投影的定义与分类

投影的定义与分类
投影的定义与分类

1、地球的形状

2、地图投影

将地球椭球面上的点投影到平面上的方法称为地图投影。其实质是建立地球椭球面上的地理坐标(经纬度)和平面上直角坐标之间的函数关系。

是为解决由不可展的椭球面描绘到平面上的矛盾,用几何透视方法或数学分析的方法,将地球上的点和线投影到可展的曲面(平面、园柱面或圆锥面)上,将此可展曲面展成平面,建立该平面上的点、线和地球椭球面上的点、线的对应关系。

3、曲面到平面的过程

4、变形

确定变形的大小和形状,取决于:

地图的用途、比例尺、区域的大小、轮廓形状、其他特殊要求。

变形的种类:距离、面积、角度;

保持或减小其中的某一类变形,必会引起其他变形的加剧

变形的衡量:

保持或减小其中的某一类变形,必会引起其他变形的加剧

变形椭圆:假定地面上有个微小的圆(称为微分圆),其半径为r,一个圆经变形后总是一个椭圆

变形椭圆的长半轴是该点的最大长度比a,短半轴是该点的最小长度比b。

5、根据变形规律,地图投影可以分为:

等角投影:微分圆投影后仍然是一个圆(椭圆的特例),a=br。图形保持相似性,角度保持不变,但面积可能变化较大。

等面积投影:微分圆投影后变成一个椭圆,但此变形椭圆的面积与微分圆的面积相等。a*b=r2或P=a*b=1,a=1/b或b=1/a;形状可能变化较大

等距离投影:可以保持沿某一特定的直线系(沿经线方向或交于同一点的大圆方向)长度没有变形。注意不是沿任何方向都保持距离不变。变形椭圆必定有一个轴等于微分圆的半径r,a=r或b=r

A、等角投影

投影后的经纬线一定正交;

投影后经纬线正交的不一定是等角投影;

投影后经纬线不正交的一定不是等角投影;

世界各国的国家基本地形图均选用此投影;

常见的有默卡托(TM/UTM),兰勃脱投影;

B、等面积投影

保持面积投影前后不变,即面积比P=1,面积没有变形Vp=0;

适用于编制某些要求面积正确的专题地图,如行政区划地图、人口图、森林图和矿产资源分布图;

C、等距离投影

投影后沿特定方向长度比等于1(a=1或b=1);

广泛用于编制飞行基地、导弹发射中心的地图

6、按几何原理,投影可以分为:圆柱、圆锥、方位投影

A、圆锥投影

从几何概念上来说,用一个圆锥面在纬度φ0处与地球相切,或者在纬度φ1和纬度φ2处与地球相割,然后沿一条经线将圆锥面剪开并展成平面,成为圆锥投影。

从性质上来分,可以分为等角、等面积、等距离圆锥投影。

例如:

-----Lambert投影(单/双标准纬线)----

正轴等角圆锥投影,圆锥投影的特例;

角度没有变形;

m=n;

P=m*m=n*m

经线为直线

纬线为同心圆

极点为经线的交点

编制我国全图

-------正轴等面积圆锥投影--------

大多为双标准纬线

亦称Albers投影

保持制图面积大小不变

Vp=0

角度变形较大

沿经纬线长度比互为倒数m=1/n

极点投影后为一圆弧

广泛用于编制行政区划图、森林资源图、矿产分布图

B、圆柱投影

将圆柱切于地球赤道,或割于某两条同名纬线,圆柱面中心轴线与地轴重合,构成正轴圆柱投影

特例:

------正轴等角圆柱投影--------

亦称默卡托(Mercator)投影;

经纬线投影后均为平行直线且相互垂直;

m=n;

m\n随纬度增大而增大;

高纬度地区面积变形很大(P=mn);

因为等角航线表象为直线,广泛用于航海图和航空图。

-----横轴麽卡托投影-----------

椭圆柱切于经线

该经线为中央子午线

沿母线展开

按等角条件就构成了高斯克吕格投影

-----高斯克旅各投影-----

中央经线和赤道投影为平面直角坐标系的坐标轴

投影后无角度变形

中央经线投影后保持长度不变

在同一纬线上,长度比随经差增大而增大

在同一经线上,长度比随纬度减小而增大

分带:

6度带:1:25000 – 1:500000系列比例尺地形图3度带:1:10000 及大于1:10000比例尺地形图

其他约定:

将各带的坐标纵轴西移500公里。Y=y+500000m 加上投影带号。Y通=n*1000000+Y

-----UTM投影------

假定一个椭球面割于地球上的两个等高圈

投影后在赤道上离中央经线约180km(1’40”)位置的两条割线上没有变形,中央经线的长度比为0.9996;

相对Gauss,长度比和面积比都有所改善。

分带:

其他约定:

Y=Y’+50000(轴东)

Y=500000-Y’(轴西)

X=10000000-X’(南半球)X=X’(北半球)

C、方位投影

D、其他投影

非几何投影:不借助几何面,根据某些条件用数学解析法确定球面与平面之间点与点的函数关系。在这类投影中,一般按经纬线形状又分为下述几类:

伪方位投影:纬线为同心圆,中央经线为直线,其余的经线均为对称于中央经线的曲线,且相交于纬线的共同圆心。

伪圆柱投影:纬线为平行直线,中央经线为直线,其余的经线均为对称于中央经线的曲线。伪圆锥投影:纬线为同心圆弧,中央经线为直线,其余经线均为对称于中央经线的曲线。多圆锥投影:纬线为同周圆弧,其圆心均为于中央经线上,中央经线为直线,其余的经线均为对称于中央经线的曲线。

各种投影之间的转换关系:

我国使用的各种地图投影:

全国:斜轴等面积方位投影、斜轴等角方位投影、正轴等面积割园锥投影、正轴等角割园锥投影等

省区:正轴等面积割园锥投影、正轴等角割园锥投影、正轴等角圆柱投影、高斯-克吕格投影(宽带)

大比例尺:高斯-克吕格投影

几个结论:

1、坐标的几种形式:球面坐标(经纬度)、空间直角坐标、平面直角坐标

2、通常的坐标系统包括:椭球参数、投影类型、基准转换

3、假定地面任一点的经纬度是:36°36′,117°20 ′,如果没有说明椭球是没有意义的;假定地面任一点的平面直角坐标是4332200,17432200,如果没有说明椭球和投影是没有意

