八年级数学上册第三次月考试题

合集下载

人教版八年级数学上册第三次月考综合复习练习题(含答案)

人教版八年级数学上册第三次月考综合复习练习题(含答案)

人教版八年级数学上册第三次月考综合复习练习题含答案)一、选择题(每小题3分,共30分)1.用配方法解方程x2﹣6x+4=0,下列配方正确的是()A.(x﹣3)2=13B.(x+3)2=13C.(x﹣3)2=5D.(x+3)2=5 2.关于x的方程x2+mx+6=0的一个根为﹣2,则另一个根是()A.﹣3B.﹣6C.3D.63.如果分式的值为0,那么x的值是()A.±1B.1C.﹣2D.﹣14.如图所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,则AE的长为()A.3cm B.2cm C.2cm D.cm5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.86.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF 的面积为200,则BE的长为()A.10B.11C.12D.157.在“﹣3,﹣2,﹣1,0,1,2,3”七个数中,任取一个数等于a,恰好使方程(a2﹣1)x2+(a+2)x+a﹣3=0是一元二次方程的概率是()A.B.C.D.18.如图,在▱ABCD中,E是AD上一点,且EM∥AD,EN∥CD,则下列式子中错误的是()A.B.C.D.9.如图所示几何体的左视图是()A.B.C.D.10.如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.则△BDF的面积为()A.B.C.2D.3二、填空题(每小题4分,共28分)11.若直角三角形斜边上的高和中线长分别是3cm和4cm,则它的面积是.12.设α、β是方程x2+2x﹣2021=0的两根,则α2+3α+β的值为.13.一个口袋中装有8个黑球和若干个白球,现从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,若共摸了200次,其中有50次摸到黑球,因此可估计口袋中大约有白球个.14.如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为.15.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为 1.5米,那么他最多离开树干米才可以不被阳光晒到?16.如图,点A是反比例函数y=在第四象限上的点,AB⊥x轴,若S△AOB=1,则k的值为.17.如图,AD是△ABC的中线,E是AD上的一点,且DE=2AE,CE的延长线交AB于点F.若AF=1.6cm,则AB=cm.三、解答题(共62分)18.解方程:3x(x﹣3)=2x﹣6.19.在不透明的袋子里装有2个红球、1个蓝球(除颜色外其余都相同),(1)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表的方法,求两次摸到一红一蓝的概率.(2)若向袋中再放入若干个同样的蓝球,搅拌均匀后,使从袋中摸出一个蓝球的概率为,求后来放入袋中的蓝球个数.20.如图1,是一个长方体截成的几何体,请在网格中依次画出这个几何体的三视图.21.如图,矩形ABCD中,AB=8厘米,BC=12厘米,P、Q分别是AB、BC上运动的两点.若点P从点A出发,以1厘米/秒的速度沿AB方向运动,同时,点Q从点B出发以2厘米/秒的速度沿BC方向运动,设点P,Q运动的时间为x秒.(1)当x为何值时,△PBQ的面积等于12厘米2;(2)当x为何值时,以P,B,Q为顶点的三角形与△BDC相似?22.“天下面食,尽在三晋”,山西面食历史悠久.太原一家特色小面店希望在旅游旺季期间获得较好的收益,经测算知,该小面的成本价为每碗6元,借鉴以往经验,若每碗售价为25元,平均每天可销售300碗,售价每降低1元,平均每天可多销售30碗.设每碗售价降低x元.(1)平均每天可销售碗(用含x的代数式表示);(2)为了维护城市形象,规定每碗售价不得超过20元,那么当每碗售价定为多少元时,店家才能每天盈利6300元?23.如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,连接BC.(1)求证:四边形ABCD是菱形;(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2﹣7x+12=0的两根,求AB的长以及菱形ABCD的面积;(3)在(2)的条件下,若动点M从A出发,沿AC以2米/秒的速度匀速直线运动到点C,动点N从B出发,沿BD以1米/秒的速度匀速直线运动到点D,当M运动到C点时,运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为2平方米.24.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=kx﹣4与反比例函数y=(x>0)的图象交于点A,与y轴分别交于点C.(1)求k的值;(2)点D与点O关于AB对称,连接AD,CD.证明:△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数的图象上,若S△ECD=S△OCD,直接写出点E 的坐标.25.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)探究猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:;(2)深入思考:如图2,当点D在线段CB的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸:如图3,当点D在线段BC的延长线上时,正方形ADEF对角线交于点O.若已知AB=4,CD=BC,请求出OC的长.参考答案一、选择题(每小题3分,共30分)1.C.2.A.3.D.4.D.5.A.6.C.7C.8.D.9.D.10.D.二、填空题(每小题4分,共28分)11.12cm2.12.2019.13.32﹣8=24.14.8.15.8.16.