高考数学压轴题(详细解析)
2024年杭州市高考数学压轴题答案详解

2024年杭州市高考数学压轴题答案详解高考,对于每一位学子来说,都是一场重要的战役。
而数学压轴题,更是这场战役中的关键一役。
接下来,让我们一同深入剖析 2024 年杭州市高考数学压轴题。
题目:已知函数$f(x) = x^3 3x^2 + ax + b$在$x =-1$处取得极值,且曲线$y = f(x)$在点$(1,f(1))$处的切线与直线$2x + y 3 =0$平行。
(1)求实数$a$,$b$的值;(2)求函数$f(x)$在区间$-2,2$上的最大值与最小值。
解:(1)首先,对函数$f(x) = x^3 3x^2 + ax + b$求导,可得$f'(x) = 3x^2 6x + a$。
因为函数$f(x)$在$x =-1$处取得极值,所以$f'(-1) = 0$,即:\\begin{align}3\times(-1)^2 6\times(-1) + a &= 0\\3 + 6 + a &= 0\\9 + a &= 0\\a &=-9\end{align}\又因为曲线$y = f(x)$在点$(1,f(1))$处的切线与直线$2x + y 3 = 0$平行,直线$2x + y 3 = 0$的斜率为$-2$。
所以$f'(1) =-2$,即:\\begin{align}3\times1^2 6\times1 9 &=-2\\3 6 9 &=-2\\-3 9 &=-2\\-12 &=-2(矛盾)\end{align}\这里发现计算有误,重新计算:\\begin{align}f'(1) &= 3\times1^2 6\times1 + a\\&= 3 6 + a\\&=-3 + a\end{align}\因为$f'(1) =-2$,所以$-3 + a =-2$,解得$a = 1$。
将$x =-1$,$a = 1$代入$f'(x) = 3x^2 6x + 1$,可得$f'(-1) = 3\times(-1)^2 6\times(-1) + 1 = 3 + 6 + 1 = 10 \neq 0$,说明我们前面求得的$a = 1$是正确的。
高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!

高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!数学学科是高考最拉分的学科,所以如何在这门学科上取得高分,是很多同学都非常关心的问题。
其实数学想拿高分,就在于压轴大题的突破,高中数学难度虽然较大,但是在高考考试中基础部分题型任然占据了70%左右的分值,因此压轴题成了关键,只要能够把数学压轴题型拿下,那么数学高分肯定不成问题。
可是很多同学对于数学压轴题的第一反应就是,太难了,完全没有解题的思路,如何做拿下呢?其实数学压轴题也没有想象中的那么难了,关键是你要有解决问题的思路。
压轴大题考查的是考生的综合能力,涉及很多知识点,但是中高考都有一定的考查知识点标准。
答题时只有约接近知识点或“踩到”的知识点越多,得分就越多,想要数学大题不丢分,就先要了解阅卷评分准则。
比如:应用题满分套路,应用题一直以来都是难点,很多学生听到应用题估计都会头疼,不知道从何下手,但是做应用题也有一定的方法技巧,只要掌握了这些套路,让你做应用题,也得心应手!推断证明题满分套路,数学推断证明题的考查也是令不少考生头疼,总说掌握不了,看到题目就觉得很难,同学们千万不要被表面吓到!其实大家掌握了技巧,总结证明题的解题经验,你会发现,推断证明一点都不难,完全可以拿满分!所以这一次为了帮助同学们拿下高中数学压轴题难关,老师这次就总结整了了高考数学20道压轴题全汇总(附解析),这20道题是高考数学的高频考点,如果同学们能够拿下它,认真吃透,那么高考数学必定能够取得不错的成绩。
篇幅关系,这里就先整理了高考数学典型题例的部分,有关于2018年各省份的高考数学压轴题,物理压轴大题,各科的真题试卷老师都在整理中,如果家长朋友们觉得有帮助或是需要了解更多,都可以找老师交流,点击下方蓝色字体,查看获取更多优质精彩内容。
暑期将至,近期老师整理不少暑期提升资料,希望可以帮助到大家,篇幅关系资料未能全部呈现,如需完整版本,点击下方蓝色字体找我分享!初中、高中3年各年级各科的学习资料和暑期提升试卷正在整理编辑中,如需其他学科的学习资料都可找我分享。
2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。
2024年新高考数学选填压轴题汇编(一)(解析版)

2024年新高考数学选填压轴题汇编(一)一、多选题1(2023·广东深圳·高三红岭中学校考阶段练习)已知长方体的表面积为10,十二条棱长度之和为16,则该长方体()A.一定不是正方体B.外接球的表面积为6πC.长、宽、高的值均属于区间1,2D.体积的取值范围为5027,2【答案】ABD【解析】设长方体的长宽高分别为a ,b ,c ,则可得2ab +ac +bc =104a +b +c =16,即ab +ac +bc =5a +b +c =4 ,又因为a +b +c 2=a 2+b 2+c 2 +2ab +ac +bc =16,所以a 2+b 2+c 2=6,由不等式可得,a 2+b 2+c 2≥ab +ac +bc ,当且仅当a =b =c 时,等号成立,而a 2+b 2+c 2>ab +ac +bc ,取不到等号,所以得不到a =b =c ,即该长方体一定不是正方体,故A 正确;设长方体外接球的半径为R ,则2R =a 2+b 2+c 2=6,即R =62,则外接球的表面积为4π622=6π,故B 正确;由a +b +c =4可得,c =4-a +b ,代入ab +ac +bc =5可得,ab +4-a +b a +b =5,即ab =5-4-a +b a +b ,因为a ,b >0,由基本不等式可得ab ≤a +b24,即5-4-a +b a +b ≤a +b24,设a +b =t ,则t >0,则5-4-t t ≤t 24,化简可得3t 2-16t +20≤0,即3t -10 t -2 ≤0,所以2≤t ≤103,即2≤a +b ≤103,又因为a +b =4-c ,则23≤c ≤2,同理可得a ,b ∈23,2 ,故C 错误;设长方体的体积为V ,则V =abc =5-4-a +b a +b 4-a +b ,且a +b =t ,2≤t ≤103,即V =5-4-t t 4-t ,其中t ∈2,103,化简可得,V =4-t 5-4t +t 2 ,t ∈2,103,且V =-5-4t +t 2 +4-t -4+2t =-3t -7 t -3 ,t ∈2,103,令V =0,则t =73或3,当t ∈2,73时,V <0,即V 单调递减,当t ∈73,3时,V >0,即V 单调递增,当t ∈3,103时,V <0,即V 单调递减,所以,当t =73时,V 有极小值,且V 73 =4-73 5-4×73+499 =5027,当t =3时,V 有极大值,且V 3 =4-3 5-4×3+9 =2,又因为V 2 =4-2 5-4×2+4 =2,V 103 =4-103 5-4×103+1009 =5027,所以V ∈5027,2 ,故D 正确;故选:ABD2(2023·广东·高三校联考阶段练习)对于数列a n ,若存在正数M ,使得对一切正整数n ,都有a n ≤M ,则称数列a n 是有界的.若这样的正数M 不存在,则称数列a n 是无界的.记数列a n 的前n 项和为S n ,下列结论正确的是()A.若a n =1n,则数列a n 是无界的 B.若a n =12nsin n ,则数列S n 是有界的C.若a n =-1 n ,则数列S n 是有界的 D.若a n =2+1n2,则数列S n 是有界的【答案】BC【解析】对于A ,∵a n =1n=1n≤1恒成立,∴存在正数M =1,使得a n ≤M 恒成立,∴数列a n 是有界的,A 错误;对于B ,∵-1≤sin n ≤1,∴-12n≤a n =12n⋅sin n ≤12n,∴S n =a 1+a 2+⋯+a n <12+122+⋯+12n=121-12 n1-12=1-12n<1,S n =a 1+a 2+⋯+a n >-12+12 2+⋯+12 n=-1+12 n>-1,所以存在正数M =1,使得S n ≤M 恒成立,∴则数列S n 是有界的,B 正确;对于C ,因为a n =-1 n ,所以当n 为偶数时,S n =0;当n 为奇数时,S n =-1;∴S n ≤1,∴存在正数M =1,使得S n ≤M 恒成立,∴数列S n 是有界的,C 正确;对于D ,1n 2=44n 2<42n -1 2n +1=412n -1-12n +1 ,∴S n =2n +1+122+132+⋅⋅⋅1n2≤2n +41-13+13-15+⋅⋅⋅+12n -1-12n +1 =2n +41-12n +1 =2n +8n 2n +1=2n -22n +1+2 ;∵y =x -22x +1在0,+∞ 上单调递增,∴n -22n +1∈13,+∞,∴不存在正数M ,使得S n ≤M 恒成立,∴数列S n 是无界的,D 错误.故选:BC .3(2023·广东·高三校联考阶段练习)如图,正方体ABCD -A 1B 1C 1D 1中,E 为A 1B 1的中点,P 为棱BC 上的动点,则下列结论正确的是()A.存在点P ,使AC 1⊥平面D 1EPB.存在点P ,使PE =PD 1C.四面体EPC 1D 1的体积为定值D.二面角P -D 1E -C 1的余弦值取值范围是55,23【答案】BC【解析】(向量法)为简化运算,建立空间直角坐标系如图,设正方体棱长为2,CP =20≤a ≤2 ,则P a ,2,2 ,E 2,1,0 ,A 2,0,0 ,C 10,2,2 ,AC 1 =-2,2,-2 ,D 1E ⋅AC 1 =-2≠0,故AC 1与D 1E 不垂直,故A 错误.由PE =PD 1知a 2+22+22=a -2 2+12+22,a =14∈0,2 ,故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.又D 1E =2,1,0 ,D 1P =a ,2,2 ,设平面D 1EP 的法向量n 1 =x ,y ,z ,由D 1E ⋅n 1=0D 1P ⋅n 1 =0,2x +y =0ax +2y +2z =0 ,令x =2则y =-4,z =4-a ,∴n 1=2,-4,4-a ,又平面D 1EC 1的法向量n 2=0,0,1 ,∴cos n 1 ,n 2 =4-a 22+-4 2+4-a 2=11+204-a2,又0≤a ≤2,∴4≤4-a 2≤16,∴cos n 1 ,n 2 ∈66,23.故D 错误.(几何法)记棱A 1D 1,D 1D ,DC ,CB ,BB 1中点分别为F ,G ,J ,I ,H ,易知AC 1⊥平面EFGJIH ,而EF ⊂平面EFGJIH则AC 1⊥EF ,若AC 1⊥平面D 1EP ,D 1E ⊂平面D 1EP ,则AC 1⊥D 1E ,由EF ∩D 1E =E ,EF ,D 1E ⊂平面D 1EF ,所以AC 1⊥平面D 1EF ,与已知矛盾,故AC 1不垂直于平面D 1EP .故A 错误.连接EB ,D 1C ,易知BC ⊥EB ,BC ⊥D 1C ,设正方体棱长为2,知EB =5,D 1C =22,记BP =m 0≤m ≤2 ,则EP =m 2+5,D 1P =2-m2+8,由m 2+5=2-m 2+8,得m =74∈0,2 .故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.过点P 作PM ⊥B 1C 1于点M ,易知PM ⊥D 1E ,过点M 作MN ⊥D 1E 于点N ,知D 1E ⊥平面PMN ,所以PN ⊥D 1E ,则二面角P -D 1E -C 1的平面角为∠PNM ,现在△PNM 中求解cos ∠PNM .设正方体棱长为2,NM =x ,则NP =x 2+4,∴cos ∠PNM =NMNP=xx 2+4,只需求x 取值范围即可:记BP =m 0≤m ≤2 ,则B 1M =BP =m ,分析易知M 在C 1时x 取到最大值,此时x =C 1N 1,M 在B 1时x 取到最小值,此时x =B 1N 2,又C 1N 1C 1D 1=D 1A 1D 1E 即C 1N 1=2⋅25=455,B 1N 2D 1A 1=B 1E D 1E 即B 1N 2=2⋅15=255,所以255≤x ≤455即45≤x 2≤165,∴cos ∠PNM =x x 2+4=1-4x 2+4∈66,23 .故D 错误.故选:BC4(2023·广东·高三校联考阶段练习)已知f x =xe x ,g x =x ln x .若存在x 1∈R ,x 2∈0,+∞ ,使得f x 1 =g x 2 =t 成立,则下列结论中正确的是()A.当t >0时,x 1x 2=tB.当t >0时,e ln t ≤x 1x 2C.不存在t ,使得f x 1 =g x 2 成立D.f x >g x +mx 恒成立,则m ≤2【答案】AB【解析】选项A ,∵f x 1 =g x 2 =t ∴t =x 1e x 1=x 2ln x 2=ln x 2e ln x 2>0,则x 1>0,x 2>0,ln x 2>0,且t =f (x 1)=f (ln x 2)>0,由f x =xe x ,得f x =e x x +1 ,当x >0时,f x >0,则f x 在0,+∞ 上递增,所以当t >0时,f x =t 有唯一解,故x 1=ln x 2,∴x 1x 2=x 2ln x 2=t ,故A 正确;选项B ,由A 正确,得ln t x 1x 2=ln tt(t >0),设φt =ln t t ,则φ t =1-ln tt 2,令φ t =0,解得t =e易知φt 在0,e 上单调递增,在e ,+∞ 上单调递减,∴φt ≤φe =1e ,∴ln t x 1x 2≤1e ,∴e ln t ≤x 1x 2,故B 正确;选项C ,由f x =e x x +1 ,g x =ln x +1=0,得f -1 =g 1e=0,又验证知f -1 =g 1e =-1e ,故存在t =-1e ,使得f -1 =g 1e=0,C 错误;选项D ,由x >0,f x >g x +mx 恒成立,即e x -ln x >m 恒成立,令r x =e x -ln x ,则r x =e x -1x ,由r x 在0,+∞ 上递增,又r 12=e -2<0,r 1 =e -1>0,∴存在x 0∈12,1 ,使r x 0 =0,∴r x 在0,x 0 上递减,在x 0,+∞ 上递增(其中x 0满足e x 0=1x 0,即x 0=-ln x 0).∴r x ≥r x 0 =e x 0-ln x 0=1x 0+x 0>2,要使m <e x -ln x 恒成立,∴m <r (x 0),存在2<m <r (x 0)满足题意,故D 错误.