义的。

4、GPS定位的椭球基准是WGS84,我国的椭球基准是Krasovsky,要进行基准转换。

投影原理应用

情境二:制图标准应用训练子情境二:投影原理应用 一、投影的概念 在日常生活中,人们经常可以看到,物体在阳光或灯光的照射下,就会在地面或墙面上留下影子。这种影子的内部灰黑一片,只能反映物体外形的轮廓,而上部形状则被黑影所代替,不能表达物体的本来面目,如图a所示。 人们对自然界的这一物理现象加以科学的抽象和概括,把光线抽象为投影线,把物体抽象为形体(只 研究其形状、大小、位置,而不考虑它的物理性质和化学性质的物体),把地面抽象为投影面,即假设光线能穿透物体,而将物体表面上的各个点和线都在承接影子的平面上落下它们的影子,从而使这些点、线的影子组成能够反映物体形状的“线框图”,如图b所示。我们把这样形成的“线框图”称为投影。 把能够产生光线的光源称为投影中心,光线称为投影线,承接影子的平面称为投影面。这种把空间形体转化为平面图形的方法称为投影法。 要产生投影必须具备:投影线、形体、投影面。这就是投影的三要素。

1、投影的分类 根据投影线之间的相互关系,可将投影分为中心投影和平行投影。 1)中心投影 当投影中心S在有限的距离内,所有的投影线都交汇于一点,这种方法所产生的投影,称为中心投影,如图所示。 2)平行投影 把投影中心S移到离投影面无限远处,则投影线可视为互相平行,由此产生的投影称为平行投影。平行投影的投影线互相平行,所得投影的大小与物体离投影中心的距离无关。

根据投影线与投影面之间的位置关系,平行投影又分为斜投影和正投影两种:投影线与投影面倾斜时称为斜投影,如图a所示。投影线与投影面垂直时称为正投影,如图b所示。 a b 二、正投影法基本原理 工程上绘制图样的方法主要是正投影法。这种方法画图简单,画出的图形真实,度量方便,能够满足设计与施工的需要。 用一个投影图来表达形体的形状是不够的。如下图所示,四个形状不同的物体在投影面H上具有相同的正投影,单凭这个投影图来确定物体的唯一形状,是不可能的。 如果对一个较为复杂的形体,只向两个投影面做投影时,其投影就只能反映它两个面的形状和大小,

投影定义与坐标转换

GIS/RS在地理学中的应用 一、作业题目:基础03 坐标定义与投影变换 时间:2018 年9 月20 日 一、作业内容及要求概述 基础03 坐标定义与投影变换 1.数据文件 ① idll.shp,(Idaho 州的轮廓图) ② stationsll.shp,(Idaho 州的滑雪道) ③ snow.txt,(Idaho 州 40 个滑雪场的经纬度值) 2.GIS操作 ①按要求更改文件投影的 ②给文件定义投影 ③用经纬度信息文本生成指定投影地点分布图 3. 作业报告总结以下内容 ①将 idll.shp 的投影变换为Idaho 州横轴麦卡托坐标系( Idaho Transverse Mercator, IDTM)IDTM参数设置如下: Projection Transverse Mercator Datum NAD83 Units meters Parameters scale factor: 0.9996 central meridian: -114.0 reference latitude: 42.0

false easting: 2,500,000 false northing: 1,200,000 ②将IDTM坐标系统应用到stationsll.shp 上 用snow.txt 生成一个UTM投影(Nad 1983UTM Zone11N)的滑雪场分布图 二、工作方法及技术流程 (思路、方法、主要操作步骤、技术流程等) ①将 idll.shp 的投影变换为Idaho 州横轴麦卡托坐标系 1:右键单击属性,查看idll属性其坐标系统信息。元数据页中坐标系统已经为GCS_North_American_1927 2:接下来将idll.shp投影到IDTM坐标系统。在ArcToolbox中Data Manager Tools =>Projections and Transformations=>Features=>Project

工业锅炉的分类

工业热水锅炉的分类 一、锅炉的分类 锅炉的分类有多重方法。按用途可分为、电站锅炉、工业热水锅炉、生活锅炉等。电站锅炉用于发电。工业锅炉用于工业生产,生活锅炉用于采暖和热水供应。 按结构可分为火管锅炉和水管锅炉。火管锅炉中,烟气在管内流过,水管锅炉中,汽水在管内流过。 按蒸发受热面内工质的流动方式可分为自然循环锅炉、强制循环锅炉、直流锅炉和复合循环锅炉。自然循环锅炉具有锅筒,利用下降管和上升管中工质密度差产生工质循环,只能在临界压力以下应用。直流锅炉无锅筒,给水靠水泵压头一次通过受热面,适用于各种压力。强制循环锅炉在循环回路的下降管与上升管之间设置循环泵,用以辅助水循环并作强制流动,又称辅助循环锅炉或控制循环锅炉。复合循环锅炉是介于强制循环锅炉和直流锅炉之间的一种锅炉。它在高负荷时按直流锅炉模式运行,它在低负荷时按强制循环锅炉模式运行,循环泵只在低负荷下工作。 按出口工质压力可分为常压热水锅炉、微压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉、超临界压力锅炉和超超临界压力锅炉。常压锅炉的表压为零;微压锅炉的表压为几十个Pa;低压锅炉的压力一般小于1.275MPa;中压锅炉的压力一般为3.825MPa;高压锅炉的压力一般为9.8MPa;超高压锅炉的压力一般为13.73MPa;亚临界压力锅炉的压力一般为16.67MPa;超亚临界锅炉的压力 23~25MPa;超超临界压力锅炉的压力一般大于27MPa。发电用电站锅炉的工作压力一般都为中等压力以上。 按热水方式可分为火床燃烧锅炉、火室燃烧锅炉、硫化床燃烧锅炉和旋风燃烧锅炉。按所用燃料和能源可分为固体燃料锅炉、液体燃料锅炉、气体燃料锅炉、余热锅炉和废料锅炉。按排渣方式可分为固态排渣锅炉和液态排渣锅炉。固态排渣锅炉中,燃料燃烧后生成的灰渣呈固态排出,是燃煤锅炉的主要排渣方式。液态排渣锅炉中,燃料燃烧后生成的灰渣呈液态从渣口流出,在裂化箱的冷却水中裂化成小颗粒后排入水沟中冲走。 按炉膛烟气压力可分为负压锅炉、微正压锅炉和增压锅炉。负正锅炉中炉膛压力保持负压,有送、引风机,是燃煤锅炉主要形式。微正压锅炉中炉膛表压力为2~5kPa。不需引风机,宜于低氧燃烧。增压锅炉中炉膛表压力大于0.3MPa,用于配蒸汽—燃气联合循环。