﹣2.17 8.三、解答题(共62分)18.解:∵3x(x﹣3)=2x﹣6,∴3x(x﹣3)﹣2(x﹣3)=0,则(x﹣3)(3x﹣2)=0,则x﹣3=0或3x﹣2=0,解得x1=3,x2=.19.解:(1)列表如下:红红蓝红(红,红)(蓝,红)红(红,红)(蓝,红)蓝(红,蓝)(红,蓝)由表知,共有6种等可能结果,其中两次摸到一红一蓝的有4种结果,所以两次摸到一红一蓝的概率为=;(2)设后来放入的篮球有x个,根据题意,得:=,解得x=3,经检验:x=3是分式方程的解,所以后来放入袋中的蓝球有3个.20.解:三视图,如图所示.21.解:(1)由题意得:×BQ×BP=12,即•2x•(8﹣x)=12,整理得:x2﹣8x+12=0,解得:x=2或6,即当x为2或6时,△PBQ的面积等于12厘米2;(2)①当∠1=∠2时,由∠PBQ=∠BCD=90°,所以△QBP∽△BCD,则=,即=,解得:x=;②当∠1=∠3时,由∠PBQ=∠BCD=90°,所以△PBQ∽△BCD,所以=,即=,解得:x=2;即x=或x=2时,以P、B、Q为顶点的三角形与△BDC相似.22.解:(1)设每碗售价降低x元.平均每天可销售(300+30x)碗.故答案为:(300+30x);(2)设每碗售价降低x元.店家才能实现每天利润6300元,依题意有:(25﹣x﹣6)(300+30x)=6300,解得x1=4,x2=5,当x=4时,售价为21元,当x=5时,售价为20元,∵每碗售价不得超过20元,∴x=5.答:当每碗售价定为20元时,店家才能实现每天利润6300元.23.(1)证明:∵AO平分∠BAD,AB∥CD,∴∠DAC=∠BAC=∠DCA,∴△ACD是等腰三角形,AD=DC,又∵AB=AD,∴AB=CD,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:解方程x2﹣7x+12=0,得,OA=4,OB=3,利用勾股定理AB==5,S菱形ABCD=AC×BD=×8×6=24平方米;(3)解:在第(2)问的条件下,设M、N同时出发x秒钟后,△MON的面积2m2,当点M在OA上时,x<2,S△MON=(4﹣2x)(3﹣x)=2,解得x1=1,x2=4(大于2,舍去);当点M在OC上且点N在OB上时,2<x<3,S△MON=(3﹣x)(2x﹣4)=2,整理得,x2+5x+8=0,方程无解.当点M在OC上且点N在OD上时,即3<x≤4,S△MON=(2x﹣4)(x﹣3)=2,解得x1=4,x2=1(小于3,舍去).综上所述:M,N出发1秒或4秒钟后,△MON的面积为2m2.24.(1)解:令AB=BO=m,∵∠ABO=90°,∴AB⊥x轴,则设点A的坐标为(m,m),∵反比例函数y=(x>0)的图象交于点A,∴=m,解得m=±2,∵m>0,∴m=2,∵点A(2,2)在直线y=kx﹣4上,∴2=2k﹣4,∴k=3;(2)证明:由(1)可知B(2,0),AB=2,∵AB⊥BO,点D与点O关于AB对称,∴D(4,0),BD=2,∴AD2=AB2+BD2=22+22=8,过点A作AE⊥y轴,垂足为E,则点E(0,2),AE=2,∵直线y=3x﹣4与y轴交于点C,∴C(0,﹣4)则CE=6,∴AC2=AE2+CE2=22+62=40,∵∠OCD=90°,OD=4,OC=4,∴CD2=OD2+OC2=42+42=32,∵8+32=40,∴AD2+CD2=AC2,∴△ACD是直角三角形;(3)解:①当点E在CD上方时,如下图,过点O、A作直线m,由点O、A的坐标知,直线OA的表达式为y=x,由点C、D的坐标知,直线CD的表达式为y=x﹣4,则直线CD∥m,即OA∥CD,∵S△ECD=S△OCD,即两个三角形同底,则点E与点A重合,故点E的坐标为(2,2);②当点E(E′)在CD下方时,在y轴负半轴取CH=OC=4,则点H(0,﹣8),∵则S△ECD=S△OCD,∴过点H作直线m′∥CD,则直线m′与反比例函数的交点即为点E,∴直线m′的表达式为y=x﹣8,联立y=x﹣8和y=并解得(不合题意值已舍去),故点E的坐标为(4+2,2﹣4),综上,点E的坐标为(4+2,2﹣4)或(2,2).25.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∵四边形ABCD是正方形,∴AD=AF,∠DAF=90°,∴∠BAD=∠CAF=90°﹣∠DAC,∴△BAD≌△CAF(SAS),∴∠ABD=∠ACF=45°,BD=CF,①∵∠BCF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF,故答案为:BC⊥CF.②∵BC=CD+BD=CD+CF,∴BC=CD+CF,故答案为:BC=CD+CF.(2)结论①,即BC⊥CF成立,结论②,即BC=CD+CF不成立,BC=CD﹣CF,证明:如图2,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵四边形ABCD是正方形,∴AD=AF,∠DAF=90°,∴∠BAD=∠CAF=90°﹣∠BAF,∴△BAD≌△CAF(SAS),∴∠ABD=∠ACF,BD=CF,∵∠ACF=∠ABD=180°﹣∠ABC=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴BC⊥CF,∴结论①成立;∵BC=CD﹣BD=CD﹣CF,∴结论②不成立,BC=CD﹣CF成立.(3)如图3,∵AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∵四边形ABCD是正方形,∴AD=AF,∠DAF=90°,∴∠BAD=∠CAF=90°+∠DAC,∴△BAD≌△CAF(SAS),∴∠ABD=∠ACF=45°,BD=CF,∵∠BCF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF,∴∠FCD=90°,∵AB=AC=4,∠BAC=90°,∴BC===8,∵CD=BC=×8=2,∴CF=BD=BC+CD=8+2=10,∴DF===2,∵OD=OF,∴OC=DF=×2=,∴OC的长为.。