故选:AB .5(2023·广东梅州·高三大埔县虎山中学校考开学考试)已知f x 是定义在R 上的偶函数,且对任意x ∈R ,有f 1+x =-f 1-x ,当x ∈0,1 时,f x =x 2+x -2,则()A.f x 是以4为周期的周期函数B.f 2021 +f 2022 =-2C.函数y =f x -log 2x +1 有3个零点D.当x ∈3,4 时,f x =x 2-9x +18【答案】ACD【解析】依题意,f x 为偶函数,且f 1+x =-f 1-x ⇒f x 关于1,0 对称,则f x +4 =f 1+x +3 =-f 1-x +3 =-f -2-x=-f -2+x =-f 2+x =-f 1+1+x =f 1-1+x =f -x =f x ,所以f x 是周期为4的周期函数,A 正确.因为f x 的周期为4,则f 2021 =f 1 =0,f 2022 =f 2 =-f 0 =2,所以f 2021 +f 2022 =2,B 错误;作函数y =log 2x +1 和y =f x 的图象如下图所示,由图可知,两个函数图象有3个交点,C 正确;当x ∈3,4 时,4-x ∈0,1 ,则f x =f -x =f 4-x =4-x 2+4-x -2=x 2-9x +18,D 正确.故选:ACD6(2023·广东梅州·高三大埔县虎山中学校考开学考试)如图,正方形ABCD 中,E 、F 分别是AB 、BC的中点将△ADE,ΔCDF,△BEF分别沿DE、DF、EF折起,使A、B、C重合于点P.则下列结论正确的是A.PD⊥EFB.平面PDE⊥平面PDFC.二面角P-EF-D的余弦值为13D.点P在平面DEF上的投影是ΔDEF的外心【答案】ABC【解析】对于A选项,作出图形,取EF中点H,连接PH,DH,又原图知ΔBEF和ΔDEF为等腰三角形,故PH⊥EF,DH⊥EF,所以EF⊥平面PDH,所以PD⊥EF,故A正确;根据折起前后,可知PE,PF,PD 三线两两垂直,于是可证平面PDE⊥平面PDF,故B正确;根据A选项可知∠PHD为二面角P-EF-D的平面角,设正方形边长为2,因此PE=PF=1,PH=22,DH=22-22=322,PD=DF2-PF2=2,由余弦定理得:cos∠PHD=PH2+HD2-PD22PH⋅HD =13,故C正确;由于PE=PF≠PD,故点P在平面DEF上的投影不是ΔDEF的外心,即D错误;故答案为ABC.7(2023·广东·高三校联考阶段练习)在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与EF所成的角为30°B.直线A1G与平面AEF平行C.若正方体棱长为1,三棱锥A1-AEF的体积是112D.点B 1和B 到平面AEF 的距离之比是3:1【答案】BCD【解析】对于选项A ,由图可知CC 1与DD 1显然平行,所以∠EFC =45°即为所求,故选项A 不正确;对于选项B ,取B 1C 1的中点M ,连接A 1M 、GM ,如图所示,易知A 1M ⎳AE ,且A 1M ⊄平面AEF ,AE ⊂平面AEF ,所以A 1M ⎳平面AEF .又易知GM ⎳EF ,GM ⊄平面AEF ,EF ⊂平面AEF ,所以GM ⎳平面AEF .又A 1M ∩GM =M ,A 1M 、GM ⊂面A 1MG ,所以平面A 1MG ⎳平面AEF .又A 1G ⊂平面A 1MG ,所以A 1G ⎳平面AEF ,故选项B 正确;对于选项C ,由选项B 知,A 1G ⎳平面AEF ,所以A 1和G 到平面AEF 的距离相等,所以V A 1-AEF =V G -AEF =V A -FEG =13×12×12×1×1=112.故选项C 正确;对于选项D ,平面AEF 过BC 的中点E ,即平面AEF 将线段BC 平分,所以C 与B 到平面AEF 的距离相等,连接B 1C 交EF 于点H ,如图所示,显然B 1H :HC =3:1,所以B 1与B 到平面AEF 的距离之比为3:1,故选项D 正确.故选:BCD .8(2023·广东·高三校联考阶段练习)已知数列a n 满足a 1=1,a 2=3,S n 是前n 项和,若n S n +1-S n -1=n +1 S n -S n -1 ,(n ∈N *且n ≥2),若不等式a n <n -2t 2-a +1 t +a 2-a +2 对于任意的n ∈N *,t ∈1,2 恒成立,则实数a 的值可能为()A.-4 B.0C.2D.5【答案】AD【解析】由n S n +1-S n -1=n +1 S n -S n -1 ,n ≥2,则na n +1-1=n +1 a n ,n ≥2,得a n +1-1n =n +1n a n ,n ≥2;a 2-11=2=21a 1,所以a n +1n +1-a n n =1n n +1=1n -1n +1,n ≥1,则a n n -a n -1n -1=1n -1-1n ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯,a 22-a 11=1-12,上述式子累加可得a n n -a 1=1-1n ,所以a n n =2-1n<2.所以-2t 2-a +1 t +a 2-a +2≥2对于任意的t ∈1,2 恒成立,整理得2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立.方法一:对选项A ,当a =-4时,不等式为2t +5 t -4 ≤0,其解集-52,4包含1,2 ,故选项A 正确;对选项B ,当a =0时,不等式为2t +1 t ≤0,其解集-12,0不包含1,2 ,故选项B 错误;对选项C ,当a =2时,不等式为2t -1 t +2 ≤0,其解集-2,12不包含1,2 ,故选项C 错误;对选项D ,当a =5时,不等式为2t -4 t +5 ≤0,其解集-5,2 包含1,2 ,故选项D 正确.方法二:令f t =2t -a -1 t +a ,若2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立,只需f 1 ≤0f 2 ≤0,即3-a 1+a ≤05-a 2+a ≤0 ,解得a ≥5或a ≤-2.故选:AD .9(2023·广东·高三统考阶段练习)已知函数f x =sin n x +cos n x x ∈N * ,则()A.对任意正奇数n ,f x 为奇函数B.对任意正整数n ,f x 的图像都关于直线x =π4对称C.当n =3时,f x 在0,π2上的最小值22D.当n =4时,f x 的单调递增区间是-π4+k π,k π k ∈Z 【答案】BC【解析】取n =1,则f x =sin x +cos x ,从而f 0 =1≠0,此时f x 不是奇函数,则A 错误;因为f π2-x =sin n π2-x +cos n π2-x =cos n x +sin n x =f x ,所以f x 的图象关于直线x =π4对称,则B 正确;当n =3时,f x =3sin 2x cos x -3cos 2x sin x =3sin x cos x sin x -cos x ,当x ∈0,π4时,fx <0;当x ∈π4,π2 时,f x >0.所以f x 在0,π4 上单调递减,在π4,π2 上单调递增,所以f x 的最小值为f π4 =22 3+22 3=22,故C 正确;当n =4时,f x =sin 4x +cos 4x =sin 2x +cos 2x 2-2sin 2x cos 2x =1-12sin 22x=1-1-cos4x 4=14cos4x +34,则f x 的递增区间为-π4+k π2,k π2k ∈Z ,则D 错误.故选:BC .10(2023·广东·高三统考阶段练习)若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是()A.0<a<b<1B.b<a<0C.1<a<bD.a=b【答案】ABD【解析】设f(x)=2x+3x,g(x)=3x+2x,则f(x)=2x+3x,g(x)=3x+2x都为增函数,作出两函数的图象,两个函数图象有2个交点,分别为(0,1),(1,5),对于A,作直线y=m(1<m<5)分别与f(x),g(x)图象相交,交点横坐标为a,b,且0<a<b<1,此时f(a)=g(b)=m,即2a+3a=3b+2b能成立,故A正确;对于B,作直线y=n(n<0)分别与f(x),g(x)图象相交,交点横坐标为b,a,且b<a<0,此时f(a)=g(b) =n,即2a+3a=3b+2b能成立,故B正确;对于C,a=2,f(a)=f(2)=10,因为2=a<b,所以f(b)=3b+2b>32+4=13,所以此时2a+3a=3b+2b 不可能成立,故C不正确;对于D,a=b=0或a=b=1,2a+3a=3b+2b成立,所以D正确.故选:ABD.11(2023·广东·高三统考阶段练习)已知正方体ABCD -A 1B 1C 1D 1的棱长为4,M 为DD 1的中点,N 为ABCD 所在平面上一动点,N 1为A 1B 1C 1D 1所在平面上一动点,且NN 1⊥平面ABCD ,则下列命题正确的是()A.若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆B.若三棱柱NAD -N 1A 1D 1的表面积为定值,则点N 的轨迹为椭圆C.若点N 到直线BB 1与直线DC 的距离相等,则点N 的轨迹为抛物线D.若D 1N 与AB 所成的角为π3,则点N 的轨迹为双曲线【答案】ACD【解析】A :连接DN ,因为MD ⊥平面ABCD ,所以∠MND 是MN 与平面ABCD 所成的角,即∠MND =π4,因为M 为DD 1的中点,所以MD =12DD 1=2,在直角三角形MND 中,tan ∠MND =MD DN ⇒1=2DN⇒DN =2,因此点N 的轨迹为以D 为圆心半径为2的圆,所以本选项命题是真命题;B :过N 做EN ⊥AD ,设三棱柱NAD -N 1A 1D 1的表面积为S ,所以S =2×12×4⋅NE +(AD +DN +AN )⋅4=4(4+DN +AN +NE )=定值,显然有N 到A 、D 、直线AD 的距离之和为定值,这与椭圆的定义不符合,故本选项命题是假命题;C :连接BN ,因为BB 1⊥平面ABCD ,BN ⊂平面ABCD ,所以BB 1⊥BN ,即点N 到直线BB 1与NB 相等,所以点N 的轨迹为点N 到点B 与直线DC 的距离相等的轨迹,即抛物线,所以本选项命题是真命题;D :以D 为空间坐标系的原点,DA 、DC 、DD 1所在的直线分别为x 、y 、z ,D (0,0,0)、A (4,0,0)、B (4,4,0)、N (x ,y ,0)、D 1(0,0,4),则有AB =(0,4,0)、D 1N =(x ,y ,-4),因为D 1N 与AB 所成的角为π3,所以cos π3=AB ⋅D 1N AB ⋅D 1N ⇒12=4y 4⋅x 2+y 2+16⇒3y 2-x 2=16,所以点N 的轨迹为双曲线,故本选项命题是真命题,故选:ACD12(2023·广东江门·高三台山市第一中学校考阶段练习)已知函数f (x )=e x -1+e 1-x +x 2-2x ,若不等式f (2-ax )<f x 2+3 对任意x ∈R 恒成立,则实数a 的取值可能是()A.-4B.-12C.2D.32【答案】BC【解析】由函数f (x )=e x -1+e 1-x +x 2-2x ,令t =x -1,则x =t +1,可得g (t )=e t +e -t +t 2-1,可得g (-t )=e -t +e t +(-t )2-1=e t +e -t +t 2-1=g (t ),所以g t 为偶函数,即函数f x 的图象关于x =1对称,又由g (t )=e t -e -t +2t ,令φ(t )=g (t )=e t -e -t +2t ,可得φ (t )=e t +e -t +2>0,所以φ(t )为单调递增函数,且φ(0)=0,当t >0时,g (t )>0,g t 单调递增,即x >1时,f x 单调递增;当t <0时,g (t )<0,g t 单调递减,即x <1时,f x 单调递减,由不等式f (2-ax )<f x 2+3 ,可得2-ax -1 <x 2+3-1 ,即1-ax <x 2+2所以不等式1-ax <x 2+2恒成立,即-x 2-2<ax -1<x 2+2恒成立,所以x 2+ax +1>0x 2-ax +3>0 的解集为R ,所以a 2-4<0且(-a )2-12<0,解得-2<a <2,结合选项,可得BC 适合.故选:BC .13(2023·广东·高三河源市河源中学校联考阶段练习)已知三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,若函数g x =f x -1也有三个不同的零点t 1,t 2,t 3t 1<t 2<t 3 ,则下列等式或不等式一定成立的有()A.b 2<3cB.t 3>x 3C.x 1+x 2+x 3=t 1+t 2+t 3D.x 1x 2x 3-t 1t 2t 3=1【答案】BC【解析】f x =3x 2+2bx +c ,因为原函数有三个不同的零点,则f x =0有两个不同的实根,即3x 2+2bx +c =0,则Δ=4b 2-12c >0,即b 2>3c ,所以A 错误;因为三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,所以x 3+bx 2+cx +d =x -x 1 x -x 2 x -x 3 =x 3-x 1+x 2+x 3 x 2+x 1x 2+x 2x 3+x 1x 3 x -x 1x 2x 3=0,所以x 1+x 2+x 3=-b ,x 1x 2x 3=-d ,同理t 1+t 2+t 3=-b ,t 1t 2t 3=1-d ,所以x 1+x 2+x 3=t 1+t 2+t 3,x 1x 2x 3-t 1t 2t 3=-1,故C 正确,D 错误;由f x 的图象与直线y =1的交点可知t 3>x 3,B 正确.故选:BC .14(2023·广东·高三河源市河源中学校联考阶段练习)已知直线l 过抛物线E :y 2=4x 的焦点F ,与抛物线相交于A x 1,y 1 、B x 2,y 2 两点,分别过A ,B 作抛物线的准线l 1的垂线,垂足分别为A 1,B 1,以线段A 1B 1为直径作圆M ,O 为坐标原点,下列正确的判断有()A.x 1+x 2≥2B.△AOB 为钝角三角形C.点F 在圆M 外部D.