纯压电振子瞬态特性分析
HAN o u SUN a LVHa g Ba -k n Ch o。 n
( h n o gU iesyo c n ea dT c nlg , ig a 6 5 0 C ia S a d n nvr t f i c n eh o y Q n do2 6 1 , hn ) i S e o
在 理 想 频 率 厂= 0 5k z下 对 振 子 表 面施 加 4 . H
Байду номын сангаас2 0V的正 弦变 压载荷 ( 0 载荷分 布 如 图 3所示 ) 行 进 瞬态分 析 。
l l 2 s I = 0c l =0 i2 2 o2 V 0 n 0 s 1 320o2 1 =0s 1 =0c 20n V s i2
j 薪 i
计 斩
. … …
c,
/ , 《 z ≯
' ;
… 一 … … … … … … … … … 一 … 一 … … … … … … … … … - … … … … … … - _ - … … … … … … - -_
触持电棚 22 第 o 第 期 0 年 4卷 4 l
( )一 阶 纵 向振 动 L 振 型 a l ( )二 阶弯 曲振 动 B b 2振 型
图 2 纯压 电振 子 的模 态 分 析 结 果
根 据模 态简 并原则 , 选定 3 4 Hz 8~ 3k 作为 频率 范围, 并对 压 电振子 两 表 面 施加 幅值 为 20V的 正 0 弦 电压 进 行 谐 响 应 分 析 , 到 振 子 的 理 想 频 率 为 得
并能在各场间实现有限耦合的 S LD 单元。 O I5 压 电振 子 的性能 参 数 J压 电振 子材 料 为 锆钛 :
酸铅 ( i 缩 写 :Z 4 , 料 密 度 为 750 PZTO )( PT ) 材 0

ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析ANSYS是一个广泛应用于工程领域的有限元分析软件,可以用于各种结构的模态分析,包括机械结构、建筑结构、航空航天结构等。

模态分析是通过计算结构的固有频率和振动模态,用于评估结构的动力特性和振动响应。

以下是一个ANSYS模态分析的教程及实例讲解解析。

一、教程:ANSYS模态分析步骤步骤1:建立模型首先,需要使用设计软件绘制或导入一个几何模型。

然后,在ANSYS中选择适当的单元类型和材料属性,并创建适当的网格。

确保模型的几何形状和尺寸准确无误。

步骤2:约束条件在进行模态分析之前,需要定义适当的约束条件。

这些条件包括固定支持的边界条件、约束点的约束类型、约束方向等。

约束条件的选择应该与实际情况相符。

步骤3:施加载荷根据实际情况,在模型上施加适当的载荷。

这些载荷可以是静态载荷、动态载荷或谐振载荷,具体取决于所要分析的问题。

步骤4:设置分析类型在ANSYS中,可以选择多种不同的分析类型,包括静态分析、模态分析、动态响应分析等。

在进行模态分析时,需要选择模态分析类型,并设置相应的参数。

步骤5:运行分析设置好分析类型和参数后,可以运行分析。

ANSYS将计算结构的固有频率和振动模态。

运行时间取决于模型的大小和复杂性。

步骤6:结果分析完成分析后,可以查看和分析计算结果。

ANSYS将生成包括固有频率、振动模态形态、振动模态形状等在内的结果信息。

可以使用不同的后处理技术,如模态形态分析、频谱分析等,对结果进行更详细的分析。

二、实例讲解:ANSYS模态分析以下是一个机械结构的ANSYS模态分析的实例讲解:实例:机械结构的模态分析1.建立模型:使用设计软件绘制机械结构模型,并导入ANSYS。

2.约束条件:根据实际情况,将结构的一些部分设置为固定支持的边界条件。

3.施加载荷:根据实际应用,施加恰当的静态载荷。

4.设置分析类型:在ANSYS中选择模态分析类型,并设置相应的参数,如求解方法、迭代次数等。

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解

结构动态特性的改善方法
增加结构阻尼
通过增加结构阻尼,可以有效地吸收和消耗振动能量,减小结构 的振动幅值和响应时间。
优化结构布局
通过合理地布置结构的质量、刚度和阻尼分布,可以改善结构的动 态特性,提高结构的稳定性和安全性。
加强关键部位
对于关键部位,应加强其刚度和稳定性,以减小其对整体结构的振 动影响。
ansys模态分析教程及实例讲解
目 录
• 引言 • ANSYS模态分析基础 • ANSYS模态分析实例 • 模态分析结果解读 • 模态分析的优化设计 • 总结与展望
01 引言
ห้องสมุดไป่ตู้
目的和背景
01
了解模态分析在工程领域的应用 价值,如预测结构的振动特性、 优化设计等。
02
掌握ANSYS软件进行模态分析的 基本原理和方法。
挑战
未来模态分析面临的挑战主要包括处理大规模复杂结构 、模拟真实环境下的动力学行为以及提高分析的实时性 。随着结构尺寸和复杂性的增加,如何高效地处理大规 模有限元模型和计算海量数据成为亟待解决的问题。同 时,为了更准确地模拟实际工况下的结构动力学行为, 需要发展更加逼真的边界条件和载荷条件设置方法。此 外,提高模态分析的实时性对于一些实时监测和反馈控 制的应用场景也具有重要的意义。
模态分析基于振动理论,将复杂结构系统分解为若干个独立的模态,每个模态具有 特定的固有频率和振型。
模态分析可以帮助工程师了解结构的动态行为,预测结构的振动响应,优化结构设 计。
模态分析的步骤
建立模型
施加约束
求解
结果分析
根据实际结构建立有限 元模型,包括几何形状、 材料属性、连接方式等。
根据实际工况,对模型 施加约束条件,如固定

