模拟电子技术仿真作业
(华北电力大学主编)模拟电子技术基础习题答案

(华北电⼒⼤学主编)模拟电⼦技术基础习题答案模拟电⼦技术基础习题答案电⼦技术课程组2018.8.15⽬录第1章习题及答案 (1)第2章习题及答案 (14)第3章习题及答案 (36)第4章习题及答案 (45)第5章习题及答案 (55)第6章习题及答案 (70)第7章习题及答案 (86)第8章习题及答案 (104)第9章习题及答案 (117)第10章习题及答案 (133)模拟电⼦技术试卷1 (146)模拟电⼦技术试卷2 (152)模拟电⼦技术试卷3 (158)第1章习题及答案1.1选择合适答案填⼊空内。
(1)在本征半导体中加⼊元素可形成N型半导体,加⼊元素可形成P型半导体。
A. 五价B. 四价C. 三价(2)PN结加正向电压时,空间电荷区将。
A. 变窄B. 基本不变C. 变宽(3)当温度升⾼时,⼆极管的反向饱和电流将。
A. 增⼤B. 不变C. 减⼩(4)稳压管的稳压区是其⼯作在。
A. 正向导通B.反向截⽌C.反向击穿解:(1)A、C (2)A (3)A (4)C1.2.1写出图P1.2.1所⽰各电路的输出电压值,设⼆极管是理想的。
(1)(2)(3)图P1.2.1解:(1)⼆极管导通U O1=2V (2)⼆极管截⽌U O2=2V (3)⼆极管导通U O3=2V1.2.2写出图P1.2.2所⽰各电路的输出电压值,设⼆极管导通电压U D=0.7V。
(1)(2)(3)图P1.2.2解:(1)⼆极管截⽌U O1=0V (2)⼆极管导通U O2=-1.3V (3)⼆极管截⽌U O3=-2V1.3.1电路如P1.3.1图所⽰,设⼆极管采⽤恒压降模型且正向压降为0.7V,试判断下图中各⼆极管是否导通,并求出电路的输出电压U o。
图P1.3.1解:⼆极管D1截⽌,D2导通,U O=-2.3V1.3.2电路如图P1.3.2所⽰,已知u i=10sinωt(v),试画出u i与u O的波形。
设⼆极管正向导通电压可忽略不计。
Multisim模拟电路仿真实例

滞回比较器
UREF 为参考电压;输 出电压 uO 为 +UZ 或 -UZ;uI 为输入电压。
当 u+ = u- 时,输出电压 的状态发生跳变。
u
RF R2 RF
U REF
R2 R2 RF
uO
UT-
比较器有两个不同的门限电平,
故传输特性呈滞回形状。
uO
+UZ
UT+
O
uI
-UZ
若 uO = UZ ,当 uI 逐渐增大时,使 uO 由 +UZ 跳变为
-UZ 所需的门限电平 UT+
UT
Байду номын сангаас
RF R2 RF
U REF
R2 R2 RF
UZ
若 uO= UZ ,当 uI 逐渐减小时,使 uO 由 UZ 跳变 为 UZ 所需的门限电平 UT
图5-25 乙类互补对称功放电路
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
当输入信号较小时,达不到三极 管的开启电压,三极管不导电。
因此在正、负半周交替过零处会出 现非线性失真,即交越失真。
输入波形
输出波形
其失真范围如何呢? 下面进行直流扫描分析,以便确定其交越失真的范围。
图5-24 波特图仪显示结果
若将信号源的频率分别修改为200Hz 和1MHz ,再次启动仿真,其输出电 压有何变化?
200Hz
1KHz
适当修改参数R1、R2、R3、R4和C1、C2,观察通带电压放大倍数和通带
截止频率的变化?
增如大果RR11输太出大波, 形输幅出度会增?大
模拟电子技术基础仿真实验