人教版2022-2023学年八年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年八年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题。

(共计40分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.在Rt△ABC中,∠C=90°,∠A=30°,BC=3,则AB的长为()A.B.1C.3D.63.下列各图中,正确画出AC边上的高的是()A.B.C.D.4.如图,点F在正五边形ABCDE的边CD的延长线上,连接BD,则∠BDF的度数()A.36°B.144°C.134°D.120°5.下列运算正确的是()A.a3+a3=2a6B.a6•a3=a18C.a3•a3=2a3D.(﹣2a2)3=﹣8a66.若x+4=2y,则代数式x2+4y2﹣4xy的值为()A.2B.4C.16D.87.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是()A.SSS B.SAS C.ASA D.HL8.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AB=4,BD=5,AD=3,若点P是BC上的动点,则线段DP的最小值是()A.3B.2.4C.4D.59.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC 于点E,则△BEC的周长为.10.下列四个算式其中正确的有()①(a﹣2bc)2=a2+4abc+4b2c2;②[(62)2]2=68;③(x+y)2=x2+xy+y2;④(﹣y2)3=y6.A.3个B.2个C.1个D.O个二.填空题。

(共计30分)11.已知2a=3,2b=5,则22a+2a+b=.12.已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为.13.已知,点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)2020的值为.14.若4x2﹣mx+1是一个完全平方式,则m=.15.若(x+y)2=19,(x﹣y)2=5,则x2+y2=.16.已知x﹣=5,则x2+=.17.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF,若∠A=n°,则∠BOC=.(用含n的代数式表示)18.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是.19.如图,在△AOB中,∠AOB=90°,AO=BO,点O的坐标为(0,0),点B的坐标为(3,5),则A点的坐标是.20.有一数值转换器,原理如图所示,如果开始输入x的值是4.则第一次输出的结果是5,第二次输出的结果是8,……那么第2019次输出的结果是.三、解答题。