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解
– 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下 的振动称为强迫振动。
任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
频率分析的相关知识
• 静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶……固有频率,并且具
有与各个固有频率对应的振动模态。
频率分析的相关知识
• 共振(以荡秋千为例) –荡得好的人荡几下马上就能荡得很高
–这是因为与秋千摆动的节拍和时间配合起来的原因。 –换句话说,与秋千的固有频率(固有周期)相配合,这
– 小变形 – 弹性范围内的应变和应力 – 没有诸如两物体接触或分离时的刚度突变。
应力
弹性模量 (EX)
应变
准备工作
A. 哪种分析类型?
• 如果加载引起结构刚度的显著变化,必须进行 非线性分析。引起结构刚度显著变化的典型因 素有: – 应变超过弹性范围(塑性) – 大变形,例如承载的鱼竿 – 两体之间的接触
• 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
• 固有振动模态(以弦的振动为例)
– 两端被固定住的弦,以手指弹一下张紧的弦,弦则振动 起来,振动在空气中传播发出声音。弦以下图所示的各
第三讲模态分析
• 在开始ANSYS分析之前,您需要作一些决定, 诸如分析类型及所要创建模型的类型。
• 标题如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压电梁的模态分析
几何尺寸:梁的长度L1=300mm 宽度W=30mm 厚度 H1=2mm 压电片长度 L=50mm 宽度W=30mm 厚度 H=1mm 采用pzt-5H 压电陶瓷片
模态分析结果
一阶振型(f=23.144Hz ) ++- -
箭头为压电陶瓷
的极化方向
二阶振型(f=137.52Hz)
/prep7
! PZT-5H 材料特性参数
mp,DENS,1,7700 ! 密度, kg/m**3
mp,perx,1,1700 ! 介电常数
mp,pery,1,1700
mp,perz,1,1470
tb,ANEL,1 ! 弹性劲度系数, N/m^2 tbdata,1,12.6E10,7.95E10,8.41E10 ! c11,c12,c13
tbdata,7,12.6E10,8.41E10 ! c11,c33
tbdata,12,11.7E10 ! c33
tbdata,16,2.30E10 ! c44
tbdata,19,2.30E10 ! c44
tbdata,21,2.35E10 ! c66
tb,PIEZ,1 ! 压电(应力)常数, C/m^2 tbdata,3,-6.5 ! e31
tbdata,6,-6.5 ! e31
tbdata,9,23.3 ! e33
tbdata,11,17.0 ! e15
tbdata,13,17.0 ! e15
!定义主结构的材料参数
mp,dens,2,7800
EX,2,209e9
nuxy,2,0.3
! 定义压电复合梁几何模型(L=50mm W=30mm H = 1 mm)
L=50e-3
W=30e-3
H =1e-3 !压电片几何尺寸
L1=300e-3
H1=2e-3 !主结构几何尺寸
local,11 ! 建立下层局部坐标+Z 方向local,12,,,,,,,180 ! 建立上层局部坐标-Z 方向csys,11 ! 激活局部坐标系11 +y 方向block,0,L1,0,W,O,H1
block,0,L,0,W,0,-H
block,0,L,0,W,H1,H1+H
vglue,all !将梁同压电片粘结
et,1,solid5,3 !定义压电单元
et,2,solid45 !定义主结构单元
!采用映射划分网格连接相邻面
asel,s,loc,z,0
cm,CM_1,area
cmplot,CM_1
accat,CM_1
asel,s,loc,z,H1
cm,CM_2,area
accat,CM_2
!进行网格划分
LESIZE,ALL,5e-3, , , ,1, , ,1,
mat,1 $ type,1 $ esys,11 !对下层压电片网格划分Vmesh,4
mat,2 $ type,2 $ esys,11 !对中间结构网格划分Vmesh,6
mat,1 $ type,1 $ esys,12 !对上层压电片网格划分vmesh,5
nsel,s,loc,z,-H !定义下层电极
cp,1,volt,all
*get,n_bot,node,0,num,min
nsel,s,loc,z,H+H1 !定义上层电极
cp,2,volt,all
*get,n_top,node,0,num,min
nsel,s,loc,z,0 !压电片中间面电压耦合nsel,r,loc,x,0,L
cm,CM_3,node
nsel,s,loc,z,H1
nsel,r,loc,x,0,L
cm,Cm_4,node
cmsel,s,cm_3,node
cmsel,a,cm_4,node
cp,3,volt,all
fini
/solu
antype,modal
modopt,lanb,3
mxpand,3
nsel,s,loc,x,0
d,all,ux,0,,,,uy,uz
d,n_top,volt,0 !上下层电极短路d,n_bot,volt,0
nsel,all
solve
fini。

相关文档
最新文档