模拟电子技术基础仿真
实验报告
2013020913018 张东恒
研究二极管对直流量和交流量表现的不同特点仿真电路如下:
图中所使用的直流电压源电压大小分别为1V和6V
采用了在multisim中型号为1N3064的二极管进行试验
三,仿真内容
1,在直流电流不同时二极管管压降的变化。
利用万用表测得电阻上的直流电压,从而得到二极管管压降
2,在直流电流不同时二极管等效电阻的变化。
利用万用表的交流电压档测得电阻上交流电压的有效值,从而得到二极管交流电压的有效值
四,仿真结果
在读仿真结果的时候,为了方便读数,在电阻两端并接了一个万用表,以便一次读取直流和交流两个参数
数据汇总如下
直流电源V1/V 交流信号
V2/mV
R直流电压
表读数
R交流电压
表读数/mV
二极管直流
电压/V
二极管交流
电压/mV
1 10 406.56mV 9.33
2 593.44mV 0.668
4 10 5.301V 9.873 0.699V 0.127
五,结论
1,比较直流电源取值为1V和6V的条件下二极管的直流管压降可知,二极管的直流电流月大,管压降越大,管压降并不是常量
2,比较直流电源取值为1V和6V两种情况下二极管的直流管压降可知,二极管的直流电流越大,其交流管压降越小,说明随着静态电流的增大,动态电阻将减小;两种情况下电阻的交流压降均接近输入交流电压值,说明二极管的动态电阻很小。
30538模拟电子技术仿真实验课件

1.2 二极管的应用
1.2.3 限幅电路
1.二极管下限幅电路: 首先判断二极管的工作状态:假设断开 二极管,计算二极管阳极和阴极电位, 阴极电位为5V,只要阳极电位大于等于 5.7V,二极管导通,阳极电位低于5.7V, 二极管截止。由于输入电压是交流电, 所以只有在交流电的正半周且电压的瞬 时值大于等于5.7V时,输出电压等于输 入电压,Uo=Ui。在交流电的一个周期 内的大部分时间由于交流电的瞬时值小 于5.7V,二极管处于截止状态,所以输 出电压为5V。
(a) 电路图
(b)输入输出波形 图1-32 光电耦合器电路
1.4半导体三极管
1.4.1三极管内部电流分配关系
将三极管2N5551按照图1-33进行连接, 图中接入了3个电流表和2个电压表。3个 电流表分别用来测量基极电流IB、集电 极电流IC和发射极电流IE,两个电压表 一个用来测量发射结电压,另一个用来 测量集电结电压。通过改变可变电阻R3 的阻值,从而改变基极电流的大小。 图1-33 三极管内部电流分配关系
图1-29
电路负载发生变化
总之,要使稳压二极管起到稳压作用,流过它的反向电流必须在Imin ~ Imax 范围内变化,在这个范围内,稳压二极管工作安全而且它两端反向电压变化很 小。上述仿真实验中,其实质是用稳压管中电流的变化来补偿输出电流的变化。
1.3 特殊二极管的应用
1.3.2 发光二极管的应用
2.负载电阻发生变化 图1-29中,用可变电阻RL阻值的变化来 模拟负载的变化,当阻值由500Ω下降到 150Ω(阻值变化显示30%)时,负载上的电 流逐渐增大,即负载变得越来越重,这时 流过稳压管的电流下降到17mA,稳压器 的输出电压基本上保持在6.2V。如果继续 减小负载电阻的阻值,则流过稳压二极管 的反向电流继续减小,当流过稳压二极管 的反向电流小于它的最小维持电流(6mA) 时,稳压管也就失去了稳压作用。
模拟电子技术仿真与实验报告

4
(1)打开信号发生器的电源,输入信号频率为 1KHz、幅度为 20mV 的正弦信号,输出端 开路时,用示波器分别测出 Vi,Vo’的大小,然后根据式(2.1-5)算出电压放大倍数。 (2)放大器输入端接入 2kΩ的负载电阻 R6,保持输入电压 Vi 不变,测出此时的输出电 压 Vo,并算出此时的电压放大倍数,分析负载对放大电路电压放大倍数的影响。 (3)用示波器双踪观察 Vo 和 Vi 的波形,比较它们之间的相位关系。 3、输入电阻和输出电阻的测量 (1)用示波器分别测出电阻两端的电压 V 和 V,利用式(2.1-6)便可算出放大电路的 输入电阻 Ri 的大小。 (2)根据测得的负载开路时输出电压 Vo’和接上负载时的输出电压 Vo,利用式(2.1-7) 便可算出放大电路的输出电阻 Ro。记录实验数据。
三、实验内容
计算机仿真部分: 根据电路画出实验仿真电路图。其中得到的波特图绘制仪的命令为 “SimulateInstrumentBode Plotter”。
(2)调节 J1 将开关打到下面,测试电路的开环基本特性。
10
将信号发生器输出调为 1kHz、10mVp(峰值)正弦波,然后接入放大器的输入端到网络的波 特图如下图。
当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点具
体的调节步骤如下:
现象
出现截止失真 出现饱和失真 两种失真都出现
无失真
动作
减小 R
增大 R
减小输入信号 加大输入信号
根据示波器上观察到的现象,做出不同的调整动作,反复进行。当加大输入信号,两种失
真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流
电极电流 ICQ 和管压降 VCEQ。其中 VCEQ 可直接用万用表直流电压档测 C-E 极间的电压既得, 而 ICQ 的测量则有直接法和间接法两种: 直接法:将万用表电流档串入集电极电路直接测量。此法精度高,但要断开集电极回路,
Multisim数字电子技术仿真实验