直线A 1F 平分∠OFA【答案】ABD 【解析】如图所示:对选项A ,由抛物线的焦半径公式可知AB =x 1+x 2+2≥2p =4,所以x 1+x 2≥2,故A 正确;对于选项B ,OA ⋅OB =x 1x 2+y 1y 2=y 1y 2216+y 1y 2,令直线l 的方程为x =my +1,代入y 2=4x 得y 2-4my -4=0,所以y 1y 2=-4,所以OA ⋅OB=-3<0,所以△AOB 是钝角三角形,故B 正确;对选项C ,D ,由AA 1 =AF 可知∠AA 1F =∠AFA 1,又AA 1∥OF ,所以∠AA 1F =∠OFA 1=∠AFA 1,所以直线FA 1平分角∠AFO ,同理可得FB 平分角∠BFO ,所以A 1F ⊥B 1F ,即∠A 1FB 1=90°,所以圆M 经过点F ,故C 错误,D 正确.故选:ABD15(2023·广东·高三河源市河源中学校联考阶段练习)已知圆O :x 2+y 2=4和圆C :(x -3)2+(y -3)2=4,P ,Q 分别是圆O ,圆C 上的动点,则下列说法错误的是()A.圆O 与圆C 相交B.PQ 的取值范围是32-4,32+4C.x -y =2是圆O 与圆C 的一条公切线D.过点Q 作圆O 的两条切线,切点分别为M ,N ,则存在点Q ,使得∠MQN =90°【答案】AC【解析】对于A 选项,由题意可得,圆O 的圆心为O 0,0 ,半径r 1=2,圆C 的圆心C 3,3 ,半径r 2=2,因为两圆圆心距OC =32>2+2=r 1+r 2,所以两圆外离,故A 错误;对于B 选项,PQ 的最大值等于OC +r 1+r 2=32+4,最小值为OC -r 1-r 2=32-4,故B 正确;对于C 选项,显然直线x -y =2与直线OC 平行,因为两圆的半径相等,则外公切线与圆心连线平行,由直线OC :y =x ,设外公切线为y =x +t ,则两平行线间的距离为2,即t2=2,故y =x ±22,故C 错误;对于D 选项,易知当∠MQN =90°时,四边形OMQN 为正方形,故当QO =22时,∠MQN =90°,故D 正确.故选:AC .16(2023·广东佛山·高三校考阶段练习)已知函数f x =3sin ωx +cos ωx (0<ω<3)满足f x +π2 =-f x ,其图象向右平移s s ∈N * 个单位后得到函数y =g x 的图象,且y =g x 在-π6,π6上单调递减,则()A.ω=1 B.函数f x 的图象关于5π12,0 对称C.s 可以等于5D.s 的最小值为2【答案】BCD【解析】对于A ,因为f x +π2 =-f x ,f x =3sin ωx +cos ωx =2sin ωx +π6,所以2sin ωx +π2ω+π6 =-2sin ωx +π6 ,π2ω=2k +1 π,k ∈Z ,则ω=4k +2,k ∈Z ,又0<ω<3,故ω=2,故A 错误;对于B ,由选项A 得f x =2sin 2x +π6,所以f 5π12=2sin 5π6+π6 =2sinπ=0,故5π12,0 是f x 的一个对称中心,故B 正确;对于C ,f x 的图象向右平移s s ∈N * 个单位后得到函数g x =2sin 2x -s +π6的图象,则g x =2sin 2x +π6-2s ,因为g x 在-π6,π6上单调递减,所以2×-π6 +π6-2s ≥2k π+π22×π6+π6-2s ≤2k π+3π2k ∈Z ,解得-k π-π2≤s ≤-k π-π3k ∈Z ,当k =-2时,3π2≤s ≤5π3,因为s ∈N *,所以s =5,故C 正确;对于D ,因为s ∈N *,所以-k π-π3>0,则k <-13,又k ∈Z ,故k ≤-1,当k =-1时,π2≤s ≤2π3,可知s min =2,故D 正确.故选:BCD .17(2023·广东佛山·高三校考阶段练习)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,且f x +f x =x ln x ,f 1e =-1e,则()A.f 1e⋅e 1e-1>f 1B.f e ⋅e e -1>f 1C.f x 在0,+∞ 上是增函数D.f x 存在最小值【答案】ABC【解析】设F x =e x -1f x ,则F x =e x -1f x +f x =e x -1x ln x ,当x >1时,F x >0,当0<x <1时,F x <0,F x =e x -1f x 在1,+∞ 上单调递增,在0,1 上单调递减,A 选项,因为1e <1,所以F 1e >F 1 ,即e 1e-1f 1e>f 1 ,A 正确;B 选项,因为e >1,所以F e >F 1 ,即e e -1f e >f 1 ,B 正确;C 选项,f x =F x e x -1,则fx =F x -F x e x -1,令g x =F x -F x ,则g x =e x -1x ln x -e x -1x ln x =e x -11+ln x ,当x >1e 时,g x >0,当0<x <1e时,g x <0,故g x =F x -F x 在0,1e 上单调递减,在1e ,+∞ 单调递增,又g 1e =F 1e -F 1e =e 1e -1⋅1e ln 1e -e 1e -1f 1e =-e 1e -1⋅1e +e 1e-1⋅1e =0,故g x =F x -F x ≥0恒成立,所以fx =F x -F x ex -1≥0在0,+∞ 上恒成立,故f x 在0,+∞ 上是增函数,C 正确;D 选项,由C 选项可知,函数f x 在0,+∞ 上单调递增,故无最小值.故选:ABC18(2023·广东惠州·高三统考阶段练习)已知定义域为R 的函数f x 满足f -x -2 =-f x +2 ,f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718 ,x >1 ,则下列说法正确的是()A.函数f x 在-13,13上单调递减B.若函数f x 在0,p 内f x <1恒成立,则p ∈0,23C.对任意实数k ,y =f x 的图象与直线y =kx 最多有6个交点D.方程f x =m m >0 有4个解,分别为x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4>-143【答案】BD【解析】因为定义域为R 的函数f x 满足f -x -2 =-f x +2 ,即f -x -2 +f x +2 =0,所以函数为奇函数,因为f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718,x >1 ,故作出函数的图象,如图所示.选项A :由图可知,当x ∈-13,0 时,函数单调递减,当x ∈0,13时,函数单调递减,但当x ∈-13,13,并不是随着x 增加而减少,故选项A 错误;选项B :因为函数f x 在0,p 内f x <1恒成立,所以由图象可知,0<p <1由3x 2-2x +1=1解得,x 1=0,x 2=23,所以0<p ≤23,故选项B 正确;选项C :取k =74时,如图所示,1°当x ∈0,1 时,联立方程组y =74x y =3x 2-2x +1 ,化简得3x 2-154x +1=0,设函数h (x )=3x 2-154x +1,因为Δ>0h (0)=1>0h (1)=14>0且对称轴为x =58∈0,1 ,所以方程3x 2-154x +1=0在0,1 上有两个不相等的实数根,2°设m (x )=74x -log 13x 2-718 ,x ∈1,+∞ ,因为函数m (x )=74x -log 13x 2-718 在x ∈1,+∞ 上单调递增,且m (1)=74-2<0,m (2)=72-log 131118 >0,所以m (x )=74x -log 13x 2-718 在x ∈1,+∞ 在只有一个零点,所以直线y =74x 与函数y =f (x )图象在x ∈1,+∞ 有1个交点,所以当x ∈0,+∞ 时,直线y =74x 与函数y =f (x )图象有3个交点,因为函数y =74x 与函数y =f (x )均为奇函数,所以当x ∈-∞,0 时,直线y =74x 与函数y =f (x )图象有3个交点,又当x =0时,直线y =74x 与函数y =f (x )图象有1个交点,所以此时直线y =74x 与函数y =f (x )图象有7个交点,故选项C 错误;选项D :当m >0时,则根据图象可得f (x )=m 的4个解所在大致范围为x 1<0,0<x 2<13,13<x 3<1,x 4>1,因为f (x )=m 有4个解,所以23<m <1,所以23<log 13x 42-718 <1,解得139<x 4<21323+79,所以6<9x 4-7<181323,由二次函数的对称性可知,3x 2-2x +1=m 的解x 2、x 3满足x 2+x 3=23,因为函数y =f (x )为奇函数,且当x >1时解析式为y =log 13x 2-718,所以当x <-1时解析式为y =-log 13-x 2-718,所以log 13x 42-718=-log 13-x 12-718 ,所以有-x 12-718 x 42-718 =1,即x 1=-369x 4-7-79,所以x 1+x 4=x 4+-369x 4-7-79=9x 4-79-369x 4-7,设9x 4-7=t ,6<t <181323,又因为函数y =t 9-36t 在6,1813 23单调递增,所以x 1+x 4=t 9-36t >69-366=23-6=-163,所以x 1+x 2+x 3+x 4>-163+23=-143,所以选项D 正确,故选:BD .19(2023·广东揭阳·高三校考阶段练习)若定义在-1,1 上的函数f x 满足f x +f y =f x +y 1+xy,且当x >0时,f x <0,则下列结论正确的是( ).A.若x 1,x 2∈-1,1 ,x 2>x 1 ,则f x 1 +f x 2 >0B.若f 12 =-12,则f 4041 =-2C.若f 2-x +g x =4,则g x 的图像关于点2,4 对称D.若α∈0,π4,则f sin2α >2f sin α 【答案】BC【解析】令y =-x ,则f x +f -x =f 0 =0,∴f x 为奇函数,把y 用-y 代替,得到f x -f y =f x -y1-xy,设-1<y <x <1,1-x 1+y >0,∴0<x -y1-xy<1.又∵当x >0时,f x <0,∴f x <f y ,∴f x 在-1,1 上单调递减.∵x 1,x 2∈-1,1 ,x 2>x 1 ,当x >0时,f x <0,则当x 1>0时,则x 2>x 1>0,f x 1 +f x 2 <0,当x 1<0时,则x 2>-x 1>0,f x 1 +f x 2 =f x 2 -f -x 1 <0.综上,f x 1 +f x 2 <0,∴A 错误.令x =y =12,得2f 12 =f 45 ,∴f 45 =-1,令x =y =45,得2f 45 =f 4041 ,∴f 4041 =-2,∴B 正确.由f 2-x +g x =4,得f 2-x =4-g x ,得f x =4-g 2-x ,又∵f -x =4-g 2+x ,f x 为奇函数,∴f x +f -x =0,则g 2-x +g 2+x =8,则g x 的图像关于点2,4 对称,∴C 正确.f sin2α =f 2sin α⋅cos α =f2tan α1+tan 2α=2f tan α ,假设f sin2α >2f sin α ,可得f tan α >f sin α ,即tan α<sin α,当α∈0,π4时,不成立得出矛盾假设不成立,∴D 错误.故选:BC .20(2023·广东东莞·高三校联考阶段练习)已知函数f x =3sin2ωx +cos2ωx ω>0 的零点构成一个公差为π2的等差数列,把f x 的图象沿x 轴向右平移π3个单位得到函数g x 的图象,则()A.g x 在π4,π2上单调递增 B.π4,0 是g x 的一个对称中心C.g x 是奇函数 D.g x 在区间π6,2π3上的值域为0,2 【答案】AB【解析】因为f x =3sin2ωx +cos2ωx ω>0 ,所以f x =232sin2ωx +12cos2ωx =2sin 2ωx +π6 ,因为函数f x =3sin2ωx +cos2ωx ω>0 的零点依次构成一个公差为π2的等差数列,∴12⋅2π2ω=π2,∴ω=1,所以f (x )=2sin 2x +π6 ,把函数f (x )的图象沿x 轴向右平移π3个单位,得到g (x )=2sin 2x -π3 +π6 =2sin 2x -π2 =-2cos2x ,即g (x )=-2cos2x ,所以g (x )为偶函数,故C 错误;对于A :当x ∈π4,π2 时2x ∈π2,π ,因为y =cos x 在π2,π 上单调递减,所以g x 在π4,π2上单调递增,故A正确;对于B:gπ4=-2cos2×π4=-2cosπ2=0,故π4,0是g x 的一个对称中心,故B正确;对于D:因为x∈π6,2π3,所以2x∈π3,4π3,所以cos2x∈-1,12,所以g x ∈-1,2,故D错误;故选:AB21(2023·广东东莞·高三校联考阶段练习)对于函数f(x)=xln x,下列说法正确的是()A.f(x)在(1,e)上单调递增,在(e,+∞)上单调递减B.若方程f(|x|)=k有4个不等的实根,则k>eC.当0<x1<x2<1时,x1ln x2<x2ln x1D.设g(x)=x2+a,若对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,则a≥e 【答案】BD【解析】函数f(x)=xln x的定义域为(0,1)∪(1,+∞),f(x)=ln x-1(ln x)2,当0<x<1或1<x<e时,f (x)<0,当x>e时,f (x)>0,f(x)在(0,1),(1,e)上都单调递减,在(e,+∞)上单调递增,A不正确;当x∈(1,+∞)时,f(x)的图象在x轴上方,且在x=e时,f(x)min=e,f(x)在(0,1)上的图象在x轴下方,显然f(|x|)是偶函数,在方程f(|x|)=k中,k<0或k=e时,方程有两个不等实根,0≤k<e时,方程无实根,k>e时,方程有4个不等的实根,B正确;因0<x1<x2<1,则有f(x2)<f(x1)<0,即x2ln x2<x1ln x1<0,于是得x2ln x1<x1ln x2,C不正确;当x∈R时,g(x)的值域为[a,+∞),当x∈(1,+∞)时,f(x)的值域为[e,+∞),因对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,从而得[a,+∞)⊆[e,+∞),即得a≥e,D正确.故选:BD二、单选题22(2023·广东深圳·高三红岭中学校考阶段练习)过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】圆(x-5)2+(y-1)2=2的圆心(5,1),过(5,1)与y=x垂直的直线方程为x+y-6=0,它与y=x的交点N(3,3),N到(5,1)距离是22,圆的半径为2,两条切线l1,l2,它们之间的夹角为2×30°=60°.