投影法的基本概念

第一节投影法的基本概念 在工程技术中,人们常用到各种图样,如机械图样、建筑图样等。这些图样都是按照不同的投影方法绘制出来的,而机械图样是用正投影法绘制的。 1、投影法的概念 举例:在日常生活中,人们看到太阳光或灯光照射物体时,在地面或墙壁上出现物的 影子,这就是一种投影现象。我们把光线称为投射线(或叫投影线),地面或墙壁称为投影面,影子称为物体在投影面上的投影。 下面进一步从几何观点来分析投影的形成。设空间有一定点S和任一点A,以及不通过点S和点A的平面P,如图所示,从点S经过点A作直线SA,直线SA必然与平面P相交于一点a,则称点a为空间任一点A在平面P上的投影,称定点S为投影中心,称平面P为投影面,称直线SA为投影线。据此,要作出空间物体在投影面上的投影,其实质就是通过物体上的点、线、面作出一系列的投影线与投影面的交点,并根据物体上的线、面关系,对交点进行恰当的连线。 如图所示,作△ABC在投影面P上的投影。先自点S过点A、B、C分别作直线SA、SB、SC与投影面P的交点a、b、c,再过点a、b、c作直线,连成△abc ,△abc即为空间的△ABC在投影面P上的投影。 上述这种用投射线(投影线)通过物体,向选定的面投影,并在该面上得到图形的方法称为投影法。 投影法的概念中心投影法 2、投影法的种类及应用 (1)中心投影法 投影中心距离投影面在有限远的地方,投影时投影线汇交于投影中心的投影法称为中心投影法,如图所示。 缺点:中心投影不能真实地反映物体的形状和大小,不适用于绘制机械图样。 优点:有立体感,工程上常用这种方法绘制建筑物的透视图。 (2)平行投影法 投影中心距离投影面在无限远的地方,投影时投影线都相互平行的投影法称为平行投影法,如图所示。 根据投影线与投影面是否垂直,平行投影法又可以分为两种: 1)斜投影法——投影线与投影面相倾斜的平行投影法,如图所示。 2)正投影法——投影线与投影面相垂直的平行投影法,如图所示。

《中心投影和平行投影》教案

《中心投影和平行投影》教案三维目标: 一、知识与技能 1.了解中心投影、平行投影、斜投影、正投影的概念。 2.了解三视图的有关概念。 3.掌握三视图画法规则,能正确画出简单空间几何体的三视图,并能识别三视图所表示的立体模型。 二、过程与方法 1、通过欣赏、观察各种投影,进一步培养学生的空间想象能力。 2、通过学生作图、识图来培养运用图形进行数学交流的能力。 三、情感态度与价值观 通过引导学生欣赏生活中投影的例子,使学生不断感受 数学,走进数学,转变学生的数学学习态度,激发学生 学习数学的热情。 教学重点: 1、中心投影、平行投影的概念 2、三视图的画法规则及画空间几何体的三视图 教学难点: 画空间几何体的三视图及根据三视图判断空间几何体的形状和结构。 教具准备: 多媒体课件、几何模型 教学过程: 一、创设情景,引入新课 (多媒体播放手影表演、皮影戏的动画,组织学生欣赏) 1、提问:同学们在感受这些形象逼真的图形时,是否 思考一下,这些图形是怎样形成的呢?它们形成的原 理又是什么呢?这些原理还有哪些重要用途呢? 2、导入:这就是我们本节课所要研究的问题——中心 投影和平行投影。 二、知识生成、示例讲解: 1、投影的概念 (1)投影:光线通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。 (2)中心投影:投射线交于一点的投影称为中心投影。 (3)平行投影:投射线相互平行的投影称为平行投影。平行投影分为斜投影与正投影。 讲解原则:配以多媒体动画,让学生思考,抽象或概

括出相应定义,教师加以修正。 练习:判断下列命题是否正确 (1)直线的平行投影一定为直线 (2)一个圆在平面上的平行投影可以是圆或椭圆或线段 (3)矩形的平行投影一定是矩形 (4)两条相交直线的平行投影可以平行 2、中心投影和平行投影的区别和用途 中心投影形成的直观图能非常逼真地反映原来的物体,主要运用于绘画领域。同学们课后可阅读教科书第18页相关材料,平行投影形成的直观图则能比较精确地反映原来物体的形状和特征。因此更多应用于工程制图或技术图样。 3、空间图形的三视图 (1)三视图概念 视图是指将物体按正投影向投影面投射所得到的图形。光线自物体由前向后投射所得投影称为主视图或正视图。光线自物体由上向下投射所得投影称为俯视图。光线自物体由左向右投射所得投影称为左视图。 (2)三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等 讲解原则:借助多媒体,师生共同讨论,认识清楚三视图画法规则和画三视图过程中需注意的问题。 例1、画出下列几何体的三视图 分析:画三视图之前,应把几何体的结构弄清楚,选择一个合适的主视方向。一般先画主视图,其次画俯视图,最后画左视图。画的时候把轮廓线要画出来,被遮住的轮廓线要画成虚线。物体上每一组成部分的三视图都应符合三条投射规律。 解:这二个几何体的三视图如下 练习:画出下列几何体的三视图 回顾与反思:通过师生共同画图,学生独立画图,让学生充分掌握画三视图的画法规则和一般步骤,认识到空间图形与其三视图间的对应关系,进而提高学生的空间想象能力。 例2、如图,设所给的方向为物体的正前方,试画出它的三视图(单位:cm) 分析:该几何体结构较复杂,可先出示其实物模型,引导学生从三个不同角度观察,找出其轮廓线,进而画出其三视图。在画三视图时,可按相应比例来画。