人教版八年级(上)数学第三次月考试题

人教版八年级(上)数学第三次月考试题

人教版八年级(上)数学第三次月考试题(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.下列各式中,正确的是( )A.4=±2B.±9=3C.3-8=-2 D.-22=-22.(4分)2.计算(2xy)3÷(2xy2)的结果是( )A.2y B.3x2y C.4xy D.4x2y3.(4分)3.长方形的面积为4a2-6ab+2a,一边长为2a,则它的另一边长为( )A.2a-3b B.4a-6bC.2a-3b+1 D.4a-6b+24.(4分)4.等腰三角形底边长为5 cm,一腰上的中线把其周长分为两部分,差为2 cm,则腰长为( )A.7 cm B.7 cm或3 cmC.3 cm D.不确定5.(4分)5.如图,在△ABC中,AB=AC,D,E两点在BC上,且有AD=AE,BD=CE.若∠BAD=30°,∠DAE=50°,则∠BAC的度数为( )A.130°B.120°C.110°D.100°6.(4分)6.若n为大于0的整数,则(2n+1)2-(2n-1)2一定是( )A.6的倍数B.8的倍数C.12的倍数D.9的倍数7.(4分)7.下列各式能用完全平方公式分解因式的有( )①4x2-4xy-y2②x2+x+14③-1-a-14a2④m2n2+4-4mn ⑤a2-2ab+4b2⑥x2-8x+9A.1个B.2个C.3个D.4个8.(4分)8.如图,AB∥DE,AC∥DF,AC=DF,要使△ABC≌△DEF需再补充一个条件,下列条件中,不能选择的是( )A.AB=DE B.BC=EFC.EF∥BC D.∠B=∠E9.(4分)9.假设电视机屏幕为长方形,长BC=52 cm,“某个电视机屏幕大小是65 cm”的含义是长方形的对角线BD长为65 cm,如图所示,则该电视机屏幕的高CD为( )A.13 cm B.30 cmC.39 cm D.52 cm10.(4分)10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC.若△ABC的周长为12,则PD+PE+PF=( )A.12 B.8 C.4 D.3二、 填空题 (本题共计6小题,总分24分)11.(4分)11.在“We like maths”这个句子的所有字母中,字母“e”出现的频率为____. 12.(4分)12.计算:3ab 2·⎝ ⎛⎭⎪⎫-13a 2b ·2abc=____. 13.(4分)13.若31-2x 与33x -5 互为相反数,则1-x =_.14.(4分)14.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上支出100元,则在午餐上支出__元15.(4分)15.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中共有__对全等三角形.16.(4分)16.如图,折叠长方形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB ,BC 上(含端点),且AB =6 cm ,BC =10 cm ,则折痕EF 的最大值是___ cm.三、 解答题 (本题共计9小题,总分86分)17.(8分)17.计算:(1)(-1)3+|3-2|-3125+16;(2)⎝ ⎛⎭⎪⎫13x +y ⎝ ⎛⎭⎪⎫13x -y ⎝ ⎛⎭⎪⎫19x 2+y 2. 18.(8分)18.先化简,再求值 :3(x -1)2-(3x +1)(3x -1)+6x(x -1).其中x =1319.(10分)19.如图,在△ABC 中,点D ,E 分别是AC ,AB 上的点,BD 与CE 相交于点O ,给出下列三个条件:①∠1=∠2;②∠3=∠4;③BE =CD.上述三个条件中,哪两个条件可以判定△ABC 是等腰三角形,写出其中的一种情况,并加以证明.20.(10分)20.如图,小明想把一长为60 cm 、宽为40 cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm ,求图中阴影部分的面积.(2)当x =5时,求这个盒子的体积.21.(10分)21.如图,∠AOB =60°,OC 平分∠AOB ,过点C 作CD ⊥OC ,垂足为点C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由.(2)若CD =6,OD =10,直接写出OC 的长.22.(9分)22.随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图:请结合图中所给的信息解答下列问题:(1)这次统计共抽查了__名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为____.(2)将条形统计图补充完整.(3)该校共有2 500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?23.(9分)23.如图,长方形纸片ABCD的长AD=8 cm,宽AB=4 cm,将其折叠,使点D 与点B重合.(1)求证:BE=BF.(2)求折叠后DE的长.(3)求以折痕EF为边的正方形的面积.24.(10分)24.已知,如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE.(1)DE的长为.(2)动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等?(3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由.25.(12分)25.【问题情境】如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.(1)【问题解决】延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是.【反思感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.(2)【尝试应用】如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.(3)【拓展延伸】如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM 交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的取值范围.(温馨提示:如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达三边关系,a2+b2=c2)。

人教版2022-2023学年八年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年八年级数学上册第三次月考测试题(附答案)