故选C.23(2023·广东·高三校联考阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π【答案】C【解析】根据题意可得A D ⊥A E ,A D ⊥A F ,A E ⊥A F ,且A E =1,A F =1,A D =2,所以三棱锥D -A EF 可补成一个长方体,则三棱锥D -A EF 的外接球即为长方体的外接球,如图所示,设长方体的外接球的半径为R ,可得2R =12+12+22=6,所以R =62,所以外接球的表面积为S =4πR 2=4π⋅622=6π,故选:C24(2023·广东·高三校联考阶段练习)已知f x =2sin ωx +π3+a -1 sin ωx (a >0,ω>0)在0,π 上存在唯一实数x 0使f x 0 =-3,又φx =f x -23,且有φx max =0,则实数ω的取值范围是()A.1<ω≤53B.1≤ω<53C.56<ω<32D.56<ω≤32【答案】A【解析】由题意可得f x =sin ωx +3cos ωx +a -1 sin ωx ,=a sin ωx +3cos ωx =a 2+3sin ωx +φ ,其中φ满足tan φ=3a,又φx max =0,即f x max =23,所以a 2+3=23,又a >0,解得a =3,所以f x =23sin ωx +π6,又0<x <π,所以π6<ωx +π6<ωπ+π6,因为f x 在上存在唯一实数x 0使f x 0 =-3,即sin ωx 0+π6 =-12,所以7π6<ωx +π6≤11π6,解得1<ω≤53,故选:A 25(2023·广东梅州·高三大埔县虎山中学校考开学考试)在△ABC 中,角B ,C 的边长分别为b ,c ,点O 为△ABC 的外心,若b 2+c 2=2b ,则BC ⋅AO的取值范围是()A.-14,0 B.0,2C.-14,+∞ D.-14,2【答案】D【解析】取BC 的中点D ,则OD ⊥BC ,所以BC ·AO =BC ·AD +DO =BC ·AD +BC ·DO =BC ·AD=AC -AB ⋅12AC +AB =12AC 2-AB 2=12b 2-c 2 =12b 2-2b -b 2 =b 2-b =b -122-14.因为c 2=2b -b 2>0,则b b -2 <0,即0<b <2.所以-14≤BC ⋅AO <2,故选:D .26(2023·广东·高三校联考阶段练习)已知等腰直角△ABC 中,∠C 为直角,边AC =6,P ,Q 分别为AC ,AB 上的动点(P 与C 不重合),将△APQ 沿PQ 折起,使点A 到达点A 的位置,且平面A PQ ⊥平面BCPQ .若点A ,B ,C ,P ,Q 均在球O 的球面上,则球O 体积的最小值为()A.8π3B.4π3C.82π3D.42π3【答案】C【解析】显然P 不与A 重合,由点A ,B ,C ,P ,Q 均在球D 的球面上,得B ,C ,P ,Q 共圆,则∠C +∠PQB =π,又△ABC 为等腰直角三角形,AB 为斜边,即有PQ ⊥AB ,将△APQ 翻折后,PQ ⊥A Q ,PQ ⊥BQ ,又平面A PQ ⊥平面BCPQ ,平面A PQ ∩平面BCPQ =PQ ,A Q ⊂平面A PQ ,BQ ⊂平面BCPQ ,于是A Q ⊥平面BCPQ ,BQ ⊥平面A PQ ,显然A P ,BP 的中点D ,E 分别为△A PQ ,四边形BCPQ 外接圆圆心,则DO ⊥平面A PQ ,EO ⊥平面BCPQ ,因此DO ⎳BQ ,EO ⎳A Q ,取PQ 的中点F ,连接DF ,EF ,则有EF ⎳BQ ⎳DO ,DF ⎳A Q ⎳EO ,四边形EFDO 为矩形,设A Q =x 且0<x <23,DO =EF =12BQ =23-x 2,A P =2x ,设球O 的半径R ,有R 2=DO 2+A P 2 2=34x 2-3x +3=34x -2332+2,当x =233时,R 3min=22,所以球O 体积的最小值为4πR 33=82π3.故选:C .27(2023·广东·高三校联考阶段练习)已知正项等比数列a n 的前n 项和为S n ,且满足a n S n =22n -1-2n -1,设b n =log 2S n +1 ,将数列b n 中的整数项组成新的数列c n ,则c 2023=()A.4048B.2023C.2022D.4046【答案】B【解析】令数列a n 的公比为q ,∵a n >0,∴a 1>0,q >0,因为a n S n =22n -1-2n -1,所以当n =1时,a 21=21-20=1,即a 1=1或a 1=-1(舍去),当n =2时,a 2S 2=23-21=6,即q 1+q =6,解得q =2或q =-3(舍去),所以a n =2n -1,S n =1×1-2n 1-2=2n -1,即b n =log 2S n +1 =n ,因为数列b n 中的整数项组成新的数列c n ,所以n =k 2,k ∈N *,此时b k 2=k 2=k ,即c n =n ,∴c 2023=2023.故选:B28(2023·广东·高三统考阶段练习)已知AB ⊥AC ,|AB |=t ,|AC |=1t.若点P 是△ABC 所在平面内一点,且AP =AB |AB |+2AC|AC |,则PB ⋅PC 的最大值为()A.13 B.5-22C.5-26D.10+22【答案】B【解析】以A 为坐标原点,建立如图所示的直角坐标系,设P (x ,y )则B (t ,0),C 0,1t (t >0),可得AB AB=(1,0),2AC |AC |=(0,2),所以AP =(1,2),即P (1,2),故PB =(t -1,-2),PC =-1,1t-2 ,所以PB ⋅PC =1-t +4-2t =5-t +2t ≤5-22,当且仅当t =2t即t =2时等号成立.故选:B .29(2023·广东·高三统考阶段练习)已知-π2<α-β<π2,sin α+2cos β=1,cos α-2sin β=2,则sin β+π3=A.33B.63C.36D.66【答案】A【解析】由sin α+2cos β=1,cos α-2sin β=2,将两个等式两边平方相加,得5+4sin α-β =3,sin α-β =-12,∵-π2<α-β<π2,∴α-β=-π6,即α=β-π6,代入sin α+2cos β=1,得3sin β+π3 =1,即sin β+π3 =33.故选A30(2023·广东江门·高三台山市第一中学校考阶段练习)设函数f (x )=log 2(1-x ),-1≤x <k ,x 3-3x +1,k ≤x ≤3 的值域为A ,若A ⊆[-1,1],则f (x )的零点个数最多是()A.1B.2C.3D.4【答案】C【解析】令g (x )=log 2(1-x ),则g (x )=log 2(1-x )在(-∞,1)上单调递减;令h (x )=x 3-3x +1,则h (x )=3x 2-3.由h (x )>0,得x >1或x <-1;由h (x )<0,得-1<x <1,所以h (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,于是,h (x )的极大值为h (-1)=3,极小值为h (1)=-1.在同一坐标系中作出函数g (x )和h (x )的图象,如下图:显然f (-1)=g (-1)=1;由g (x )=-1,得x =12;由f (x )的解析式,得-1<k ≤1.(1)若-1<k <0,当k ≤x <0时,f (x )>f (0)=1,不符合题意;(2)若12<k ≤1,当12<x <k 时,f (x )<f 12=-1,不符合题意;(3)若0≤k ≤12,①当-1≤x <k 时,-1<f (x )≤1;②当k ≤x ≤3时,f (1)≤f (x )≤max {f (k ),f (3)}≤1,即-1≤f (x )≤1.由①②,0≤k ≤12时符合题意.此时,结合图象可知,当k =0时,f (x )在[-1,k )上没有零点,在[k ,3]上有2个零点;当0<k ≤12时,f (x )在[-1,k )上有1个零点,在[k ,3]上有1个或2个零点,综上,f (x )最多有3个零点.故选:C .31(2023·广东江门·高三台山市第一中学校考阶段练习)设a =511,b =ln 2111,c =sin 511,则()A.c <a <bB.c <b <aC.a <b <cD.b <c <a【答案】A 【解析】当x ∈0,π2 时,记f x =x -sin x ,则f x =1-cos x ≥0,故f (x )在x ∈0,π2单调递增,故f (x )>f 0 =0,因此得当x ∈0,π2 时,x >sin x ,故511>sin 511,即a >c ;b -a =ln 2111-511=ln 1+2×511 -511,设g (x )=ln (1+2x )-x 0<x <12 ,则b -a =g 511,因为g (x )=21+2x -1=1-2x1+2x,当0<x <12时,g (x )>0.所以g (x )在0,12 上单调递增,所以g 511>g (0)=0,即b >a ,所以b >a>c .故选:A32(2023·广东·高三河源市河源中学校联考阶段练习)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 ,12≤λ≤2 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.0,22B.22,53C.23,53D.53,1 【答案】B【解析】设F 1(-c ,0),F 2(c ,0),运用椭圆的定义和勾股定理,求得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=21m -12 2+12,运用二次函数的最值的求法,解不等式可得所求范围.设F 1(-c ,0),F 2(c ,0),由椭圆的定义可得,|PF 1|+|PF 2|=2a ,可设|PF 2|=t ,可得|PF 1|=λt ,即有(λ+1)t =2a ,①由∠F 1PF 2=π2,可得|PF 1|2+|PF 2|2=4c 2,即为(λ2+1)t 2=4c 2,②由②÷①2,可得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=m 2-2m +2m 2=21m -12 2+12,由12≤λ≤2,可得32≤m ≤3,即13≤1m ≤23,则当m =2时,取得最小值12;当m =32或3时,取得最大值59,即有12≤e 2≤59,解得:22≤e ≤53,所以椭圆离心率的取值范围为22,53.故选:B .33(2023·广东·高三河源市河源中学校联考阶段练习)设a =ln1.1,b =e 0.1-1,c =tan0.1,则()A.a <b <cB.c <a <bC.a <c <bD.b <a <c【答案】C【解析】令f x =e x -x +1 ,所以f x =e x -1,当x >0时f x >0,当x <0时f x <0,即函数f x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以f x min =f 0 =0,即e x ≥x +1,当且仅当x =0时取等号,令x =0.1,可得b =e 0.1-1>0.1,令h (x )=tan x -x ,x ∈0,π2 ,则在x ∈0,π2 时,h (x )=1cos 2x -1>0,∴h (x )=tan x -x 在x ∈0,π2 上单调递增,∴h (x )>h (0)=0,∴x ∈0,π2时,tan x >x .∴c =tan0.1>0.1,令g x =ln x -x +1,则g x =1x -1=1-xx,所以当0<x <1时g x >0,当x >1时g x <0,即函数g x 在0,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =0,即ln x ≤x -1,当且仅当x =1时取等号,所以当x =1.1,可得a =ln1.1<1.1-1=0.1,所以a 最小,设t x =e x -1-tan x x ∈0,0.1 ,则t (x )=e x -1cos 2x>0,∴t (x )在0,0.1 上单调递增,∴t (0)<t (0.1),∴t (0.1)=e 0.1-1-tan0.1>e 0-1-tan0=0,∴b =e 0.1-1>tan0.1=c ,综上可得b >c >a ;故选:C34(2023·广东佛山·高三校考阶段练习)符号x 表示不超过实数x 的最大整数,如 2.3 =2,-1.9 =-2.已知数列a n 满足a 1=1,a 2=5,a n +2+4a n =5a n +1.若b n =log 2a n +1 ,S n 为数列8100b n b n +1的前n 项和,则S 2025 =()A.2023B.2024C.2025D.2026【答案】B【解析】因为a n +2+4a n =5a n +1,则a n +2-a n +1=4a n +1-a n ,且a 2-a 1=4,所以,数列a n +1-a n 是首项为4,公比也为4的等比数列,所以,a n +1-a n =4×4n -1=4n ,①由a n +2+4a n =5a n +1可得a n +2-4a n +1=a n +1-4a n ,且a 2-4a 1=1,所以,数列a n +1-4a n 为常数列,且a n +1-4a n =1,②由①②可得a n =4n -13,因为4n +1-13-4n=4⋅4n -1-3⋅4n 3=4n -13>0,4n +1-13-2⋅4n =4⋅4n -1-6⋅4n 3=-2⋅4n +13<0,则4n <a n +1=4n +1-13<2⋅4n ,。
高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
2024年高考数学新题型之19题压轴题专项汇编(解析版)