地图投影的概念

地图投影的概念 我们可以用一个特定的旋转椭球体面或球面代替地球的自然表面。但是,无论是椭球面或球面均为不可展平的曲面,即不能无裂隙、无重叠地描绘在地图平面上。就像桔皮剥下平铺在平面上,必然产生裂隙一样,如果硬将地球表面展成平面,也不可避免地会产生裂隙或重叠。 人们研究地球及地理环境时往往将其缩小数千万倍制成地球仪,我们研究如何把椭球体表面描写在平面上时,也不妨借助地球仪。假定按相同经差(例如30°)沿经线将地球仪切成若干等分,如图1。我们在一个极点将各等分结合平展在纸面上,则产生了裂隙。这些裂隙随着离开原点距离的增大而增大。假定仍按上述方法切割等分地球仪,如图2,我们在南北纬30°纬线上将各部分结合平展在纸面上,则既产生裂隙又产生重叠。在30°纬线以内,随着离该纬线的距离加大重叠度加大,在30°纬线以外,随着离纬线的距离加大裂隙加大。倘若按相同纬差沿纬线将地球仪切成若干等份,再将各等分沿同一条经线切开,如图3,我们沿某一经线将各部分结合平展在纸面上,同样产生裂隙,图1这些裂隙随着离结合经线距离的增大而增大。 图1 图2 众所周知,地图上一般不允许出现裂隙和重叠。为了消除地图上的裂隙和重叠,实现地球表面在地图上的正确描写,早在公元前600多年,希腊天文学家塞利斯就研制出日晷投影——球心方位投影编制天体图;在公元前200多年亚历山大天文学和地理学家埃拉托色尼研制出正轴等距投影编制世界图。随着社会生产及科学技术的进步,地图学不断发展,科学家们又探求了许多新的投影,以适用于不同内容、不同 用途、不同比例尺地图的需要。 要把它们绘制成地图,首先要将球面上的经纬线 展绘到平面上,然后按地理事物的坐标转绘到相应格 网中而构成地图。由此可见,经纬网在绘制地图的过 程中具有“骨架”作用。地图投影就是研究球面上经 纬网展绘到平面上的数学方法。 地图投影学是地图学的一个分支学科,它研究地 图投影的理论、方法、应用和变换等,也称为数学制 图学。图3 数学上“投影”是不同曲面之间点与点的对应关系。地图投影实质上是在地球面和平面之间建立这种关系。如图4,设球面上点A(、λ)投影后对应于平面上点A'(x、y),则A 与A'的坐标之间存在函数关系:

锅炉分类

锅炉的分类 锅炉的分类 一、按烟气在锅炉流动的状况分:水管锅炉、锅壳锅炉(火管锅炉)、水火管组合式锅炉 二、按锅筒放置的方式分:立式锅炉、卧式锅炉 三、按用途分:生活锅炉、工业锅炉、电站锅炉 四、按介质分:蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉 五、按安装方式分:快装锅炉、组装锅炉、散装锅炉 六、按燃料分:燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、生物质锅炉 七、按水循环分:自然循环、强制循环、混合循环 八、按压力分:常压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉 九、按锅炉数量分:单锅筒锅炉、双锅筒锅炉 十、按燃烧定在锅炉内部或外部分:内燃式锅炉、外燃式锅炉 十一、按制造级别分类:A级、B级、C级、D级、E级(按制造锅炉的压力分) A级:压力无限制 B级:25公斤压力以下 C级:8公斤压力以下 D级:1公斤压力以下

1、按烟气在锅炉流动的状况分:水管锅炉、锅壳锅炉(火管锅炉)、水火管组合式锅炉 2、按锅筒放置的方式分:立式锅炉、卧式锅炉 3、按用途分:生活锅炉、工业锅炉、电站锅炉、车船用锅炉 4、按介质分:蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉 5、按安装方式分:快装锅炉、组装锅炉、散装锅炉 6、按燃料分:燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、生物质锅炉 7、按水循环分:自然循环、强制循环、混合循环 8、按压力分:常压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉 9、按锅炉数量分:单锅筒锅炉、双锅筒锅炉 1吨生物质锅炉 10、按燃烧定在锅炉内部或外部分:内燃式锅 家用锅炉 炉、外燃式锅炉11、按工质在蒸发系统的流动方式可分为自然循环锅炉、强制循环锅炉、直流锅炉等。12、按制造级别分类:A级、B级、C级、D级、E级(按制造锅炉的压力分)13、按出口蒸汽压力分为:低压锅炉(P<2.45MPa)、中压锅炉(3.8

全息投影定义、原理及分类介绍

全息投影定义、原理及分类介绍 在科技快速发展的今天,人们对视觉要求越来越高,由此能实现裸眼立体3D 显示的全息投影技术的应用也是越来越多,在给人们带来新鲜有趣的视觉体验的同时,也为众多商家提供新的宣传营销方式,打开市场新大门。 全息投影技术在展览展示方式,采用全息投影技术的全息成像柜可以使立体影像不借助任何屏幕或介质而直接悬浮在设备外的自由空间,任意角度看都是三维影像展现。产品种类多样分有全息展示柜、180度全息展示柜、270度全息展示柜、360度全息展示柜、全息金字塔、大中小型全息金字塔定制、全息投影设备、3D投影成像设备、全息玻璃柜等,可根据用户使用需求使用场地进行定制。未来全息投影技术市场发展潜力将是无可估量的。 一、什么是全息投影全息投影技术是近些年来流行的一种高科技技术,它是采用一种国外进口的全息膜配合投影再加以影像内容来展示产品的一种推广手段。它提供了神奇的全息影像,可以在玻璃上或亚克力材料上成像。这种全新的互动展示技术将装饰性和实用性融为一体,在没有图像时完全透明,给使用者以全新的互动感受,成为当今一种最时尚的产品展示和市场推广手段。全息投影设备包括:全息投影仪,全息投影幕,全息投影膜,全息投影内容制作等。航天科工数字展示事业部提供3D全息投影成像系统项目策划、3D全息投影成像展示内容制作、 二、全息技术的原理全息投影技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立