2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题(共18分)1.我们生活在一个充满对称的世界中,生活中的轴对称图形随处可见.下面几幅图片是校园中运动场上代表体育项目的图标,其中可以看作是轴对称图形的是()A.B.C.D.2.在△ABC中,∠A=2∠B=75°,则∠C的度数是()A.30°B.67.5°C.105°D.133°3.如图,已知在Rt△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数是()A.120°B.180°C.240°D.270°4.如图,在Rt△ABC中,∠ACB=90°,BC=4cm,在AC上取一点E,使EC=BC,过点E作EF⊥AC,连接CF,使CF=AB,若EF=10cm,则AE的长为()A.5cm B.6cm C.7cm D.无法计算5.下列运算及判断正确的是()A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,|m|)在平面直角坐标系中对应的点一定在第一象限6.如图,在△ABC中,∠BAC=90°,AB=AC=4,若点D为BC的中点,过点D作∠MDN=90°,分别交AB,AC于点M,N,连接MN,则下列结论中:①△DMN是等腰直角三角形;②△DMN的周长有最小值;③四边形AMDN的面积为定值8;④△DMN的面积有最小值;⑤△AMN的面积有最大值.正确的有()A.5个B.4个C.3个D.2个二、填空题(共18分)7.计算:(a+2b)(2b﹣a)=.8.如图,AC⊥BC,AD⊥BD,垂足分别为C、D,请你添加一个条件,使得△ABD ≌△BAC.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.10.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是米.11.如图,在正方形方格中,点A,B,C在格点上,则∠CAB+∠ABC的度数是.12.在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.三、解答题(共30分)13.先化简,再求值.x(2x2﹣4x)﹣x2(6x﹣3)+x(2x)2,其中x=﹣.14.如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E.∠A=55°,∠BDC =95°,求∠BED的度数.15.如图,格点△ABC在网格中的位置如图所示.(1)画出△ABC关于直线MN的对称△A'B'C';(2)若网格中每个小正方形的边长为1,则△A'B'C'的面积为;(3)在直线MN上找一点P,使P A+PC最小(不写作法,保留作图痕迹).16.如图,∠1=∠2,∠3=∠4,求证AC=AD.∵∠3=∠4,∴180°﹣=180°﹣,∴∠ABD=∠ABC.在△ABD和△ABC中,,∴△ABD≌△ABC().∴=.17.已知:如图,点B,F,C,E在同一条直线上,AB∥DE,AB=DE,∠A=∠D.求证:△ABC≌△DEF.四、解答题。

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。

八年级上册数学-第三次月考数学试卷

八年级上册数学-第三次月考数学试卷

第三次月考数学 试 卷(本试卷满分100分,考试时间120分钟,请将选择题的答案填入答题栏)选择题答案栏一、选择题(每小题3分,共24分).1.以下列各组 线段为边,能组成三角形的是 ( ) . A . 2cm,3cm,5cm B. 4cm,5cm,13cmC . 5cm,7cm,11cm D. 4cm,4cm,9cm2.实数:25,5,3.1415,0.3030030003…, 157,π中无理数的个数为 ( )A .2B .3C .4D .53.将-0.000 002017用科学记数法表示为 ( ). A. 62.01510-⨯ B. 52.01510--⨯ C. 52.01510-⨯ D. 62.01510--⨯4.下列语句是真命题的个数是 ( ) (1)负数的平方根是负数; (3)画线段AB=a ;(4). =(2)同旁内角互补;A .1B .2C .3D .45.下列条件中,能判定△ABC ≌△DEF 的是 ( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE6.化简.211m m m m--÷的结果是 ( ). A . m B.1mC .m-1 D. 11m -7.下列语句正确的是 ( )A.B.x 2是分式C. 3±D.π1是分式8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45º”,应先假设 ( ) A.两个锐角都小于45 º B.两个锐角都大于45 ºC.一个锐角小于45 ºD.一个锐角小于或等于45 º 二、填空(每题3分,共24分).9. 已知等腰三角形的两边长是5cm 和6cm ,则它的周长是 . 10. 当分式2312+--x x x 的值为0时, x 的值为 .11.分式22341,,a b a b a b-+-的最简公分母是 . 12.计算:= . 13.625 的算术平方根是 .14.一个数的算术平方根等于它本身,这个数是 ; 15一个数的立方根等于它本身,这个数是 ;16.若一个三角形的三个内角比为2:3:5,则此三角形为______角三角形. 三、解答题(共52分). 17.)每小题6分,共12分) (1)解方程1111x x x +=-- (2)化简(1a a b --)22ba b÷-要答题 学校 班级 姓名 考室 考号18.(10分)A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,逆流返回所用时间是顺流航行所用时间的2倍,已知水流速度为4千米/时.求:该轮船在静水中的速度多少?19.(10分) 已知:B、C、E、F在同一条直线上, AC∥DF,A D∠=∠,BF=EC 求证:AB=DE.(19题图) 20.(8分)如图,已知线段a,h.求作:∆ABC,使AB=AC,BC=a,高AD=h(不写作法,保留作图痕迹,写出结论)ah21.(12分)20. 如图,在ABC∆中,AB=AC,︒=∠120BAC,D、F 分别为AB、AC 的中点,且ABDE⊥,ACFG⊥, 点E、G在BC上,BC=18cm,求线段EG的长.(提示:需要添加辅助线)(第21题图)。