多语言支持
软件支持多种语言界面, 方便不同国家和地区的用 户使用。
02
数字电子技术基础
逻辑门电路
总结词
逻辑门电路是数字电子技术中的 基本单元,用于实现逻辑运算和 信号转换。
详细描述
逻辑门电路由输入和输出端组成 ,根据输入信号的组合,输出端 产生相应的信号。常见的逻辑门 电路有与门、或门、非门等。
交互性强
用户可以在软件中直接对 电路进行搭建、修改和测 试,实时观察电路的行为 和性能。
实验环境灵活
软件提供了多种实验模板 和电路图符号,方便用户 快速搭建各种数字电子技 术实验。
软件功能
元件库丰富
Multisim软件拥有庞大的元件库,包含了各种类型的电子元件和 集成电路,方便用户选择和使用。
电路分析工具
寄存器实验结果分析
总结词
寄存器实验结果分析主要关注寄存器是否能够正确存储和读取数据,以及寄存器的功能 是否正常实现。
详细描述
首先观察实验中使用的寄存器的数据存储和读取过程,记录下实际得到的数据存储和读 取结果。接着,将实际得到的数据存储和读取结果与理论预期的数据存储和读取结果进 行对比,检查是否存在差异。如果有差异,需要分析可能的原因,如电路连接错误、元
触发器
总结词
触发器是一种双稳态电路,能够在外 部信号的作用下实现状态的翻转。
详细描述
触发器有两个稳定状态,根据输入信 号的组合,触发器可以在两个状态之 间进行切换。常见的触发器有RS触发 器、D触发器据的基本单元,用于存储二进制数据。
详细描述
寄存器由多个触发器组成,可以存储一定数量的二进制数据 。寄存器在数字电路中用于存储数据和控制信号。
08级模拟电子技术仿真实验报告

08级模拟电子技术仿真实验报告08级模拟电子技术仿真实验报告模拟电子技术基础仿真实验报告班级:2021级10班学号:[1**********]8 姓名:冯韶祥2021年6月23日实验一晶体三极管共射放大电路1.学习共射放大电路的参数选取方法。
2.学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。
3.学习放大电路的电压放大倍数和最大不失真输出电压的分析方法。
4.学习放大电路输入输出电阻的测量方法以及频率特性的分析方法。
1.确定并调整放大电路的静态工作点。
2.调整放大电路的电压放大倍数Av和最大不失真输出电压Vomax. (1)RL=无穷大(开路);(2)RL=3K.3.观察饱和失真和截止失真,并测出相应的集电极静态电流。
4.测量放大电路的输入电阻Ri和输出电阻Ro.5.测量放大电路带负载时的上限频率fH和下限频率fL三、实验内容与步骤1、原理图设置与参数选择,调整合适的静态工作点(1)电容参数C1=C2=10uf,Ce=100uf;(2)参数Rc=3K,Rb1=61.5k,Rb2=35k,Re=1.9k;(3)检查各节点电压和各支路电流,调整合适的静态工作点。
(4)实验原理图VOFF = 0VAMPL = 10mvFREQ = 3.5k2、观察输入输出波形,测量电压放大倍数(1)在放大电路的输入端加入交流信号源VSIN(交流信号频率:3.5KHz,幅值:10mv),并将其符号更改为Us.(2)当RL=3K时,设置交流扫描分析,验证共射放大电路的电压放大倍数是否满足要求。
设置交流扫描分析,在Probe窗口中可观察到下面的图像V(C2:2)/ V(R1:2)3.5KHz Frequency由图像及文本输出窗口中的到的电压打印机的数据,可大致算出放大倍数约为70,而理论值为75,二者之间的误差约为,7%。
(3)当RL开路(设RL=1MEG)时,设置交流扫描分析,验证共射放大电路的放大倍数是否满足要求。
第二章multisim仿真作业