投影的基本知识

第2章 投影的基本知识 2.1投影法概述 2.1.1投影的概念 在日常生活中,人们经常可以看到,物体在日光或灯光的照射下,就会在地面或墙面上留下影子,如图2-1a 所示。人们对自然界的这一物理现象经过科学的抽象,逐步归纳概括,就形成了投影方法。在图2-1b 中,把光源抽象为一点,称为投射中心,把光线抽象为投射线,把物体抽象为形体(只研究其形状、大小、位置,而不考虑它的物理性质和化学性质的物体),把地面抽象为投影面,即假设光线能穿透物体,而将物体表面上的各个点和线都在承接影子的平面上落下它们的投影,从而使这些点、线的投影组成能够反映物体形状的投影图。这种把空间形体转化为平面图形的 a)影子 b)投影 a)影子 b)投影 图2-1 影子与投影 要产生投影必须具备:投射线、形体、投影面,这是投影的三要素。 2.1.2投影的分类 根据投射线之间的相互关系,可将投影法分为中心投影法和平行投影法。 1.中心投影法 当投射中心S 在有限的距离内,所有的投射线都汇交于一点,这种方法所得到的投影,称为中心投影,如图2-2所示。在此条件下,物体投影的大小,随物体距离投射中心S 及投影面P 的远近的变化而变化,因此,用中心投影法得到物体的投影不能反映该物体真实形状和大小。 图2-2 中心投影 2.平行投影法

把投射中心S 移到离投影面无限远处,则投射线可看成互相平行,由此产生的投影称为平行投影。因其投射线互相平行,所得投影的大小与物体离投影中心及投影面的远近均无关。 在平行投影中,根据投射线与投影面之间是否垂直,又分为斜投影和正投影两种:投射线与投影面倾斜时称为斜投影,如图2-3a 所示;投射线与投影面垂直时称为正投影,如图2-3b 所示。 a)斜投影法 b)正投影法 a)斜投影法 b)正投影法 图2-3 平行投影 2.1.3平行投影的特性 1.同素性 在通常情况下,直线或平面不平行(垂直)于投影面,因而点的投影仍是点,直线的投影仍是直线。这一性质称为同素性。 2.显实性(真形性) 当直线或平面平行于投影面时,它们的投影反映实长或实形。如图2-4a 所示,直线AB 平行于H 面,其投影ab 反映AB 的真实长度,即ab=AB 。如图2-4b 所示,平面ABCD 平行于H 面,其投影反映实形,即三角形abc ≌三角形ABC 。这一性质称为显实性。 a) b) a) b) 图2-4 平行投影的显实性 3.积聚性 当直线或平面平行于投射线(同时也垂直于投影面)时,其投影积聚为一点或一直线。这样的投影称为积聚投影。如图2-5a 所示,直线AB 平行于投影线,其投影积聚为一点a(b);如图2-5 b 所示;平面三角形ABC 平行于投影线,其投影积聚为一直线ac 。投影的这种性质称为积聚性。

向量的数量积——数量积的投影定义(含数量积综合练习题)

向量的数量积——数量积的投影定义 一、基础知识 1、向量的投影: (1)有向线段的值:设有一轴l ,AB 是轴上的有向线段,如果实数λ满足AB λ=,且当AB 与轴同向时,0λ>,当AB 与轴反向时,0λ<,则称λ为轴l 上有向线段 AB 的值。 (2)点在直线上的投影:若点A 在直线l 外,则过A 作'AA l ⊥于'A ,则称'A 为A 在直线l 上的投影;若点A 在直线l 上,则A 在A 在直线l 上的投影'A 与A 重合。所以说,投影往往伴随着垂直。 (3)向量的投影:已知向量,a b ,若a 的起点,A B 在b 所在轴l (与b 同向)上的投影分别为'',A B ,则向量''A B 在轴l 上的值称为a 在b 上的投影,向量''A B 称为a 在 b 上的投影向量。 2、向量的投影与向量夹角的关系:通过作图可以观察到,向量的夹角将决定投影的符号,记θ为向量,a b 的夹角 (1)θ为锐角:则投影(无论是a 在b 上的投影还是b 在a 上的投影)均为正 (2)θ为直角:则投影为零 (3)θ为钝角:则投影为负 3、投影的计算公式:以a 在b 上的投影λ为例,通过构造直角三角形可以发现 (1)当θ为锐角时,cos b λθ=,因为0λ>,所以cos b λθ=

(2)当θ为锐角时,()cos cos b b λπθθ=-=-,因为0λ<,所以cos b λθ-=-即cos b λθ= (3)当θ为直角时,0λ=,而cos 0θ=,所以也符合cos b λθ= 综上可得:a 在b 上的投影cos b λθ=,即被投影向量的模乘以两向量的夹角 4、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为() cos a b a b θ?=?或 () cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 5、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点) (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 二、典型例题:

锅炉种类

锅炉种类_锅炉分类_锅炉分类知识 锅炉种类、分类知识: 一、按用途分类: 1. 电站锅炉: 用于发电,大多为大容量、高参数锅炉,火室燃烧,效率高,出口工质为过热蒸汽。 2. 工业锅炉: 用于工业生产和采暖,大多数为低压、低温、小容量锅炉,火床燃烧居多,热效率较低,出口,工质为蒸汽的称为蒸汽锅炉,出口工质为热水的称为热水锅炉。 3. 船用锅炉: 4. 机车锅炉: 5. 注汽锅炉: 用于油田对稠油的注汽热采,出口工质一般为,高压湿蒸汽。 二、按结构分类: 1. 火管锅炉: 烟气在火管内流过,一般为小容量、低参数锅炉,热效率低,但结构简单,水质要求低,运行维修方便。 2. 水管锅炉: 汽水在管内流过,可以制成小容量,低参数锅炉,也可以制成大容量、高参数锅炉。电站锅炉一般均为水管锅炉,热效率高,但对水质和运行水平的要求也较高。 三、按循环方式分类 1. 自然循环锅筒锅炉 2. 多次强制循环锅筒锅炉 3. 低倍率循环锅炉 4. 直流锅炉 5. 复合循环锅炉 四、按锅炉出口工质压力分类 1. 低压锅炉:一般压力小于1.275MPa 2. 中压锅炉:一般压力为 3.825MPa 3. 高压锅炉:一般压力为9.8MPa 4. 超高压锅炉:一般压力为13.73MPa 5. 亚临界压力锅炉:一般压力为1 6.67MPa 6. 超临界压力锅炉:一般压力为22.13MPa 五、按燃烧方式分类 1. 火床燃烧锅炉: 主要用于工业锅炉,包括固定炉排炉、往复炉排炉等。 2. 火室燃烧锅炉: 主要用于电站锅炉,燃用液体燃料、气体燃料和煤粉的锅炉均为火室燃烧锅炉 3. 沸腾炉: 送入炉排空气流速较高,使大颗粒燃煤在炉排上面的沸腾床中翻腾燃烧,小颗粒燃煤随空气上升并燃烧。 六、按所用燃料或能源分类 1. 固体燃料锅炉:燃用煤等固体燃料; 2. 液体燃料锅炉:燃用重油等液体燃料; 3. 气体燃料锅炉:燃用天然气等气体燃料; 七、按排渣方式分类

