空间插值方法介绍

合集下载

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

《空间插值方法简介》PPT课件

《空间插值方法简介》PPT课件

表1 样本数据特征值统计
特征值 时期
70年代 80年代 90年代 2000年代
最小值
11.27 11.33 11.77 11.50
最大值
19.53 19.43 19.53 19.80
平均值
17.52 17.51 17.74 17.97
标准差
1.09 1.07 1.03 1.23
变异系数
6.22% 6.11% 5.81% 6.84%
正态分布
检验数据分布 正态QQPlot图
趋势分析
趋势效应分析(Trend Analysis)
为了满足平稳 假设
预测表面 =确定的全局趋势+随机的短程变异
剔除!
趋势分析 ArcGIS软件的地统计分析模块中趋势效应
趋势名称

none
常量 const
一阶 first 二阶 second 三阶 third
靠的越近越相似!
反距离加权法
应用条件
研究区域内的采样点分布均匀, 采样点不聚集
假设前提
各已知点对预测点的预测值都有局部性 的影响,其影响随着距离的增加而减小
样点的数量
反距离加权法
各样点的权重
n
公式: Z(s0)=
iZ (si )
i 1
观测值
预测值
注:在预测过程中,权重随着样 点与预测点之间距离的增加而减小。 各样点值对预测点值作用的权重大 小是成比例的,这些权重值的总和 为1。
空间插值常用的两种方法:
确定性插值方法:
地统计方法:
反距离权重(IDW)
3模型分析
不同的方法有其适用的条件
当数据不服从正态分布时,若服从对数正态分布,则选用对数正态克里格; 若不服从简单分布时,选用析取克里格。 当数据存在主导趋势时,选用泛克里格。 当只需了解属性值是否超过某一阈值时,选用指示克里格。 当同一事物的两种属性存在相关关系,且一种属性不易获取时,可选用协同 克里格方法,借助另一属性实现该属性的空间内插。当假设属性值的期望值为 某一已知常数时,选用简单克里格。 当假设属性值的期望值是未知的,选用普通克里格。

空间插值方法对比整理版

空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)

空间数据分析方法有哪些(两篇)2024

空间数据分析方法有哪些(两篇)2024

空间数据分析方法有哪些(二)引言概述空间数据分析是一种重要的数据分析方法,在众多领域包括城市规划、地理信息系统、环境管理和农业等方面具有广泛应用。

本文将就空间数据分析方法进行详细的介绍和阐述,希望能够帮助读者更好地了解和运用这些方法。

正文内容一、地理分析工具1. 空间插值方法- 空间插值方法是一种将已知数据点的值推断到未知区域的方法。

常用的空间插值方法有反距离权重法、克里金法和径向基函数插值法。

这些方法可以通过数学模型推断出未知区域的值,从而帮助分析人员进行更加准确的决策。

- 反距离权重法假设周围已知点的权重与距离的倒数成正比,通过加权平均的方式来估计未知点的值。

克里金法则基于空间半变异函数对已知点进行插值,可以得到更加平滑的结果。

径向基函数插值法则使用基函数对已知点进行插值,可以灵活地应用于不同类型的数据。

2. 空间聚类方法- 空间聚类方法是对空间数据进行聚类分析的方法。

常用的空间聚类方法有基于密度的聚类和基于网格的聚类。

基于密度的聚类方法将空间数据划分为高密度和低密度区域,从而得到聚类结果。

基于网格的聚类方法则将空间数据划分为网格,并且根据网格内数据的特征进行聚类分析。

- 空间聚类方法在城市规划和地理信息系统等领域具有重要的应用。

通过空间聚类,可以发现具有相似特征的空间对象,从而更好地理解和分析空间数据。

3. 空间相关性分析- 空间相关性分析是研究空间数据之间关系的分析方法。

常用的空间相关性分析方法有空间自相关分析和空间回归分析。

空间自相关分析可以帮助分析人员理解空间数据的空间分布模式,了解空间数据之间的依赖关系。

空间回归分析则是研究空间数据之间的线性关系,并进行回归分析。

- 空间数据的相关性分析可以帮助分析人员发现隐藏在数据背后的规律和关系,从而做出更加准确的决策。

4. 空间网络分析- 空间网络分析是研究网络结构和空间数据之间关系的分析方法。

常用的空间网络分析方法有路径分析、中心性分析和聚类分析。

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

空间插值方法大致总结

空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。

➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。

⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

空间插值介绍简洁明了ppt

空间插值介绍简洁明了ppt
• 由于建立在统计学得基础上,因此不仅可以 产生预测曲面,而且可以产生误差与不确定 性曲面,用来评估预测结果得好坏
• 多种 kriging 方法
3、精确插值与近似插值
• 精确插值:产生通过所有观测点得曲面。
• 在精确插值中,插值点落在观测点上,内插值等于 估计值。
• 近似插值:插值产生得曲面不通过所有观测点。
f d ej
n
f (d ej )
i 1
其中 n 是已知点数, f d ej 表示对于插值点(xe, ye)
与已知点 (xj,, yj) 之间距离 d ej 的权重函数。
f dej 最常用的一种形式是:
f dej
1
d
b ej
b 是合适的常数。当 b 取值为 1 或 2 时,对应的是距离倒数插值和 距离倒数平方插值。b 也可以对不同的已知点选择不同的值,即 bj。
大家学习辛苦了,还是要坚持
继续保持安静
插值验证
(1) 交叉验证 交叉验证法(cross-validation),首先假定每一测点得要 素值未知,而采用周围样点得值来估算,然后计算所有样点实 际观测值与内插值得误差,以此来评判估值方法得优劣。 各 种插值方法得到得插值结果与样本点数据比较。
(2)“实际”验证 将部分已知变量值得样本点作为“训练数据集”,用于插值 计算;另一部分样点 “验证数据集”,该部分站点不参加插值 计算。然后利用“训练数据集” 样点进行内插,插值结果与 “训练数据集”验证样点得观测值对比,比较插值得效果。
• 权重函数与待估点到样点间得距离得U次幂成反比,即随着距离增 大,权重呈幂函数递减。且对某待估点而言,其所有邻域得样点数 得权重与为1。
• 决定反距离权重插值法结果得参数包括距离得U次幂值得确定,同 时还取决于确定邻近区域得所使用得方法。此外,为消除样点数据 得不均匀分布得影响,还可设置引入一个平滑参数,以保证没有哪 个样点被赋予全部得权重,即使得插值运算时尽可能不只有一个样 点参与运算。