模拟电子技术课程习题 2.19 multisim 仿真学号: 5080309224 姓名: 李有一、本仿真实验目的2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A •、i R 、o R 和om U 的影响。
二、仿真电路晶体管采用虚拟晶体管,12VCC V =。
1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1):图 12、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)图 23、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3)图 34、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)图 4三、仿真内容1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的CEQ U 和u A •。
由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降CEQ U 。
从示波器可读出输出电压的峰值。
2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的CEQ U 和u A •。
3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的CEQ U 和u A •。
4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的CEQ U 和u A •。
四、仿真结果1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的CEQ U 和u A •仿真结果如下表(表1 仿真数据)表格 1 仿真数据2、当510b R k =Ω时, 5c R k =Ω和10c R k =Ω时的CEQ U 和u A •仿真结果如下表(表2 仿真数据)表格 2 仿真数据3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的CEQ U 和u A •仿真结果如下表(表3 仿真数据)表格 3 仿真数据4、当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的CEQ U 和u A •的仿真结果如下表(表4 仿真数据)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电子技术课程
实验六•文氏电桥振荡器电路仿真实验报告
学号:5101419013姓名:姚磊
一、本仿真实验的目的
文氏电桥振荡器是一种常用的RC振荡器,用来产生低频正弦信号。
图1是一个典型电路,它由运算放人器和RC串并联选频网络组成。
电阻Rn, %?组成负反馈网络,电压增益约为(站+忌)/轴。
(1)设计电路参数使f° = 500HZ o
(2)计算RC串并联选频网络的频响特性。
(3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形火真较小。
二、仿真电路
图2 RC桥式正弦波振荡仿頁•电路
三、仿真内容
(1)设计电路参数使A 500Hz
由于/o = —!—= 5OOHz,可以取R= 316H, C = lpF
(2)RC串并联选频网络的频响特性计算
:〃為
R十侖+R〃佥
整理可得:
• _ 1
V~3
+KW RC-^
令W。
=右则/o =忌
代入可得频响特性:
幅频特性为
相频特性为
(P f = -arctarfi(^-y-)
(3)电路设计过程
首先,不使用二极管稳幅电路,选择Rfl=1.0kQ,Rf2=2.37kQ 再带上负载测试
1 |F|
=
Supply
其次,如果使用稳幅电路,选择Rfl=1.0kQ,Rf2=1.74kQ
Sup"接着,带上torn的负载测试
Supply
四.仿真结果
(1)在不使用稳幅电路的时候,观察示波器可以得到下图
(2)使用稳幅电路后,可以观察到稳定的过程,和稳定Z 后的波形
Channel 5 T1 ±*1
T2 4-4] T2-T1~ T IT « 0.000 s Cha“rel_A 0.000 V
Channel A Tinebaw ----- S^ae|l nts.Div X pwiton |o [Y ?T A XM | B S >A | A»&| [AC _oj 列 E
Scale 10 V/Div Channel 3 Scale 15 V/Diy
Siw I Ext Trig C F 冲 吟 Bl&t| v -
Lev^!
J/
为了验证二极管稳幅电路对输出电压稳定程度的影响,我在负载为
l.OkQ的情况下测了下表
五、结论及体会
从测量的数据看,如果不使用二极管稳幅电路进行稳压,在接入负载后输出幅度变化较人,且波形容易产生失真。
而利用二极管稳幅电路后,波形和幅度都能得到很好的稳定。
在实验过程中,我遇到了不少困难,在探索中和同学的帮助下——
解决。
本次实验让我对MULTISIM这个软件更加了解,能够初步熟练使用MULTISIM,对电路的模拟分析有了更加直观的认识, 提高了对电路的分析能力。