北师大版数学九年级上册5.1 第1课时 投影的概念与中心投影2 教案

第五章投影与视图 5.1 投影 第1课时投影的概念与中心投影 教学目标设计 知识与技能:经历实践、探索的过程,了解中心投影的含义,体会灯光下物体的影子在生活中的应用;通过实例了解视点、视线、盲区的概念. 过程与方法:通过观察、想象,能根据灯光来辨别物体的影子,发展学生的空间观念;通过实践、探索的过程.培养学生的观察、想象能力. 情感与价值观要求:经历观察、实验、想象等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点;初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造;学会与人合作,并能与他人交流思维的过程和结果. 教学方法设计 教法: 1、目标教学的方法; 2、组织小组讨论交流的方法. 3、采用多媒体投影辅助教学的方法. 学法指导: 1、自主探究式学习法 2、合作交流式学习法 教学程序设计 一、知识链接: 1、问题:大家看过皮影戏吗?你知道什么是皮影戏吗?皮影戏是怎样演出来的呢? 2、多媒体播放手影表演、皮影戏的动画,组织学生欣赏. 3、同学们在感受这些形象逼真的图形时,思考一下,这些图形是怎样形成的呢?它们形成的原理又是什么呢?这些原理还有哪些重要用途呢? (组织学生欣赏手影表演、皮影戏的动画,并让学生观察、分析皮影戏是怎样形成的.)结论:皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲.表演时,用灯光把剪

影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐. 皮影戏的原理实际上就是用灯光把剪影照射在银幕上,在现实生活中我们也经常可见有关灯光与影子的实例.比如,在灯光下.做不同的手势可以形成各种各样的手影.上面我们说的皮影与手影都是在灯光照射下形成的影子.灯光与影子在日常生活中有着非常广泛的应用,这节课我们就来探讨一下这个话题. 定义:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。一般地,物体在光线的照射下,在某个平面(地面、墙壁等)上得到的影子称为物体的投影,照射光线称为投影线,投影所在的平面称为投影面. 探照灯、手电筒、路灯和台灯的光线可以看成是从一个点发出的,像这样的光线所形成的投影称为中心投影. (教师根据上面的分析引导学生得出定义.) 二、自主探究: 活动一: 取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片.(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化? (2)固定小棒和纸片,改变手电简(或台灯)的摆放位置和方向,它们的影子发生了什么变化? 问题:请大家先想象一下,小棒和三角形、矩形纸片在灯光照射下的影子是什么样子的?让我们一齐动手来实践一下,然后大家互相交流自己总结出的结果. 结论:(1)固定手电筒(或台灯)时,改变小棒或纸片的摆放位置和方向,它们的影子将变大或变小,当改变小棒或纸片的位置时,位置距离灯光越近,影子越大;距离越远,影子越小,当不改变位置只改变方向时,影子随着方向的改变而改变.

投影矩阵的定义

视锥就是场景中的一个三维空间,它的位置由视口的摄像机来决定。这个空间的形状决定了摄像机空间中的模型将被如何投影到屏幕上。透视投影是最常用的一种投影类型,使用这种投影,会使近处的对象看起来比远处的大一些。对于透视投影,视锥可以被初始化成金字塔形,将摄像机放在顶端。这个金字塔再经过前、后两个剪切面的分割,位于这两个面之间的部分就是视锥。只有位于视锥内的对象才可见。 视锥由凹视野( 在上图中,变量 投影矩阵是一个典型的缩放和透视矩阵。投影变换将视锥变换成一个直平行六面体的形状。因为视锥的近处比远处小,这样就会对靠近摄像机的对象起到放大的作用,也就将透视应用到了场景当中。 在视锥中,摄像机与空间原点间的距离被定义为变量 视矩阵将摄像机放置在场景的原点。又因为投影矩阵需要将摄像机放在 将两个矩阵相乘,得到下面的矩阵: 下图显示了透视变换如何将一个视锥变换成一个新的坐标空间。注意:锥形体变成了直平行六面体,原点从场景的右上角移到了中心。 在透视变换中,

这个矩阵基于一定的距离(这个距离是从摄像机到邻近的剪切面)对对象进行平移和旋转,但是它没有考虑到视野( 在这个矩阵中, 在程序中,使用视野角度来定义x和y缩放系数比使用视口的水平和垂直尺寸(在摄像机空间中)并不方便多少。下面两式使用了视口的尺寸,并且与上面的公式相等: 在这些公式中,Zn表示邻近的剪切面的位置,变量Vw和Vh表示视口的高和宽。这两个参数与 D3DVIEWPORT2结构中的dwWidth和dwHeight成员相关。 不管你使用那个公式,将同世界和视变换一样,可以调用下面的 D3DMATRIX ProjectionMatrix(const float near_plane,// distance to near clipping plane const float far_plane,// distance to far clipping plane const float fov_horiz,// horizontal field of view angle, in radians const float fov_vert)// vertical field of view angle, in radians { float h, w, Q; w = (float)cot(fov_horiz*0.5); h = (float)cot(fov_vert*0.5); Q = far_plane/(far_plane - near_plane); D3DMATRIX ret = ZeroMatrix(); ret(0, 0) = w; ret(1, 1) = h; ret(2, 2) = Q; ret(3, 2) = -Q*near_plane; ret(2, 3) = 1; return ret; } // end of ProjectionMatrix()