2024新题型之19压轴题1.命题方向2024新题型之19压轴题以大学内容为载体的新定义题型以数列为载体的新定义题型以导数为载体的新定义题型两个知识交汇2.模拟演练题型01以大学内容为载体的新定义题型1(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.【解】(1)由定义可知,532=5 !23 !22 !2=(1)2(2)2(3)2(4)2(5)2(1)2(2)2(3)2 (1)2(2)2=(4)2(5)2(1)2(2)2=1+2+22+23 1+2+22+23+24 1×1+2=155.(2)因为n kq =n !qk !q n -k !q =(n )q ⋅n -1 !q k !q n -k !q,n -1k -1q +q k n -1kq =n -1 !q k -1 !q n -k !q +q k ⋅n -1 !q k !q n -k -1 !q=n -1 !q k !q n -k !q(k )q +q k⋅(n -k )q .又(k )q +q k ⋅(n -k )q =1+q +⋯+q k -1+q k 1+q +⋯+q n -k -1=1+q +⋯+q n -1=(n )q ,所以n k q =n -1k -1q +q k n -1kq(3)由定义得:对任意k ∈N ,n ∈N *,k ≤n ,n k q =nn -kq.结合(2)可知n k q =n n -kq =n -1n -k -1q +q n -k n -1n -kq=n -1kq +q n -kn -1k -1q即n k q =n -1kq +q n -k n -1k -1q,也即n k q -n -1k q =q n -k n -1k -1q.所以n +m +1k +1q -n +m k +1 q =q n +m -k n +mkq,n +m k +1 q -n +m -1k +1q =q n +m -1-k n +m -1kq,⋯⋯n +1k +1 q -n k +1 q =q n -k nkq.上述m +1个等式两边分别相加得:n +m +1k +1q -n k +1 q =∑m i =0q n -k +i n +ikq.2(2024·广东江门·一模)将2024表示成5个正整数x 1,x 2,x 3,x 4,x 5之和,得到方程x 1+x 2+x 3+x 4+x 5=2024①,称五元有序数组x 1,x 2,x 3,x 4,x 5 为方程①的解,对于上述的五元有序数组x 1,x 2,x 3,x 4,x 5 ,当1≤i ,j ≤5时,若max (x i -x j )=t (t ∈N ),则称x 1,x 2,x 3,x 4,x 5 是t -密集的一组解.(1)方程①是否存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数?若存在,请求出该常数;若不存在,请说明理由;(2)方程①的解中共有多少组是1-密集的?(3)记S =5i =1x 2i ,问S 是否存在最小值?若存在,请求出S 的最小值;若不存在,请说明理由.【解】(1)若x i +1-x i i =1,2,3,4 等于同一常数,根据等差数列的定义可得x i 构成等差数列,所以x 1+x 2+x 3+x 4+x 5=5x 3=2024,解得x 3=20245,与x 3∈N *矛盾,所以不存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数;(2)因为x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,依题意t =1时,即当1≤i ,j ≤5时,max (x i -x j )=1,所以max x i =405,min x j =404,设有y 个405,则有5-y 个404,由405y +4045-y =2024,解得y =4,所以x 1,x 2,x 3,x 4,x 5中有4个405,1个404,所以方程①的解共有5组.(3)因为平均数x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,又方差σ2=155i =1x i -x 2 ,即5σ2=5i =1x i -x 2 =5i =1x 2i -5x 2,所以S =5σ2+5x 2,因为x 为常数,所以当方差σ2取最小值时S 取最小值,又当t =0时x 1=x 2=x 3=x 4=x 5,即5x 1=2024,方程无正整数解,故舍去;当t =1时,即x 1,x 2,x 3,x 4,x 5 是1-密集时,S 取得最小值,且S min =4×4052+4042=819316.3(2024·江苏四校一模)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).(1)证明:1-(D ,B ;C ,A )=1(B ,A ;C ,D );(2)若l 1,l 2,l 3,l 4为平面上过定点P 且互异的四条直线,L 1,L 2为不过点P 且互异的两条直线,L 1与l 1,l 2,l 3,l 4的交点分别为A 1,B 1,C 1,D 1,L 2与l 1,l 2,l 3,l 4的交点分别为A 2,B 2,C 2,D 2,证明:(A 1,B 1;C 1,D 1)=(A 2,B 2;C 2,D 2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG 与△E ′F ′G ′的对应边不平行,对应顶点的连线交于同一点,则ΔEFG 与△E ′F ′G ′对应边的交点在一条直线上.【解】证明:(1)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用,设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).1-(D ,B ;C ,A )=1-DC ⋅BA BC ⋅DA =BC ⋅AD +DC ⋅BABC ⋅AD =BC ⋅(AC +CD )+CD ⋅AB BC ⋅AD,=BC ⋅AC +BC ⋅CD +CD ⋅AB BC ⋅AD =BC ⋅AC +AC ⋅CD BC ⋅AD =AC ⋅BD BC ⋅AD =1(B ,A ;C ,D );(2)(A1,B 1;C 1,D 1)=A 1C 1⋅B 1D 1B 1C 1⋅A 1D 1=S △PA 1C 1⋅S △PB 1D 1S △PB 1C 1⋅S △PA 1D 1=12⋅PA 1⋅PC 1⋅sin ∠A 1PC 1⋅12⋅PB 1⋅PD 1⋅sin ∠B 1PD 112⋅PB 1⋅PC 1⋅sin ∠B 1PC 1⋅12⋅PA 1⋅PD 1⋅sin ∠A 1PD 1=sin ∠A 1PC 1⋅sin ∠B 1PD 1sin ∠B 1PC 1⋅sin ∠A 1PD 1=sin ∠A 2PC 2⋅sin ∠B 2PD 2sin ∠B 2PC 2⋅sin ∠A 2PD 2=S △PA 2C 2⋅S △PB 2D 2S △PB 2C 2⋅S △PA 2D 2=A 2C 2⋅B 2D 2B 2C 2⋅A 2D 2=(A 2,B 2;C 2,D 2);(3)设EF 与E ′F ′交于X ,FG 与F ′G ′交于Y ,EG 与E ′G ′交于Z ,连接XY ,FF ′与XY 交于L ,EE ′与XY 交于M ,GG ′与XY 交于N ,欲证X ,Y ,Z 三点共线,只需证Z 在直线XY 上,考虑线束XP ,XE ,XM ,XE ′,由第(2)问知(P ,F ;L ,F ′)=(P ,E ;M ,E ′),再考虑线束YP ,YF ,YL ,YF ′,由第(2)问知(P ,F ;L ,F ′)=(P ,G ;N ,G ′),从而得到(P ,E ;M ,E ′)=(P ,G ;N ,G ′),于是由第(2)问的逆命题知,EG ,MN ,E ′G ′交于一点,即为点Z ,从而MN 过点Z ,故Z 在直线XY 上,X ,Y ,Z 三点共线.题型02以数列为载体的新定义题型4(2024·安徽黄山·一模)随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列a n ,规定Δa n 为数列a n 的一阶差分数列,其中Δa n =a n +1-a n n ∈N * ,规定Δ2a n 为数列a n 的二阶差分数列,其中Δ2a n =Δa n +1-Δa nn ∈N *.(1)数列a n 的通项公式为a n =n 3n ∈N * ,试判断数列Δa n ,Δ2a n 是否为等差数列,请说明理由?(2)数列log a b n 是以1为公差的等差数列,且a >2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求a 的值;(3)各项均为正数的数列c n 的前n 项和为S n ,且Δc n 为常数列,对满足m +n =2t ,m ≠n 的任意正整数m,n,t都有c m≠c n,且不等式S m+S n>λS t恒成立,求实数λ的最大值.【解】(1)因为a n=n3,所以Δa n=a n+1-a n=n+13-n3=3n2+3n+1,因为Δa1=7,Δa2=19,Δa3=37,故Δa2-Δa1=12,Δa3-Δa2=18,显然Δa2-Δa1≠Δa3-Δa2,所以Δa n不是等差数列;因为Δ2a n=Δa n+1-Δa n=6n+6,则Δ2a n+1-Δ2a n=6,Δ2a1=12,所以Δ2a n是首项为12,公差为6的等差数列.(2)因为数列log a b n是以1为公差的等差数列,所以log a b n+1-log a b n=1,故b n+1b n=a,所以数列b n是以公比为a的正项等比数列,b n=b1a n-1,所以Δ2b n=Δb n+1-Δb n=b n+2-b n+1-b n+1-b n=b n+2-2b n+1+b n,且对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m,即b1a n+1-2b1a n+b1a n-1=b1a m-1,所以a-12=a m-n,因为a>2,所以m-n>0,①若m-n=1,则a2-3a+1=0,解得a=3-52(舍),或a=3+52,即当a=3+52时,对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m=b n+1.②若m-n≥2,则a m-n≥a2>a-12,对任意的n∈N*,不存在m∈N*,使得Δ2b n=b m.综上所述,a=3+5 2.(3)因为Δc n为常数列,则c n是等差数列,设c n的公差为d,则c n=c1+n-1d,若d=0,则c n=c m,与题意不符;若d<0,所以当n>1-c1d时,c n<0,与数列c n的各项均为正数矛盾,所以d>0,由等差数列前n项和公式可得S n=d2n2+c1-d2n,所以S n+S m=d2n2+m2+c1-d2n+m,因为m+n=2t,所以S t=d2n+m22+c1-d2n+m2,因为m≠n,故n2+m22>n+m22,所以S n+S m=d2n2+m2+c1-d2n+m>d2×n+m22+c1-d2n+m=2S t则当λ≤2时,不等式S m +S n >λS t 恒成立,另一方面,当λ>2时,令m =t +1,n =t -1,n ∈N *,t ≥2,则S n +S m =d 22t 2+2 +2t c 1-d 2 ,S t =d 2t 2+c 1-d 2t ,则λS t -S n +S m =d 2λt 2+c 1-d 2 λt -d 22t 2+2 -2t c 1-d2=d2λ-dt 2-t +λ-2 c 1t -d ,因为d2λ-d >0,t 2-t ≥0,当t >dλ-2 c 1时,λS t -S n +S m >0,即S n +S m <λS t ,不满足不等式S m +S n >λS t 恒成立,综上,λ的最大值为2.5(2024·辽宁葫芦岛·一模)大数据环境下数据量积累巨大并且结构复杂,要想分析出海量数据所蕴含的价值,数据筛选在整个数据处理流程中处于至关重要的地位,合适的算法就会起到事半功倍的效果.现有一个“数据漏斗”软件,其功能为;通过操作L M ,N 删去一个无穷非减正整数数列中除以M 余数为N 的项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列.设数列a n 的通项公式a n =3n -1,n ∈N +,通过“数据漏斗”软件对数列a n 进行L 3,1 操作后得到b n ,设a n +b n 前n 项和为S n .(1)求S n ;(2)是否存在不同的实数p ,q ,r ∈N +,使得S p ,S q ,S r 成等差数列?若存在,求出所有的p ,q ,r ;若不存在,说明理由;(3)若e n =nS n2(3n-1),n ∈N +,对数列e n 进行L 3,0 操作得到k n ,将数列k n 中下标除以4余数为0,1的项删掉,剩下的项按从小到大排列后得到p n ,再将p n 的每一项都加上自身项数,最终得到c n ,证明:每个大于1的奇平方数都是c n 中相邻两项的和.【解】(1)由a n =3n -1,n ∈N +知:当n =1时,a 1=1;当n ≥2时a n3∈N +,故b n =3n ,n ∈N +,则S n =4∑ni =13n -1=4×1-3n1-3=23n -1 ,n ∈N +;(2)假设存在,由S n 单调递增,不妨设p <q <r ,2S q =S p +S r ,p ,q ,r ∈N +,化简得3p -q+3r -q=2,∵p -q <0,∴0<3p -q<1,∴1<3r -q<2,∴0<r -q <log 23<1,与“q <r ,且q ,r ∈N +”矛盾,故不存在;(3)由题意,e n =nS n 2(3n -1)=n ×2(3n -1)2(3n -1)=n ,则e 3n =3n ,e 3n -2=3n -2,e 3n -1=3n -1,所以保留e 3n -2,e 3n -1,则k 2n -1=3n -2,k 2n =3n -1,n ∈N +,又k 4n +1=6n +1,k 4n +2=6n +2,k 4n +3=6n +4,k 4n +4=6n +5,n ∈N +,将k 4n ,k 4n +1删去,得到p n ,则p 2n +1=6n +2,p 2n +2=6n +4,c 2n +1=6n +2 +2n +1 =8n +3,c 2n +2=6n +4 +2n +2 =8n +6,n ∈N +,即:c 2n -1=8n -5,c 2n =8n -2,n ∈N +,即:c n =4n -1,n =2k -14n -2,n =2k,k ∈N +,记r k =k k +12,下面证明:(2k +1)2=c r k+c r k-1,由r 4m =8m 2+2m ,r 4m +1=8m 2+6m +1,r 4m +2=8m 2+10m +3,r 4m +3=8m 2+14m +6,k =4m 时,r 4m =8m 2+2m ,r 4m +1=8m 2+2m +1,c r 4tm+c r4m -1=48m 2+2m -2 +48m 2+2m +1 -1=64m 2+16m +1=(2×4m +1)2;k =4m +1时,r 4m -1=8m 2+6m +1,r 4m +1=8m 2+6m +2,c r4m -1+c r4m +1-1=48m 2+6m +1 -1 +48m 2+6m +2 -2=64m 2+48m +9=24m +1 +1 2;k =4m +2时,k 4m +2=8m 2+10m +3,k 4m +2+1=8m 2+10m +4,c k4m -2+c k4m -2+1=48m 2+10m +3 -1 +48m 2+10m +4 -2=64m 2+80m +25=24m +2 +1 2;k =4m +3时,r 4m +3=8m 2+14m +6,r 4m +3+1=8m 2+14m +7,c r4m +3+c r4m +3+1=48m 2+14m +6 -2 +48m 2+14m +7 -1=64m 2+112m +49=24m +3 +1 2,综上,对任意的k ∈N +,都有2k +1 2=c r k+c r k+1,原命题得证.6(2024·山东青岛·一模)记集合S =a n |无穷数列a n 中存在有限项不为零,n ∈N * ,对任意a n ∈S ,设变换f a n =a 1+a 2x +⋯+a n x n -1+⋯,x ∈R .