数学第三次月考模拟试卷人教版2024—2025学年八年级上册

数学第三次月考模拟试卷人教版2024—2025学年八年级上册

数学第三次月考模拟试卷人教版2024—2025学年八年级上册考试范围:第十一章到第十四章考生注意:本次随堂练习共三道大题,25小题,满分120分,时量120分钟一.选择题(本大题共10道题,每小题3分,共30分)1.如图所示的4组图形中,成轴对称的是()A.B.C.D.2.下列运算正确的是()A.x2•x3=x6B.(﹣x2)3=x5C.(2xy2)3=6x3y6 D.(x﹣y)3(y﹣x)2=(x﹣y)53.若x2+mx+25是完全平方式,则m的值是()A.±10B.±5C.10D.54.等腰三角形的一个内角是70°,则它的顶角的度数为()A.70°B.110°或40°C.40°D.70°或40°5.已知a=313,b=96,c=275,则a、b、c的大小关系为()A.c>a>b B.b>a>c C.a>b>c D.a>c>b6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.6B.5C.4D.38.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③第6题第7题第8题9.如图,CE是△ABC的外角∠ACF的平分线,且CE交BA的延长线于点E.若∠B=40°,∠E=30°,则∠BAC的度数为()A.120°B.110°C.140°D.100°10.已知a=2023x+2022,b=2023x+2023,c=2023x+2024,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3二.填空题(6小题,每题3分,共18分)11.一个多边形的每一个外角都等于24°,那么这个多边形的边数是.12.已知等腰三角形一边长为7cm,另一边长为14cm,则它的周长是cm.13.(x﹣2)和(x+n)的乘积不含一次项,则n=.14.如图,△ABC中作AB的垂直平分线ED交AC于D,交AB于E,已知AE =4cm,若△BDC的周长为13cm,则△ABC的周长是cm.15.如图,在正五边形ABCDE的内部,以CD边为边作正方形CDFH,连接BH,则∠BHC=°.16.如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.第16题第14题第15题数学第三次月考模拟试卷人教版2024—2025学年八年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.18.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=2.(1)求∠BDC的度数;(2)求AC的长度.19.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.20.若多项式(x2+ax﹣2)与(x2+x+3b)的乘积中不含x2的项.(1)求10a•1000b的值;(2)若(x+2)3=x3+mx2+nx+8,求(a+3b)m﹣n的值.21.如图,△ABC是等边三角形,∠1=∠2=∠3.(1)求证:AD=CF;(2)求∠AEF的大小.22.△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.23.如图,在某高铁站广场前有一块长为2a+b,宽为a+b的长方形空地,计划在中间留两个长方形喷泉池(图中阴影部分),两个长方形喷泉池及周边留有宽度为b的人行通道.(1)求该长方形空地的面积;(用代数式表示)(2)求这两个长方形喷泉池的总面积;(用代数式表示)(3)当a=200,b=100时,求这两个长方形喷泉池的总面积.24.给出如下定义:我们把有序实数对(m,n)叫做关于x的一次多项式mx+n的特征系数对,有序数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,并且把关于x的一次多项式mx+n叫做有序实数对(m,n)的特征多项式,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的一次多项式﹣2x+4的特征系数对在第象限;关于x的二次多项式3x2+2x﹣1的特征系数对为;(2)求有序实数对(1,a)的特征多项式与有序实数对(a,﹣4)的特征多项式的乘积为bx2﹣cx+16,求a、b、c的值;(3)若有序实数对(p,q,﹣1)的特征多项式与有序实数对(m,n,﹣2)的特征多项式的乘积的结果为2x4+x3﹣10x2﹣x+2,计算(4p﹣2q﹣1)(2m﹣n ﹣1)的值.25.如图1,已知点A(x,0),点B(0,y),且x,y满足|2x+y+6|+|y﹣x﹣12|=0.(1)求A,B两点的坐标;(2)若点C是第二象限内一点,且∠ACO=45°,过点B作BD⊥OC于点F,求证:CF=BF;(3)如图2,若点D的坐标为(﹣1,0),过点B作BE⊥BD,且BE=BD,连接AE交y轴于点G,求G点的坐标.。