工业锅炉定义、类型分析

什么是工业锅炉? 工业锅炉的定义:为工矿企业提供蒸汽或热水(热水锅炉)以满足生产工艺、动力以及采暖等需要的锅炉。注:热水锅炉和工业锅炉是两个概念。 蒸汽主要用于工业企业生产工艺过程以及采暖和生活用的锅炉。按照我国标准规定,工业锅炉的最大额定蒸汽压力为2.45MP(表压),最大连续蒸发量最大为65t/h。 有哪些不同的工业锅炉? 工业锅炉在结构型式上可分为火筒式、火管式和水管式3类 ①火筒锅炉;它是早期的工业锅炉,在锅壳中只装有一二个加热锅水用的火筒,火筒中有燃烧装置。热效率低,体积和钢材耗用量大,60年代以后基本上不再生产。 ②火管锅炉:它是在立式或卧式的锅壳中除火筒以外,还装置若干烟管。燃料在燃烧室中燃烧后产生的高温烟气流过这些烟管加热锅水,然后排入烟囱。与火筒锅炉相比,它由于烟管数量多,受热面积增大,排烟温度较低,热效率较高,钢材耗用量和锅炉体积都比较小。火管锅炉的蒸发量一般都不大于15吨/时,工作压力一般不大于1.6兆帕,燃煤的热效率一般为70%左右,全部自动化操作的燃油锅炉,热效率可达到85%。https://www.360docs.net/doc/7017573254.html,

③水管锅炉:大多用作容量较大、压力较高的工业锅炉。水管式锅炉有自然循环式和直流式两种。自然循环的水管锅炉有单锅筒和双锅筒等结构。这种锅炉在对流管束后一般设置省煤器,有时还设置空气预热器,以降低排烟温度。燃煤时效率可达80%,燃油时更高一些。在直流式工业锅炉中没有锅筒,由盘绕在炉膛内壁的管子和后面的对流管束组成受热面。给水从管子的一端进入,蒸汽从另一端输出。直流式工业锅炉体积小,一般带有汽水分离器和自动控制装置。 工业锅炉分类: 层燃锅炉 我国层燃链条炉排锅炉居多,该型锅炉主要在节能、环保性能方面需要进一步提高。在对原煤进行洗选筛分并同时改进燃烧设备的基础上将有更大的发展空间。对于目前仍采用的手烧加煤、间歇燃烧方式的小型固定炉排锅炉,必将淘汰,取而代之以新开发的新型锅炉。循环流化床锅炉 循环流化床燃烧技术具有强化传热、燃烧效率高、燃料适应性广和排放污染物少等特点,在≥10t/h燃煤工业锅炉中应积极发展应用,该型锅炉是种很有发展前途的清洁燃烧技术。

投影法概念.点的投影

点、直线和平面>> 点>> 点在两投影面体系中的投影 1 点 1.1 点在两投影面体系中的投影 1.1.1 两投影面体系的建立 两投影面体系由互相垂直相交的两个投影面组成,如图1所示,其中一个为水平投影面(简称水平面),以H表示,另一个为正立投影面(简称正面),以V表示。两投影面的交线称为投影轴,以OX表示。 水平投影面H与正立投影面V将空间分为四个部分,称为四个分角,即第一分角、第二分角、第三分角、第四分角。 (1) 投影如图2所示,空间点A处于第一分角,按正投影法将点A向正面和水平面投射,即由点A向正面作垂线,得垂足a′,则a′称为空间点A的正面投影;由点A向水平面作垂线,得垂足a ,则a称为空间点A的水平投影。画出点A的正面投射线Aa′和水平投射线Aa所确定的平面Aaa′与V、H面的交线a′a x和aa x 。 图2 点在两投影面体系中的投影 (2) 注写规定空间点用大写字母表示,如A、B、C…;点的水平投影用相应的小写字母表示,如a、b、c…;点的正面投影用相应的小写字母加一撇表示,如a′、b′、c′…。 (3) 投影面展开为了把空间点A的两个投影表示在一个平面上,保持V面不动,将H 面的前半部分绕OX轴向下旋转90°、后半部分绕OX轴向上旋转90°与V面重合。则得到点A的两面投影图。 (4) 擦去边界,得到点的两面投影图投影面可以看作是没有边界的平面,故符号V、H及投影面的边界线都不需画出。 1.1.3 点在两投影面体系中的投影规律

(a) (b) 图3 点在两投影面体系中的投影规律 (1) 一点的水平投影和正面投影的连线垂直于OX轴。 在图3(a)中,点A的正面投射线Aa′和水平投射线Aa所确定的平面Aaa′垂直于V 和H平面。根据初等几何知识,若三个平面互相垂直,其交线必互相垂直,所以有aa x⊥a′a x、aa x⊥OX和a′a x⊥OX。当a随H面旋转重合于V面时,aa x⊥OX的关系不变。因此,在投影图上,aa′⊥OX。 (2) 一点的水平投影到OX轴的距离等于该点到V面的距离;其正面投影到OX轴的距离等于该点到H面的距离,即aa x=Aa′;a′a x=Aa。 在图3(a)中,因为Aaa x a′是矩形,所以aa x=Aa′; a′a x=Aa。 图4 分角内点的投影

【说课稿】 平行投影与中心投影(8)