空间插值方法

空间插值方法


数据拟合问题就是根据若干参考点上的已知值求出待定点 上(未知点)的研究值。数据拟合问题通常可分为插值问 题和光顺逼近问题。 插值问题的解要求严格经过已知量测点,而光顺逼近问题 的解虽不要求严格经过已知点,但它要求在某种约束条件 下(比如最上 乘意义下 最小曲面能或最小粗糙度意义 下(比如最上二乘意义下、最小曲面能或最小粗糙度意义 下)达到整体逼近效果。
6/21/2010
空间插值方法
第6讲 空间插值方法及 TIN/TEN构建算法

6.1 问题的提出 6.2 空间数据插值方法概述 6.3 几种空间数据插值方法原理
6.1 空间插值问题的提出

6.2 空间数据插值方法概述

GIS在实际应用过程中,很多情况下,比如采样密度不够、 曲线与曲面光滑处理、空间趋势预测、采样结果的可视化 等,必须对空间数据进行插值和拟合,因此空间数据插值 是GIS数据处理的一项重要任务。其主要目的是根据一组 已知的离散数据,按照某种数学关系推求其他未知点和未 知区域的数据的过程。
Delauny三角化方法自提出后并未引起足够多 的重视,到了20世纪80年代才开始研究这个算 法,目前比较有效的算法有:

分治算法 逐点加入法 生长算法 凸壳法

分治算法

分治算法的基本思想是一个递归思想,把点集划分到足够小, 使其易于生成三角网,然后把子集中的三角网合并生成最终 的三角网。 逐点加入法有两个基本步:1.定位,找到包含新加点的三角 形;2.更新,形成新的三角形。 生长法从第一个DT开始,而后由三角形边逐步形成新的DT。 如果二维上的任意一点对应到三维点,可以计算出提升点的 凸壳,除去朝上的凸壳面,剩下的朝下的面就是原始点的DT (这个关系适合于任意n维)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对地理信息系统空间数据分析中的空间数据插值方法从广义的角度分为点的插值和面的插值。

随着GIS和计算机技术的不断发展,以及人们在研究工作中对空间高质量数据的要求,空间数据插值应用越来越广,受到人们的高度重视。

空间数据的插值即对一组已知空间数据,可以是离散点的形式,也可以是分区数据的形式,要从这些数据中找到一个函数关系式,使该关系式最好地逼近已知的空间数据,并能根据该函数关系式推求出区域范围内其它任意点或任意分区的值。

1、什么情况下要用到空间插值
(1)现有的离散曲面的分辨率,像元大小或方向与所要求的不符,需要重新插值。

(2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值.如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。

(3)现有的数据不能完全覆盖所要求的区域范围需要插值如将离散的采样点数据内插为连续的数据表面。

2、空间插值方法的主要目的
(1)对不足或缺失数据的估计。

由于观测台站分布的密度及分布位置的原因,不可能任何空间地点的数据都能实测得到,需要用到插值,以了解区域内观测变量的完整空间分布。

(2)数据的网格化。

规则格网能够更好地反映连续分布的空间现象,并对他们的变化作出模拟。

对已知观测台站的观测数据进行空间内插,便可得到格网化数据。

(3)内插等值线。

以等值线的形式直观地显示数据的空间分布。

(4)对不同分区未知数据的推求。

3、进行空间插值的一般过程
(1)空间插值数据源的获取。

(2)对数据进行分析,找出源数据的分布特性、统计特性,便于选择最恰当的插值方法。

(3)插值方法的选择并进行插值计算。

(4)对插值结果的评价。

(5)运用多种插值方法进行计算,对各种方法的插值结果进行比较、分析并选择最佳的插值方法。

4、不同插值法的分析
(1)样条函数插值(SPLINE)
样条函数是数学上与灵活曲线规对等的一个数学等式,是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续。

这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

线性和曲面样条函数都在视觉上得到了令人满意的结果。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题.
样条函数的种类很多,最常用的有B样条、张力样条和薄盘样条等。

(2)克里格插值(Kriging)
是由南非工程师克里格和统计学家西舍尔在上世纪50年代根据样品空间位置不同和样品间的相关程度的不同,对每个样品赋予一定的权重,进行滑动加权平均,来估计未知样品平均值的一种方法。

它是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域变量的值进行最优、线性、无偏估计的一种方法。

克里格法方法最初用于矿山勘探,并被广泛地应用于地下水模拟、土壤制图等领域,成
为GIS软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

(3)反距离加权法(IDW)
IDW(Inverse Distance Weighted),反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

这种方法的计算值容易受数据点集群的影响,计算结果经常出现一种孤立点数据明显高于周围数据点的“鸭蛋”分布模式,可以再插值过程中通过动态搜索准则进行一定程度的改进。

相关文档
最新文档