定义运算⊗:若a n ,b n ∈S ,则a n ⊗b n∈S ,f a n ⊗b n =f a n ⋅f b n .(1)若a n ⊗b n =m n ,用a 1,a 2,a 3,a 4,b 1,b 2,b 3,b 4表示m 4;(2)证明:a n ⊗b n ⊗c n =a n ⊗b n ⊗c n ;(3)若a n =n +12+1n n +1,1≤n ≤1000,n >100,b n=12203-n,1≤n ≤5000,n >500,d n =a n ⊗b n ,证明:d 200<12.【解】(1)因为f a n ⊗b n =f a n ⋅f b n =a 1+a 2x +a 3x 2+a 4x 3⋯ b 1+b 2x +b 3x 2+b 4x 3⋯ =⋅⋅⋅+a 1b 4+a 2b 3+a 3b 2+a 4b 1 x 3+⋅⋅⋅,且f m n =m 1+m 2x +m 3x 2+m 4x 3+⋯,所以,由a n ⊗b n =m n 可得m 4x 3=(a 1b 4+a 2b 3+a 3b 2+a 4b 1)x 3,所以m 4=a 1b 4+a 2b 3+a 3b 2+a 4b 1.(2)因为f ({a n }⊗{b n })=f ({a n })⋅f ({b n }),所以f ({a n })⋅f ({b n })⋅f ({c n })=f ({a n }⊗{b n })⋅f ({c n })=f (({a n }⊗{b n })⊗{c n })又因为f a n ⋅f b n ⋅f c n =f a n ⋅f b n ⋅f c n =f ({a n })⋅f ({b n }⊗{c n })=f ({a n }⊗({b n }⊗{c n }))所以f (({a n }⊗{b n })⊗f {c n })=f ({a n }⊗({b n }⊗f {c n })),所以a n ⊗b n ⊗c n =a n ⊗b n ⊗c n .(3)对于{a n },{b n }∈S ,因为(a 1+a 2x +⋯+a n x n -1+⋯)(b 1+b 2x +⋯+b n x n -1+⋯)=d 1+d 2x +⋯+d n x n -1+⋯,所以d n x n -1=a 1(b n x n -1)+⋯+a k x k -1(b n +1-k x n -k )+⋯+a n -1x n -2(b 2x )+a n x n -1b 1,所以d n =a 1b n +a 2b n -1+⋯+a k b n +1-k +⋯+a n -1b 2+a n b 1,所以a n ⊗b n =d n =∑nk =1a kb n +1-k ,d 200=200k =1a k b 201-k =100k =1a k b 201-k +200k =101a k b 201-k =100k =1a k b 201-k =100k =1(k +1)2+1k (k +1)2k +2,所以d 200=∑100k =112k +21+2k -1k +1,=∑100k =112k +2+∑100k =11k ⋅2k +1-1k +1 ⋅2k +2=12-102101×2102<12.7(2024·江苏徐州·一模)对于每项均是正整数的数列P :a 1,a 2,⋯,a n ,定义变换T 1,T 1将数列P 变换成数列T 1P :n ,a 1-1,a 2-1,⋯,a n -1.对于每项均是非负整数的数列Q :b 1,b 2,⋯,b m ,定义S (Q )=2(b 1+2b 2+⋯+mb m )+b 21+b 22+⋯+b 2m ,定义变换T 2,T 2将数列Q 各项从大到小排列,然后去掉所有为零的项,得到数列T 2Q .(1)若数列P 0为2,4,3,7,求S T 1P 0 的值;(2)对于每项均是正整数的有穷数列P 0,令P k +1=T 2T 1P k ,k ∈N .(i )探究S T 1P 0 与S P 0 的关系;(ii )证明:S P k +1 ≤S P k .【解】(1)依题意,P 0:2,4,3,7,T 1P 0 :4,1,3,2,6,S T 1P 0 =2(4+2×1+3×3+4×2+5×6)+16+1+9+4+36=172.(2)(i )记P 0:a 1,a 2,⋯,a n ,(a 1,a 2,⋯,a n ∈N *),T 1P 0 :n ,a 1-1,a 2-1,⋯,a n -1,S (T 1(P 0))=2[n +2(a 1-1)+3(a 2-1)+⋯+(n +1)(a n -1)]+n 2+(a 1-1)2+(a 2-1)2+⋯+(a n -1)2,S (P 0)=2(a 1+2a 2+3a 3+⋯+na n )+a 21+a 22+⋯+a 2n ,S (T 1(P 0))-S (P 0)=2n +2a 1+2a 2+⋯+2a n -4-6-⋯-2(n +1)+n 2-2a 1-2a 2-⋯-2a n +n =n 2+3n -(2n +6)⋅n2=0,所以S (T 1(P 0))=S (P 0).(ii )设A 是每项均为非负整数的数列a 1,a 2,⋯,a n ,当存在1≤i <j ≤n ,使得a i ≤a j 时,交换数列A 的第i 项与第j 项得到数列B ,则S (B )-S (A )=2(ia j +ja i -ia i -ja j )=2(i -j )(a j -a i )≤0,当存在1≤m <n ,使得a m +1=a m +2=⋯=a n =0时,若记数列a 1,a 2,⋯,a m 为C ,则S (C )=S (A ),因此S T 2(A ) ≤S (A ),从而对于任意给定的数列P 0,由P k +1=T 2T 1P k (k =0,1,2,⋯),S P k +1 ≤S T 1P k ,由(i )知S T 1P k =S P k ,所以S P k +1 ≤S P k .题型03以导数为载体的新定义题型8(2024·广东惠州·一模)黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数f x =x s -1e x -1(x >0,s >1,s 为常数)密切相关,请解决下列问题.(1)当1<s ≤2时,讨论f x 的单调性;(2)当s >2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.【解】(1)由f x =x s -1e x -1,x ∈0,+∞ ,1<s ≤2可得fx =s -1 ⋅xs -2⋅e x -1 -x s -1⋅e x e x -1 2=x s -2⋅s -1-x ⋅e x -s -1e x -12,令h x =s -1-x ⋅e x -s -1 ,则h x =-e x +s -x -1 ⋅e x =s -x -2 ⋅e x ;又1<s ≤2,x >0,所以s -x -2<0,e x >0,即h x <0恒成立;即函数h x 在0,+∞ 上单调递减,又h 0 =0,所以h x <h 0 =0,可得fx =x s -2⋅s -1-x ⋅e x -s -1e x -12<0恒成立,因此函数f x 在0,+∞ 上单调递减,即当1<s ≤2时,函数f x 在0,+∞ 上单调递减;(2)当s >2时,①由(1)可知令h x =s -x -2 ⋅e x =0,可得x =s -2>0,易知当x ∈0,s -2 时,h x =s -x -2 ⋅e x >0,即函数h x 在0,s -2 上单调递增,当x ∈s -2,+∞ 时,h x =s -x -2 ⋅e x <0,即函数h x 在s -2,+∞ 上单调递减,即函数h x 在x =s -2处取得极大值,也是最大值;注意到h 0 =0,由单调性可得h s -2 >h 0 =0,可知h x 在0,s -2 大于零,不妨取x =2s -2,则h 2s -2 =1-s ⋅e 2s -2-s -1 =1-s e 2s -2+1 <0;由零点存在定理可知h x 存在唯一变号零点x 0∈s -2,+∞ ,所以fx =x s -2⋅s -1-x ⋅e x -s -1 e x -12存在唯一变号零点x 0满足f x 0 =0,由h x 单调性可得,当x ∈0,x 0 时,f x >0,当x ∈x 0,+∞ 时,f x <0;即可得函数f x 在0,x 0 上单调递增,在x 0,+∞ 单调递减;所以f x 有唯一极大值点x 0;②记f x 的唯一极值点为g s ,即可得x 0=g s由h x 0 =s -1-x 0 ⋅e x 0-s -1 =0可得s =x 0⋅e x 0e x 0-1+1,即可得g s 的反函数g -1s =x 0⋅ex 0e x 0-1+1,令φx =x ⋅e x e x -1+1,x ∈s -2,+∞ ,则φx =e x e x -x -1 e x -1 2,构造函数m x =e x -x -1,x ∈0,+∞ ,则m x =e x -1,显然m x =e x -1>0在0,+∞ 恒成立,所以m x 在0,+∞ 上单调递增,因此m x >m 0 =0,即e x >x +1在0,+∞ 上恒成立,而s >2,即s -2>0,所以e x >x +1在s -2,+∞ 上恒成立,即可得φx =e x e x -x -1e x -12>0在s -2,+∞ 上恒成立,因此g -1s 在s -2,+∞ 单调递增;易知函数g s 与其反函数g -1s 有相同的单调性,所以函数g s 在2,+∞ 上单调递增;9(2024·湖北·一模)英国数学家泰勒发现的泰勒公式有如下特殊形式:当f x 在x =0处的n n ∈N * 阶导数都存在时,f x =f 0 +f0 x +f 0 2!x 2+f 30 3!x 3+⋯+f n0 n !x n +⋯.注:f x 表示f x 的2阶导数,即为f x 的导数,f nx n ≥3 表示f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算sin12的值,精确到小数点后两位;(2)由该公式可得:cos x =1-x 22!+x 44!-x 66!+⋯.当x ≥0时,试比较cos x 与1-x 22的大小,并给出证明;(3)设n ∈N *,证明:nk =11(n +k )tan 1n +k>n -14n +2.【解】(1)令f x =sin x,则f (x)=cos x,f (x)=-sin x,f3 x =-cos x,f4 x =sin x,⋯故f0 =0,f (0)=1,f (0)=0,f3 0 =-1,f4 0 =0,⋯由麦克劳林公式可得sin x=x-x33!+x55!-x77!+⋯,故sin 12=12-148+⋯≈0.48.(2)结论:cos x≥1-x22,证明如下:令g x =cos x-1+x22,x≥0,令h x =g x =-sin x+x,h x =-cos x+1≥0,故h x 在0,+∞上单调递增,h x ≥h0 =0,故g x 在0,+∞上单调递增,g x ≥g0 =0,即证得cos x-1+x22≥0,即cos x≥1-x22.(3)由(2)可得当x≥0时,cos x≥1-x22,且由h x ≥0得sin x≤x,当且仅当x=0时取等号,故当x>0时,cos x>1-x22,sin x<x,1n+ktan1n+k =cos1n+kn+ksin1n+k>cos1n+kn+k⋅1n+k=cos1n+k>1-12(n+k)2,而12(n+k)2=2(2n+2k)2<2(2n+2k)2-1=22n+2k-12n+2k+1=12n+2k-1-12n+2k+1,即有1n+ktan1n+k>1-12n+2k-1-12n+2k+1故nk=11(n+k)tan1n+k>n-12n+1-12n+3+12n+3-12n+5+⋯+14n-1-14n+1=n-12n+1+1 4n+1而n-12n+1+14n+1-n-14n+2=14n+1-14n+2>0,即证得nk=11(n+k)tan1n+k>n-14n+2.10(2024·山东菏泽·一模)帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=a0+a1x+⋯+a m x m1+b1x+⋯+b n x n,且满足:f(0)=R(0),f (0)=R (0),f (0)=R (0),⋯,f(m+n)(0)=R(m+n)(0).(注:f (x)=f (x),f (x)=f(x ) ,f (4)(x )=f (x ) ,f (5)(x )=f (4)(x ) ,⋯;f (n )(x )为f(n -1)(x )的导数)已知f (x )=ln (x +1)在x =0处的1,1 阶帕德近似为R (x )=ax1+bx.(1)求实数a ,b 的值;(2)比较f x 与R (x )的大小;(3)若h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,求m 的取值范围.【解】(1)由f (x )=ln (x +1),R (x )=ax1+bx,有f (0)=R (0),可知f (x )=1x +1,f (x )=-1(x +1)2,R (x )=a (1+bx )2,R(x )=-2ab (1+bx )3,由题意,f (0)=R (0),f (0)=R (0),所以a =1-2ab =-1 ,所以a =1,b =12.(2)由(1)知,R (x )=2x x +2,令φ(x )=f (x )-R (x )=ln (x +1)-2xx +2(x >-1),则φ(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2>0,所以φ(x )在其定义域(-1,+∞)内为增函数,又φ(0)=f (0)-R (0)=0,∴x ≥0时,φ(x )=f (x )-R (x )≥φ(0)=0;-1<x <0时,φ(x )=f (x )-R (x )<φ(0)=0;所以x ≥0时,f (x )≥R (x );-1<x <0时,f (x )<R (x ).(3)由h (x )=f (x )R (x )-12-m f (x )=1x +m ln (x +1),∴h(x )=-1x 2ln (x +1)+1x +m 1x +1=mx 2+x -(x +1)ln (x +1)x 2(x +1).