八年级上册数学第三次月考试卷人教版

八年级上册数学第三次月考试卷人教版

八年级上册数学第三次月考试卷人教版(人教版)第三次月考试题一、选择题(每小题3分,共24分) 1.下列运算正确的是 【 】A .x 2 + x 3 = x 5B .(- x 2 )3 = x 6C .x 6÷x 2 = x 3D .-2x ·x 2 =-2x 32.下列运算正确的是【 】A .3a -(2a -b )=a -bB .(a 3b 2-2a 2b )÷ab =a 2b -2C .(a +2b )(a -2b )=a 2-2b 2D .36328121b a b a -=⎪⎭⎫⎝⎛-3.下列因式分解正确的是 【 】A. )45(312152-=-x xz xz x B. x xy y x y 222242-+=-()C. x xy x x x y 2-+=-()D. 22)2(44+=++x x x4.下列各式中,是完全平方式的是 【 】A .22x xy y ++ B .222x xy y -- C .2296p pq q -+ D .2242m mn n -+5.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为【 】 A.()2222a b a ab b -=-+ B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+6.下列性质中,等腰三角形具有而直角三角形不一定具有的是 【 】A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°7.如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =PB .则对点P 位置 的判断,正确的是【 】A .P 为∠A 、∠B 两角平分线的交点 B .P 为∠A 的角平分线与AB 的垂直平分线的交点C .P 为AC 、AB 两边上的高的交点D .P 为AC 、AB 两边的垂直平分线的交点 8.如图,已知长方形纸片ABCD ,点E 是AB 的中点,点G 是BC 上一点,∠BEG =60º. 沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为【 】 A .4 B .3 C .2 D .1 二、填空题(每小题3分,共30分)9.如果 1)1(0=-m 那么m 满足的条件是___________ .10.如果a m = −5,a n = 2,则a 2m+n 的值为 . 11.已知216x mx ++是某一多项式的平方,则m = .12.边长为a 、b 的长方形形,它的周长为14,面积为10,则22a b ab +的值为 . 13.已知()()2212++-+x mx x x n 的展开式中不含3x 项和x 项,则m ·n = .14.若代数式232++x x 可以表示为b x a x +-+-)1()1(2的形式,则a +b 的值为 . 15.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 交BE 于F ,若BF =AC ,则∠ABC 等于 度.16.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =1,则EF = .17.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE =3cm ,△ADC 的周长为9cm ,则△ABC 的周长是 cm .18.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么下列说法:①△EBD 是等腰三角形,EB =ED ;②折叠后∠ABE 和∠C ′BD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC ′一定是全等三角形.错误的是 (填序号). 三、解答题(共66分)19.计算(每小题4分,共8分):⑴ [2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y , ⑵(2a -b +3)(2a +b -3)20.分解因式(每小题4分,共8分): ⑴4xy 2-4x 2y -y 3;⑵ ()22214+-a a21.(6分)解方程()()()()222536660x x x x +-+-+-=; A B C D EGH 第8题图 第5题图A B CP第7题图 第15题图 第16题图 第17题图 第18题图22.(7分)先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x (x +1),其中2-=x .23.(8分)A ,B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图的平面直角坐标系.(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A ,B 两校的距离相等?如果有,请用尺规作图找出该点,保留作图痕迹;(2)若在公路边建一游乐场P ,使游乐场到两校距离之和最小,通过作图在图中找出所建游乐场的位置.24.(9分)有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是 .(2)小明想用类似方法解释多项式乘法(a+3b )(2a+b )=2a 2+7ab +3b 2,那么需用2号卡片、3号卡片共 张.25.(10分)观察下列等式: 12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”: ①52× = ×25; ② ×396=693× .(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a+b ≤9,写出表示“数字对称等式”一般规律的式子(含a 、b ),并证明.26.(10分)如图,△ABC 是边长为6的等边三角形, P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D . ⑴当∠BQD =30°时,求AP 的长;(2)在运动过程中线段ED 的长是否发生变化?如果不变, 求出线段ED 的长;如果发生改变,请说明理由.所拼长方形草图图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第三次月考试题
一、选择(每题3分,共24分)
1. 下列从左到右的变形,是因式分解的是( )
A 、(a+3)(a-3)=a 2-9
B 、x 2
+x-5=(x-2)(x+3)+1
C 、a 2
b+ab 2
=a b(a + b) D 、x 2
+1=x(x+
x
1) 2.下列式中能用平方差公式计算的有( )
①(x-12y)(x+1
2
y), ②(3a-bc)(-bc-3a), ③()()x y y x 6565-+ ④(100+2)(100-2), A.1个 B. 2个 C. 3个 D. 4个
3. 已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是 ( )
A B C D
4. 下列命题中正确的是( )
A .全等三角形的高相等
B .全等三角形的中线相等
C .全等三角形周长相等
D .全等三角形的角平分线相等
5. 将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则CBD ∠的度数为( )
A .60° B.75° C.90° D.95°
6. 如图,AB=AC ,AD=AE ,∠B=50°,∠AEC=120°,则∠DAC = (A. 070 B. 060 C. 050 D. 0
40.
7. 若点P 的坐标为(3,4),则P 关于y 轴对称的点的坐标为 ( ) A .(3,-4) B .(-4,3) C .(-3,4) D . (-3,-4)
8.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于
A
( )
A .108° B.114° C.126° D.129°
二、填空(每题3分,共30分)
1.()()
()=
+
+
-2
2x
y
y
x
y
x,32
(2)(12)________.
a a a
-⋅-+=
2.如图,在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是___ ___.
3. 如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2
交OA于M,交OB于N,P1P2=15,则△PMN的周长为。