平行投影与中心投影 各位评委,各位老师: 大家好! 我将对初中数学人教版九年级下册第二十九章第一节投影第一课时中心投影和平行投影的教学设计及教学资源的应用进行说明,恳请指导。下面我将从教材分析,学情分析,教学教法,教学过程四个方面加以说明。 一、教材分析 1、教材内容的地位 本节课为初中数学人教版九年级下册第二十九单元第一节投影的第1课时的内容,是关于?°视图与投影?±的教学目标而具体设计的。为立体图形与平面图形的相互转化问题奠定了理论基础。从七年级上册第三章?°图形认识初步?±开始,就不断的出现了有关视图的一些内容,只是在本节之前一直没有正式出现投影和视图的概念。本节在学生已有有关投影的初步感性认识的基础之上,通过一些简单的物体的投影说明有关概念,归纳基本规律,使学生的认识水平再次提升,并结合具体问题进一步培养运用几何知识分析和解决实际问题的能力。 新课程标准要求重视基本知识与基本技能的落实,因此本节课的教学重点我确定为:理解平行投影和中心投影的概念和特征。 现代教学理念认为,学生学习数学的重要结果不再是学生能解多少规范的数学题,而是能从现实背景中看到数学问题,能运用数学去思考,解决实际问题。因此本节课的教学难点我确定为:掌握平行投影与中心投影的区别与联系。 新课程标准明确要求数学学习不仅要让学生获得必要的数学知识技能,还要包括在数学思考,解决问题,情感态度等方面得到发展。根据上诉教材分析和学生实际情况,本节课的教学目标我确定如下:一、知识与技能目标: 1.了解投影的有关概念,能根据光线的方向辨认物体的投影; 2.了解平行投影和中心投影的区别; 二、数学思考: 在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。 三、解决问题: 通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。 四、情感态度: 通过学习,培养学生积极主动参与学习数学活动的意识,增强学好数学的

1.2.1--1.2.2 中心投影与平行投影 空间几何体的三视图

1.2.1--1.2.2 中心投影与平行投影 空间几何体的三视图 学习目标:1.了解中心投影和平行投影的概念. 2.能画出简单空间几何体的三视图. 3.能识别三视图所表示的立体图形. 学习重点:空间几何体的三视图. 学习难点:由三视图还原空间几何体. 二、导学指导与检测 导学指导 导学检测及课堂展示 阅读教材11P 完成右框内容 一、投影的定义及分类 1、定义:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的 ,这种现象叫做 .其中,我们把光线叫做 ,把留下物体影子的屏幕叫做 . 2、中心投影:光由 向外散射形成的投影,叫做中心投影.中心投影的投影线交 于 . 3、平行投影:在一束 光线照射下形成的投影,叫做平行投影.平行投影的投影线是 的.在平行投影中,投影线正对着投影面时,叫做 ,否则叫做 . 【即时训练1】下列说法: ①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③几何体在平行投影与中心投影下有不同的表现形式;④一条直线在一个平面内的投影仍是一条直线. 其中正确有 . 阅读教材1312P P —完成右框内容 二、三视图的分类及画法规则 正视图:光线从几何体的前面向 正投影,得到投影图; 侧视图:光线从几何体的 正投影,得到投影图; 俯视图:光线从几何体的 正投影,得到投影图. 画法规则: 、 、 . 【即时训练2】画出下列几何体的三视图. 课堂小结

【A组】: 1、画出下列几何体的三视图. 【B组】: 2、根据下列图中所给出的几何体的三视图,试画出它们的形状. 【C组】: 3、某三棱锥的三视图如图所示,求该三棱锥四个面中的面积最大值.

ARCGIS中坐标系的定义及投影转换方法

ArcGIS中坐标系的定义及投影转换方法 张卫东 (安徽省环境信息中心 合肥 230001 ) 摘 要:本文就我省GIS项目中地理数据所涉及的多种坐标系及地图投影转换等问题作了详细分析,并在ESRI公司的ArcGIS软件平台上介绍了不同坐标系的定义及投影转换方法。 关键词:坐标系; 地图投影 一、问题的提出 GIS技术在我省环保工作中已应用多年,现有多套基于不同坐标系的地理数据,如全省1:5万的北京54坐标系数据,主要城市1:1万的西安80坐标系数据,GPS采集的WGS84坐标系数据以及同是北京54坐标系但不同投影的遥感解译数据等,这些不同坐标系的数据给我们的使用带来了困难:如何将遥感解译数据和不同的地理数据转换到一起,GPS采集的经纬度数据如何正确加载到地图上,以前在北京54坐标系上使用的数据又如何转换到新的西安80坐标系上来?通过摸索,本人找到了解决问题的一些方法,现介绍如下,首先介绍一下相关的几个概念。 二、相关概念 由于GIS所描述是位于地球表面的空间信息,所以在表示时必须嵌入到一个空间参照系中,这个参照系统就是坐标系,它是根据椭球体等参数建立的。另外,为了能够将地图从球面转换到平面,还要进行投影。 1. 椭球体(Spheroid)、基准面(Datum)、坐标系(Coordinate System)及投影(Projection) 尽管地球是一个不规则的椭球,但为了将数据信息以科学的方法存放到椭球上,我们需要用一个可以量化计算的椭球体作为地球的模型。这样的椭球体用长半轴a(semimajor axis),短半轴b(semiminor axis),偏心率倒数1/f(Inverse flattening)来描述,这三个参数数学关系为:1/f=a/(a-b),实际中我们一般用长、短半轴二个参数来表示就可以了,根据需要人们定义了多种参考椭球体模型。然而有了这个椭球体还不够,还需要一个大地基准面将这个椭球定位,它的作用是来确定地球与椭球体之间的位置关系,由于每个国家或地区需要最大限度的贴合自己的那一部分不同,基准面也不同。 有了基于椭球体参数的基准面,再加上角度单位(Angular Unit)和本初子午线(Prime Meridian),就定义了地理坐标系(Geographic Coordinate System),图2清楚地表明了这一点。 但地理坐标系是用经纬度表示球面的位置,很多时候我们精确分析需要在平面上来进行,这就要将地图从三维地理坐标通过投影转换成二维平面坐标,这样的坐标系叫投影坐标系(Projection Coordinate System),它是在地理坐标系上加上投影转换参数(参见图4)。 由于从球面到平面的转换会引起距离、面积、形状、方向一个或多个空间属性的变形失真,没有一种投影转换能保持所有的空间属性不变。所以一些地图投影通过损失其它空间属性来使某一属性失真最小,而另一些地图投影则努力平衡全部空间属性的失真,现有数百种地图投影,它们各自适合于表示整个地球表面或某些区域的不同需求,如我国1:50万和更大比例尺地形图使用的是高斯-克吕格 (Gauss-Kruger) 投影,它没有角度变形,在长度和面积上变形也很小,通过分带投影后能保证很高的精度(参见图4),而遥感解译数据常采用阿尔勃斯(Albers Equal-Area Conic)投影,它是等面积割圆锥投影,可以保持面积不变(参见图5)。

相关文档
最新文档