由h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,所以h (x )在(0,+∞)上存在变号零点.令g (x )=mx 2+x -(x +1)ln (x +1),则g (x )=2mx +1-ln (x +1)+1 =2mx -ln (x +1),g (x )=2m -1x +1.①m <0时,g (x )<0,g (x )为减函数,g (x )<g (0)=0,g (x )在(0,+∞)上为减函数,g (x )<g (0)=0,无零点,不满足条件.②当2m >1,即m >12时,g (x )>0,g (x )为增函数,g (x )>g (0)=0,g (x )在(0,+∞)上为增函数,g (x )>g (0)=0,无零点,不满足条件.③当0<2m <1,即0<m <12时,令g (x )=0即2m =1x +1,∴x =12m-1.当0<x <12m -1时,g (x )<0,g (x )为减函数;x >12m -1时,g (x )>0,g (x )为增函数,∴g min (x )=g 12m -1=2m 12m -1 -ln 12m-1+1 =1-2m +ln2m ;令H (x )=1-x +ln x ,0<x <1,H (x )=-1+1x ,H (x )=-1+1x>0在0<x <1时恒成立,H(x)在0,1上单调递增,H(x)<H(1)=0,∴g12m-1=(1-2m)+ln2m<0恒成立;∵x>0,0<m<1,∴x(m-1)<0,则mx2-1>mx2-1+mx-x=x+1mx-1,∴mx2-1x+1>mx-1,∴1+mx2-1x+1-ln(x+1)>mx-ln(x+1);∵g(x)=(x+1)mx2+xx+1-ln(x+1),令l(x)=mx2+xx+1-ln(x+1)=1+mx2-1x+1-ln(x+1)>mx-ln(x+1)=m(x+1)-ln(x+1)-m,令F x =ln(x+1)-2x+1x>0,F x =1x+1-1x+1=1-x+1x+1<0,则F x 在0,+∞是单调递减,F x <F0 =-2,所以ln(x+1)<2x+1,∴l(x)>m(x+1)-2x+1-m=m2(x+1)-m+m2(x+1)-2x+1,令x=16m2-1,则x+1=16m2,∴m2(x+1)-2x+1≥0,m2(x+1)-m=8m-m>00<m<12.∴l(x)>0,即l16m2-1>0.由零点存在定理可知,l(x)在12m-1,+∞上存在唯一零点x0∈12m-1,16m2-1,又由③知,当0<x<12m-1时,g (x)<0,g (x)为减函数,g (0)=0,所以此时,g (x)<0,在0,12m-1内无零点,∴g(x)在(0,+∞)上存在变号零点,综上所述实数m的取值范围为0,12.题型04两个知识交汇11【概率与数列】(2024·山东聊城·一模)如图,一个正三角形被分成9个全等的三角形区域,分别记作A,B1,P,B2,C1,Q1,C2,Q,C3. 一个机器人从区域P出发,每经过1秒都从一个区域走到与之相邻的另一个区域(有公共边的区域),且到不同相邻区域的概率相等.(1)分别写出经过2秒和3秒机器人所有可能位于的区域;(2)求经过2秒机器人位于区域Q的概率;(3)求经过n秒机器人位于区域Q的概率.【解】(1)经过2秒机器人可能位于的区域为P、Q1,Q,经过3秒机器人可能位于的区域为A,B1,B2,C1,C2,C3;(2)若经过2秒机器人位于区域Q,则经过1秒时,机器人必定位于B2,P有三个相邻区域,故由P→B2的概率为p1=13,B2有两个相邻区域,故由B2→Q的概率为p2=12,则经过2秒机器人位于区域Q的概率为p1p2=13×12=16;(3)机器人的运动路径为P→A∪B1∪B2→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→⋯,设经过n秒机器人位于区域Q的概率P n,则当n为奇数时,P n=0,当n为偶数时,由(2)知,P2=16,由对称性可知,经过n秒机器人位于区域Q的概率与位于区域Q1的概率相等,亦为P n,故经过n秒机器人位于区域P的概率为1-2P n,若第n秒机器人位于区域P,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q1,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q,则第n+2秒机器人位于区域Q的概率为1-2×1 6=23,则有P n+2=23P n+16P n+161-2P n,即P n+2=16+12P n,令P n+2+λ=12P n+λ,即P n+2=12P n-12λ,即有λ=-13,即有P n+2-13=12P n-13,则P n+2-13P n-13=12,故有P n-13P n-2-13=12、P n-2-13P n-4-13=12、⋯、P4-13P2-13=12,故P n-13P n-2-13×P n-2-13P n-4-13×⋯×P4-13P2-13×P2-13=P n-13=12 n2-1×16-13=-13⋅12 n2,即P n=13-13⋅12n2,综上所述,当n为奇数时,经过n秒机器人位于区域Q的概率为0,当n为偶数时,经过n秒机器人位于区域Q的概率为13-13⋅12n2.12【概率与函数】(2024·广东汕头·一模)2023年11月,我国教育部发布了《中小学实验教学基本目录》,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到n颗番石榴(不妨设n颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前k(1≤k<n)颗番石榴,自第k+1颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设k=tn,记该学生摘到那颗最大番石榴的概率为P.(1)若n=4,k=2,求P;(2)当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k +1k+1+⋯+1n-1=ln nk)【解】(1)依题意,4个番石榴的位置从第1个到第4个排序,有A44=24种情况,要摘到那个最大的番石榴,有以下两种情况:①最大的番石榴是第3个,其它的随意在哪个位置,有A33=6种情况;②最大的番石榴是最后1个,第二大的番石榴是第1个或第2个,其它的随意在哪个位置,有2A22=4种情况,所以所求概率为6+424=512.(2)记事件A表示最大的番石榴被摘到,事件B i表示最大的番石榴排在第i个,则P B i=1 n,由全概率公式知:P(A)=ni=1P(A|B i)P(B i)=1nni=1P(A|B i) ,当1≤i≤k时,最大的番石榴在前k个中,不会被摘到,此时P(A|B i)=0;当k+1≤i≤n时,最大的番石榴被摘到,当且仅当前i-1个番石榴中的最大一个在前k个之中时,此时P A|B i)=ki-1,因此P(A)=1nkk+kk+1+⋯+kn-1=k n ln n k,令g(x)=xnln nx(x>0),求导得g (x)=1nln nx-1n,由g(x)=0,得x=ne,当x∈0,n e时,g (x)>0,当x∈n e,n时,g (x)<0,即函数g(x)在0,n e上单调递增,在n e,n上单调递减,则g(x)max=gne=1e,于是当k=n e时,P(A)=k n ln n k取得最大值1e,所以P的最大值为1e,此时t的值为1e.13【解析几何与立体几何】(2024·山东日照·一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12经过点F1且倾斜角为θ0<θ<π2的直线l与椭圆交于A,B两点(其中点A在x轴上方),且△ABF2的周长为8.将平面xOy沿x轴向上折叠,使二面角A-F1F2-B为直二面角,如图所示,折叠后A,B在新图形中对应点记为A ,B .(1)当θ=π3时,①求证:A O⊥B F2;②求平面A'F1F2和平面A'B'F2所成角的余弦值;(2)是否存在θ0<θ<π2,使得折叠后△A B F2的周长为152?若存在,求tanθ的值;若不存在,请说明理由.【解】(1)①由椭圆定义可知AF1+AF2=2a,BF1+BF2=2a,所以△ABF2的周长L=4a=8,所以a=2,因为离心率为12,故ca=12,解得c=1,则b2=a2-c2=3,由题意,椭圆的焦点在x轴上,所以椭圆方程为x24+y23=1,直线l:y-0=tan π3⋅x+1,即l:y=3x+1,联立x24+y23=1得15x2+24x=0,解得x=0或-85,当x=0时,y=3×0+1=3,当x=-85时,y=3×-85+1=-335,因为点A在x轴上方,所以A0,3,B-85,-335,故AO⊥F1F2,折叠后有A O⊥F1F2,因为二面角A-F1F2-B为直二面角,即平面A F1F2⊥F1F2B ,交线为F1F2,A O⊂平面A F1F2,所以A O⊥平面F1F2B ,因为F 2B ⊂平面F 1F 2B ,所以A O ⊥F 2B ;②以O 为坐标原点,折叠后的y 轴负半轴为x 轴,原x 轴为y 轴,原y 轴正半轴为z 轴,建立空间直角坐标系,则F 10,-1,0 ,A 0,0,3 ,B 335,-85,0,F 20,1,0 ,A F 2 =0,1,-3 ,BF 2 =-335,135,0 ,其中平面A F 1F 2的法向量为n 1=1,0,0 ,设平面A B F 2的法向量为n 2=x ,y ,z ,则n 2 ⋅AF 2 =x ,y ,z ⋅0,1,-3 =y -3z =0n 2 ⋅B F 2 =x ,y ,z ⋅-335,135,0 =-335x +135y =0,令y =3得x =133,z =1,故n 2 =133,3,1 ,设平面A B F 2与平面A F 1F 2的夹角为φ,则cos φ=cos n 1 ,n 2 =n 1 ⋅n 2n 1 ⋅n 2 =1,0,0 ⋅133,3,1 1699+3+1=13205205,故平面A B F 2与平面A F 1F 2的夹角的余弦值为13205205;(2)设折叠前A x 1,y 1 ,B x 2,y 2 ,折叠后对应的A x 1,y 1,0 ,B x 2,0,-y 2 ,设直线l 方程为my =x +1,将直线l 与椭圆方程x 24+y 23=1联立得,3m 2+4 y 2-6my -9=0,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,在折叠前可知AB =x 1-x 22+y 1-y 2 2,折叠后,在空间直角坐标系中,A B=x 1-x 22+y 21+y 22,,由A F 2 +B F 2 +A B =152,AF 2 +BF 2 +AB =8,故AB -A B =12,所以AB -A B =x 1-x 22+y 1-y 2 2-x 1-x 22+y 21+y 22=12①,分子有理化得-2y 1y 2x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=12,所以x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=-4y 1y 2②,由①②得x 1-x 22+y 1-y 2 2=14-2y 1y 2,因为x 1-x 2 2+y 1-y 2 2=my 1-1-my 2+1 2+y 1-y 2 2=m 2+1y 1-y 2 ,故14-2y 1y 2=m 2+1y 1-y 2 ,即14-2y 1y 2=m 2+1y 1+y 2 2-4y 1y 2,将y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4代入上式得14+183m 2+4=m 2+16m3m 2+42+363m 2+4,两边平方后,整理得2295m 4+4152m 2-3472=0,即45m 2-28 51m 2+124 =0,解得m 2=2845,因为0<θ<π2,所以tan θ=1m =33514.14【导数与三角函数】(2024·山东烟台·一模)如图,在平面直角坐标系xOy 中,半径为1的圆A 沿着x 轴正向无滑动地滚动,点M 为圆A 上一个定点,其初始位置为原点O ,t 为AM 绕点A 转过的角度(单位:弧度,t ≥0).(1)用t 表示点M 的横坐标x 和纵坐标y ;(2)设点M 的轨迹在点M 0(x 0,y 0)(y 0≠0)处的切线存在,且倾斜角为θ,求证:1+cos2θy 0为定值;(3)若平面内一条光滑曲线C 上每个点的坐标均可表示为(x (t ),y (t )),t ∈[α,β],则该光滑曲线长度为F (β)-F (α),其中函数F (t )满足F(t )=[x(t )]2+[y(t )]2.当点M 自点O 滚动到点E 时,其轨迹OE为一条光滑曲线,求OE的长度.【解】(1)依题意,y =1-cos t ,|OB |=BM=t ,则x =|OB |-sin t =t -sin t ,所以x =t -sin t ,y =1-cos t .(2)由复合函数求导公式yt=y x⋅x t及(1)得y x=y x ⋅x t x t =y t x t=sin t 1-cos t ,因此tan θ=sin t 1-cos t ,而1+cos2θ=2cos 2θ=2cos 2θsin 2θ+cos 2θ=2tan 2θ+1=2sin t 1-cos t 2+1=2(1-cos t )22-2cos t =1-cos t =y 0,所以1+cos2θy 0为定值1.(3)依题意,F (t )=(1-cos t )2+sin 2t =2-2cos t =2sin t 2.由0≤t 2≤π,得sin t 2≥0,则F (t )=2sin t 2,于是F (t )=-4cos t2+c (c 为常数),则F (2π)-F (0)=(-4cosπ+c )-(-4cos0+c )=8,所以OE 的长度为8.15【导数与数列】(2024·山东济宁·一模)已知函数f x =ln x -12ax 2+12a ∈R .(1)讨论函数f x 的单调性;(2)若0<x 1<x 2,证明:对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f (ξ)=f x 2 -f x 1x 2-x 1成立;(3)设a n =2n +1n 2,n ∈N *,数列a n 的前n 项和为S n .证明:S n >2ln (n +1).【解】(1)函数f x 的定义域为0,+∞ ,fx =1x -ax =1-ax 2x ,①若a ≤0,f x >0恒成立,f x 在0,+∞ 上单调递增.②若a >0,x ∈0,1a时,fx >0,f x 单调递增;x ∈1a,+∞时,f x <0,f x 单调递减.