4.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 .
5.2006
2008
2007)1
(
5.1
)
3
2
(-
⋅的结果是___ ___.
6.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”。

7.如图,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.
你补充的条件是__ .
8一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R欧
表示为温度t℃的函数关系为_______________.
9. 在R t△ABC中,∠C=90°,∠A=30°,AB=12,则BC=
10. 分解因式:=
-
+
-ab
ab
b
a3
6
32
2_______________.
三、简答题(共66分)
1、分解因式(10分)
A
D E
C
B
16

A
D
O
C
B
17题
(1)-20x 2yz-15xy 2z+5xyz (2)(x 2
+y 2)2
-4x 2y
2
2、(12分)先化简,再求值; (1) .2),12(6)3)(3(-=-+---x x x x x 其中
(2)[)
)(()(2y x y x y x -++-]÷2x ,其中x =3,y =-1.5。

3、作图:(不写作法,但要保留作图痕迹) (8分)
如图所示,要在街道旁修建一个牛奶站,向居民区A 、B 提供牛奶,牛奶站应建在什么地方,才能使A 、B 到它的距离之和最短?
4、(8分)如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,过O 点作EF ∥BC ,•交AB 于E ,交AC 于F ,若BE=3,CF=2,试求EF 的值.
F E O
C
B
A
5.(10分)如图,在ABC △中,
D 是AB 上一点,DF 交AC 于点
E ,DE FE =,AE CE =,AB 与C
F 有什么位置关系?证明你的结论.
街道
居民区B ·
居民区A ·
A
D B
C
F E
6、(10分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后市场销售情况进行了跟踪调查,调查结果如图所示:其中,图①中的折线表示的是市场日销售量与上市时间的关系,图②中的折线表示的是每件产品A 的销售利润与上市时间的关系.
(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;
(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大日销售利润是多少万元?
6、(10分)如图,已知:在△ABC 中,AB=AC ,∠BAC=90°,分别过B 、C 向过A 的直线作垂线,垂足分别为E 、F 。

(1)如图①过A 的直线与斜边BC 不相交时,求证:EF=BE+CF
(2)如图②过A 的直线与斜边BC 相交时,其他条件不变,若BE=10,CF=3,
求:FE 长。

八年级第三次月考试题参考答案
一、选择
1、C
2、A
3、B
4、A
5、C
6、C
7、A
8、D
9、C 10、A 二、填空
图①
F E
C
B
A 图②F
E
C
B
A
图 ② 天
11、15。

12、21:05。

13、3cm 。

14、030和0
75。

15、14cm 。

16、HL 。

17、答案不唯一。

18、(0,2).19、6。

20、16cm 。

三、简答题 21、略。

8分
22、解:∵ BO 平分∠ABC,
∴∠EBO=∠OBC ∵ CO 平分∠ABC, ∴∠FCO=∠OCB ∵EF ∥BC
∴∠EOB=∠OBC,∠FOC=∠OCB ∴∠EOB=∠EBO,∠FOC=∠FCB ∴OE=EB,OF=FC
∵BE=3,CF=2,∴EF=5 23.解:AB CF ∥.
证明:在ABC △和CFE △中,
由DE FE AED CEF AE CE =∠=∠=,,,
得ADE CFE △≌△. 所以A FCE ∠=∠. 故AB CF ∥.
24.解:
(1)丙牌计算器使用频率最高 36+54+90=180 %100180
90
⨯=50%, .丙牌计算器使用频率为50%, (2)
⨯18036100%=20% ⨯18054100%=30%, ⨯180
90100%=50% (3)建议商家进货时,甲牌,乙牌,丙牌计算器按2:3:5进货,减少库存。

25、(1)由图①可知
当0≤t ≤30时,设市场的日销售量为y=kt ∵点(30,60)在图象上, ∴60=30k ,k =2. ∴y =2k . 4分
当30≤t ≤40时,设市场的日销售量为y =k 1t +b . ∵点(30,60)和(40,0)在图象上, ∴11
6030040k b
k b =+⎧⎨
=+⎩
解得k 1=-6,b =240.
∴ y=-6t +240 综合可知:2(030)
6240(3040)
t t y t t ≤≤⎧=⎨
-+<≤⎩ 8分
(2) 由图①知,第30天市场的日销售量达到最大60万件,又由图②知,第30天每件产
品的日销售利润达到最大60元/件,所以第30天这家公司市场的日销售利润最大,最大利润为3600万元.12分
26、证明:(1)在△ABE和△ABF中,满足:
∠BEA=∠AFC,∠EAB=∠FCA, AB=AC
∴ΔBEA≌ΔAFC∴EA=FC,BE=AF∴EF=EA+AF
( 2)由(1)易知EF=AF-CF=7。

相关文档
最新文档