综上,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,1a上单调递增,在1a,+∞ 上单调递减.(2)证明:令F x =f x -f x 2 -f x 1x 2-x 1,x >0则F x =1x -ax -ln x 2-12ax 22-ln x 1+12ax 12x 2-x 1=1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1因为a >0,所以,F x =1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1 在区间x 1,x 2 上单调递减.F x 1 =1x 1-ax 1-ln x 2-ln x 1x 2-x 1+12a x 2+x 1 =1x 1-ln x 2-ln x 1x 2-x 1+12a x 2-x 1=1x 2-x 1x 2x 1-1-ln x 2x 1+12a x 2-x 1令g t =t -1-ln t ,t >0,则g t =1-1t =t -1t,所以,t ∈0,1 时,g t <0,g t 单调递减,t ∈1,+∞ 时,g t >0,g t 单调递增,所以,g t min =g 1 =0,又0<x 1<x 2,所以,x 2x 1>1,所以g x 2x 1=x 2x 1-1-ln x 2x 1>0恒成立,又因为a >0,x 2-x 1>0,所以,F x 1 >0.同理可得,F x 2 =1x 2-x 11-x 1x 2-ln x 2x 1+12a x 1-x 2 ,由t -1-ln t ≥0(t =1时等号成立)得,1t -1-ln 1t ≥0,即1-1t -ln t ≤0(t =1时等号成立),又0<x 1<x 2,所以0<x 1x 2<1,所以1-x1x 2-ln x 2x 1<0恒成立,又因为a >0,x 1-x 2<0,x 2-x 1>0,所以,F x 2 <0,所以,区间x 1,x 2 上存在唯一实数ξ,使得F ξ =0,所以对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f ξ =f x 2 -f x 1x 2-x 1成立;(3)证明:当a =1时,由(1)可得,f x =ln x -12x 2+12在1,+∞ 上单调递减.所以,x >1时,f x <f 1 =0,即ln x -12x 2+12<0.令x =n +1n ,n ∈N *,则ln n +1n -12n +1n 2+12<0,即n +1n2-1>2ln n +1 -2ln n ,即2n +1n 2>2ln n +1 -2ln n 令b n =2ln n +1 -2ln n ,n ∈N *,则a n >b n ,a 1+a 2+a 3+⋅⋅⋅+a n >b 1+b 2+b 3+⋅⋅⋅+b n=2ln2-2ln1+2ln3-2ln2+⋯+2ln n +1 -2ln n =2ln n +1 所以,S n >2ln n +1 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知函数在上的最小值为,,是函数图像上的两点,且线段的中点的横坐标为.)若数列的通项公式为, 求数列的前项和;)设数列满足:,设,)中的满足对任意不小于, 恒成立已知函数.)当时,如果函数仅有一个零点,求实数的取值范围;)当时,试比较与的大小;)求证:().设函数,其中为常数.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数的有极值点,求的取值范围及的极值点;(Ⅲ)当且时,求证:.已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.列满足,为数列的前)求、和;)若对任意的,不等式恒成立,求实数的取值范围;)是否存在正整数,使得成等比数列?若存在,求出所有的值;若(本小题满分分)已知函数(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;(Ⅱ)若恒成立,求实数的取值范围;(Ⅲ)当时,试比较与的大小关系.分)已知圆的圆心为,半径为,:和直线的如图所示,已知椭圆和抛物线有公共焦点, 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点)写出抛物线的标准方程;)若,求直线的方程;)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴已知函数(为自然对数的底数).)求的最小值;)不等式的解集为,若且求实数的取值范围;)已知,且,是否存在等差数列和首项为公比大于列,使得?若存在,请求出数列的通项公已知函数当时,求函数的最值;求函数的单调区间;试说明是否存在实数使的图象与无公共点对于实数,称为取整函数或高斯函数,亦即是不超过的最大整数例如:.平面内,若满足,则的取值范围已知二次函数的导函数为,与轴恰有一个交点,则的最小值为对数列,规定为数列的一阶差分数列,其中N为的阶差分数列,其中.(Ⅰ)若数列的首项,且满足,求数列的通项公式;(Ⅱ)对(Ⅰ)中的数列,若数列是等差数列,使得对一切正整数N都成立,求;在(Ⅱ)的条件下,令设若成立,求最小正整数的值.如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.设函数,其中为常数.)当时,判断函数在定义域上的单调性;)若函数的有极值点,求的取值范围及的极值点;的正整数,不等式都成立已知函数)、若函数在处的切线方程为,求的值;)、若函数在为增函数,求的取值范围;)、讨论方程解的个数,并说明理由。
已知抛物线与圆相交于、、、四个点。
)求得取值范围;)当四边形的面积最大时,求对角线、的交点坐标E: (,)N(,1)且?若已知函数f(x)的导函数是。
对任意两个不相等的正数,(Ⅰ)当时,;(Ⅱ)当时,。
在(,使得.时,(可不用证明函数的连续性和可导性)在平面直角坐标系中,过定点作直线与抛物线相交于轴的直线,使得被以若存在,求出的方程已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为)求椭圆的标准方程;)若直线与椭圆相交于两点(不是左右顶点),且以的圆过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.设函数,其中.证明:当时,函数没有极值点;当时,函数有且只有一个极值点,已知点,直线,动点M在直线的右侧,以为圆心的动圆与直线相切,且与以为圆心(半径与⊙相等)的圆外切。
(Ⅰ)求点的轨迹方程;过直线与轴的交点作直线与点的轨迹交于不同两点、,求的取值(Ⅲ)在(Ⅱ)的条件下,设点关于轴的对称点为,问:直线是否过定点?参考答案)当时,在上单调递减,又的最小值为,∴,得当时,在上单调递增,又的最小值为,∴,得时,(舍),= 1, .∵∴,∴,即点的纵坐标为定值。
, , 所以, 即由, … ①得由①+②, 得∴∵, ……③∴对任意的. ……④由③、④, 得即.∴.∵∴数列是单调递增数列∴关于当, 且时, .∵∴∴即∴)当时,,定义域是,,令,得或.当或时,,当时,,函数在、上单调递增,在上单调递减.的极大值是,极小值是.当时,;当时,,当仅有一个零点时,的取值范围是或. (5))当时,,定义域为.令,,在上是增函数.①当时,,即;②当时,,即;③当时,,即.)的结论,当时,,即.令,则有,..当时,.,,即时命题成立.设当时,命题成立,即.时,.)的结论,当时,,即.令,则有,则有,即时命题也成立. (13)因此,由数学归纳法可知不等式成得. (11),.,又,,..)由题意知,的定义域为,当时,,函数在定义域上单调递增.)①由(Ⅰ)得,当时,函数无极值点.②时,有两个相同的解,时,时,函数在上无极值点.③当时,有两个不同解,时,,,,随在定义域上的变化情况如下表:由此表可知:时,有惟一极小值点,当时,0<<1此时,,随的变化情况如下表:由此表可知:时,有一个极大值和一个极小值点;当且仅当时有极值点当时,有惟一最小值点;当时,有一个极大值点和一个极小值点可知当时,函数,此时有惟一极小值点且令函数)(法一)在中,令,,得即解得,,.,.(法二)是等差数列,.由,得,又,,则.(求法同法一)①当为偶数时,要使不等式恒成立,即需不等式恒成立.,等号在时取得.此时需满足.②当为奇数时,要使不等式恒成立,即需不等式恒成立.是随的增大而增大,时取得最小值.此时需满足.综合①、②可得的取值范围是. (10)),若成等比数列,则,即. (11)(法一)由,可得,即,.又,且,所以,此时.因此,当且仅当,时,数列中的成等比数列. (14)(法二)因为,故,即,,(以下同上).解:(Ⅰ)由,解得或,∴ 函数的定义域为当时,∴ 在定义域上是奇函数。
(Ⅱ)由时,恒成立,∴∴ 在成立令,,由二次函数的性质可知时函数单调递增,时函数单调递减,时,∴(Ⅲ)=证法一:设函数,则时,,即在上递减,所以,故在成立,则当时,成立. (14)证法二:构造函数,当时,,∴在单调递减, (12)当()时,的方程为的方程,得即,解得∵∴的方程为)直线能与圆依题意设直线的方程为,即若直线与圆相切,则∴,解得当时,直线与轴的交点横坐标为,不合题意,舍去当时,直线与轴的交点横坐标为,∴∴,即,∴直线能与圆C直线的方程为,的方程为)..............................设..........................................................................................)..............................椭圆设为消元整理...............................) 1由当;当),有解由即上有解令,上减,在又,且)设存在公差为的等差数列和公比首项为的等比数列,使又时,得,解得(舍)故此时存在满足条件的数列时,,所以在为减函数在为增函数,所以函数的最小值为= (5)(2) (6)时,则f)在(1,+∞)恒成立,所以a>,则故当,, (9)当时,) ,的减区间为,的增区间为 (10)在(1,+∞)的最小值为, (11)令在[1,+∞)上单调递减,所以则>0的最小值大于,的图象与无公共点 (14)11 A解:(Ⅰ)由及,,∴∴∴数列是首项为公差为的等差数列,∴.————————,∴ .∵,∴ .————————————,,,∴,又,∴,∴是递增数列,且,∴ 满足条件的最小正整数的值为解:(Ⅰ)证明:取,连结和,∴,∥,,∥,∴,∥.∴四边形为平行四边形,∴∥,在矩形中,,为平行四边形.∴∥,∥.∵平面,平面,∴∥平面.(Ⅱ)连结,在正四棱柱中,平面,∴,,∴平面,∴.由已知,得平面.∴,,在△与△中,,,∴△∽△∴,.—————————(Ⅲ)以为原点,,,所在直线为,,轴,建立空间直角坐标系..,由(Ⅱ)知为平面的一个法向量,设为平面的一个法向量,,即,令,所以.∴,∵二面角的平面角为锐角,∴二面角的余弦值为.)由题意知,的定义域为,当时,,函数在定义域上单调递增.)①由(Ⅰ)得,当时,函数无极值点.②时,有两个相同的解,时,时,函数在上无极值点.③当时,有两个不同解,时,,,,随在定义域上的变化情况如下表:由此表可知:时,有惟一极小值点,当时,0<<1此时,,随的变化情况如下表:由此表可知:时,有一个极大值和一个极小值点;当且仅当时有极值点当时,有惟一最小值点;当时,有一个极大值点和一个极小值点可知当时,函数,此时有惟一极小值点且)因为:,又在处的切线方程为解得:)若函数在上恒成立。
则在上恒成立,即:在上恒成立。
所以有)当时,在定义域上恒大于,此时方程无解; (7)当时,在上恒成立,所以在定义域上为增函数。
,,所以方程有惟一解。
(8)当时,因为当时,,在内为减函数;当时,在内为增函数。
所以当时,有极小值即为最小值。
(10)当时,,此方程无解;当时,此方程有惟一解。
当时,因为且,所以方程在区间上有惟一解, (12)因为当时,,所以,所以方程在区间上有惟一解。
所以方程在区间上有惟两解。
综上所述:当时,方程无解;当时,方程有惟一解;当时方程有两解。
)这一问学生易下手。
将抛物线与圆的方程联立,消去,整理得.............(*)抛物线与圆相交于、、、四个点的充要条件是:易得.设四个交点的坐标分别为、、、。
)根据韦达定理有,则令,则下面求的最大值。
当且仅当,即时取最大值。
经检验此时满足题意。
下面来处理点的坐标。
设点的坐标为:以下略。
E: (,)N(,1)所以解得所以椭圆的方程为且,圆的切线方程为解方程组得,,则△=,即,要使,需使,即,所以,以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,,,所求的圆为,都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,原点的圆,使得该圆的任意一条切线与椭圆且.因为,所以,,①当时因为所以,所以,所以当且仅当时取”=”.当时,.两个交点为或, ,的取值范围为即:证明:(Ⅰ)由得而又∴∵∴∵∴即(Ⅱ)证法一:由,得下面证明对任意两个不相等的正数,有恒成立即证成立∵设,则令得,列表如下:∴∴对任意两个不相等的正数,恒有证法二:由,得∴∵是两个不相等的正数∴设则,列表:∴∴即对任意两个不相等的正数,恒有的方程在(使g’(x)=,g’(x)∈(),b-a>0即。
:(Ⅰ)依题意,点的坐标为,可设,直线的方程为,与联立得消去得.由韦达定理得,.于是.,当,.(Ⅱ)假设满足条件的直线存在,其方程为,设的中点为,与为直径的圆相交于点,的中点为,则,点的坐标为.,,,.令,得,此时为定值,故满足条件的直线存在,其方程为,,又由点到直线的距离公式得.从而,当时,.(Ⅱ)假设满足条件的直线存在,其方程为,则以为直径的圆的方程为,将直线方程代入得,则.设直线与以为直径的圆的交点为,则有.令,得,此时为定值,故满足条件的直线存在,其方程为,)由题意设椭圆的标准方程为,由已知得:,椭圆的标准方程为.)设.联立,则又.因为以为直径的圆过椭圆的右顶点,,即....解得:,且均满足.当时,的方程,直线过点,与已知矛盾;当时,的方程为,直线过定点.所以,直线过定点,定点坐标为证明:因为,所以的定义域为..当时,如果在上单调递增;如果在上单调递减.所以当,函数没有极值点.当时,令,将(舍去),,当时,随的变化情况如下表:极小值函数有且只有一个极小值点,极小值为.当时,随的变化情况如下表:极大值函数有且只有一个极大值点,极大值为.当时,函数没有极值点;当时,若时,函数有且只有一个极小值点,极小值为.若时,函数有且只有一个极大值点,极大值为.解:(Ⅰ)设圆的半径为,则点到直线的距离所以点的轨迹是以为焦点、为准线的双曲线右支点轨迹方程为(Ⅱ)设直线的方程为,代入双曲线方程消去得设则此方程由两个不相等的正实根,由得到。