专题21.20 一元二次方程的应用—营销问题(拓展提高)(解析版)

合集下载

销售问题之一元二次方程的应用doc

销售问题之一元二次方程的应用doc

某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每件降价1元,商场平均每天可多销售2件.
(1)若现在设每件衬衫降价x元,平均每天盈利为y元.求出y与x之间的函数关系式.
(2)当每件降价多少元时,商场平均每天盈利最多?
(3)若商场每天平均需盈利1200元,每件衬衫应降价多少元?
考点:二次函数的应用;一元二次方程的应用.
专题:销售问题.
分析:(1)设每套降价x元,表示出降价后的盈利与销售的套数,然后根据每天的盈利等于每套的盈利乘以套数,得出y与x的函数关系即可,
(2)根据配方法求出二次函数的最值,进而得出答案;
(3)令y=1200,根据(1)的函数关系求出自变量的取值即可.
解答:解:(1)设每套降价x元,商场平均每天赢利y元,
则y=(40-x)(20+2x)=-2x2+60x+800,
(2)y=-2x2+60x+800,
=-2(x-15)2+1250,
当x=15时,y有最大值为1250元,
当每件降价15元时,商场平均每天盈利最多;
(3)当y=1200,
1200=-2(x-15)2+1250,
解得x1=10,x2=20,
因为为了扩大销售,所以,应降价20元;
若商场每天平均需盈利1200元,每件衬衫应降价20元.
点评:本题考查了二次函数的应用以及二次函数的最值问题,表示出降价后的盈利与销售的套数,然后得到平均每天的盈利与降价之间的函数关系式是解题的关键.。

一元二次方程营销问题

一元二次方程营销问题

﹝ 20整0-理20得(x:-10x)-﹞28x(+1X9-28=)0=640 问分答X与X试 (试XX522220该析:每销销----08888公 :售 件 中中-0000如1XXXX0司价的发 发果++++x1111)为应销现 现设(66661获定售这 这00000涨0000+得为价种 种====价x0000)商 商81X=X02(8元品 品((((或00XXXX元00则每 每----1元04444)6售0000天天的元))))满2222出的 的利====足0000销 销润关售 售,XXXX系量 量====4444:pp0000( (p=件 件1件0) )0-2x
一元二次方程营销问题
2、某服饰公司将进价为每件40元的衬衣 按每件50元的价格出售时,能卖出500件; 试销售员发现该衬衫每涨价1元, 其销售量就会减少10元。 问该公司为获得8000元的利润, 每件衬衣应定价为多少元? 分析:如果设涨价X元则售出 500-10x 件 每件的利润 50-40+x=1 0+x 元
200件,现采用提高售价,减少进货量的方法增加利润,已知这
种品分已商要析知品达:这现每到如种在解涨每果商销:价天设品量设获商每0为.5利品涨商2元0的价6品0,4售1-0的每2元元价0天售,,(为x的每售价-x1销元天价0为量),的应x就件则销元定减,每量为少每件就多1件商减少0商品件少元品涨,?2的价若0盈经件利X营,-的X10-这8 元种元,商。 答(每5解每试分(问5试12每每X每解解试每5问X2例涨分5X500、 元 、06110-:件件销析该销件件件:销件该1价析00-0==304((、某,某00X31011衬 的 的 售 :公 售 的 衬 的 设 售 衬 公 0:0-++如如1-02)00服每服某.+2(550衣利利员司员利衣利商员衣司00xxX果果00x饰天饰商---=x222100)应润润发为发润应润品发应为x12设设(=XXxx02公的公店1=--定现获现定的现定获30)=))0涨涨11=1((司销司把2+1+XX0000价该得该价售该价得0x6价价x00--将量将进033)xx为衬衬为价衬为88=2XX00--进就进价008xx))元元衫衫多为衫多600==022价减价0800220==则则每每少每少x元元元元00088元为 少 为X00售售00涨涨元涨元或的的的200每每1出出-价价?价?0080商利利1件件110件6111品00元润润0元元4元4,00X00按元元元元,,XX,,,+元若元--每333的经的200件000衬营衬0001=--0衣的衣22件件0元XX这22出++种66售商00,XX品==每22要00天00达可到销每售天2获00利件6,40现元采,用售提价高应售定价为,多减少少元进?货量的方法增加利润,已知这种商品每

9一元二次方程的应用—知识讲解(提高)及其练习 含答案

9一元二次方程的应用—知识讲解(提高)及其练习 含答案

一元二次方程的应用—知识讲解(提高)【学习目标】1. 通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一般步骤;2. 通过列方程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力.【要点梳理】要点一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点诠释:列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.要点二、一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、 千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用 其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位 数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为: 100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2.2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数利息税=利息×税率本金×(1+利率×期数)=本息和本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.要点诠释:列一元二次方程解应用题是把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.这是在解决实际问题时常用到的数学思想—方程思想.【典型例题】类型一、数字问题1.(2015春•兴化市校级期末)两个连续负奇数的积是143,求这两个数.【答案与解析】解:设这两个连续奇数为x ,x+2,根据题意x (x+2)=143,解得x 1=11(不合题意舍去),x 2=﹣13,则当x=﹣13时,x+2=﹣11.答:这两个数是﹣13,﹣11.故答案为:﹣13,﹣11.【总结升华】得到两个奇数的代数式是解决本题的突破点;根据两个数的积得到等量关系是解决本题的关键.类型二、平均变化率问题2.(2016•衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【思路点拨】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【答案】A.【解析】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【总结升华】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.举一反三:【变式】有一人患了流感,经过两轮传染后共有121人患了流感,按照这样的速度,第三轮传染后,患流感的人数是( )A.1331 B.1210 C.1100 D.1000【答案】设每人每轮传染x人,则(1+x)2=121,x1=10,x2=-12舍去,第三轮传染后患流感人数为121(1+10)=1331人.类型三、利润(销售)问题3. 有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也会有一定数量的螃蟹死去,假设放养期间内螃蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活螃蟹1000kg放养在塘内,此时市场价为30元/kg.据测算此后每千克的活蟹的市场价每天可上升1元,但是,放养一天各种费用支出400元,且平均每天还有10 kg的蟹死去,假定死蟹均于当天全部售出,售价都是20元/kg,如果经销商将这批蟹出售后能获利6250元,那么他应放养多少天后再一次性售出?【答案与解析】解:设经销商放养的活蟹时间定为x天较为合适.根据题意,得20×10x+(30+x)(1000-10x)-(400x+30×1000)=6250,整理,得x2-50x+625=0,∴ x1=x2=25.答:经销商放养25天后,再一次性售出可获利6250元.【总结升华】此题牵涉到的量比较多,找等量关系列方程有一定难度.我们可以把复杂问题转化成若干个简单问题分别解决,最后用一根主线连在一起.这里放养的天数x与死蟹销售资金、x天后活蟹的价格、x天后活蟹的剩余量及x天的开支情况等问题都有关系,通过这个“x”把上述几个量联系在一起,列出了方程,使问题得以突破.举一反三:【变式】(2015•东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.据此规律计算:每件商品降价多少元时,商场日盈利可达到2100元.【答案】解:∵降价1元,可多售出2件,降价x 元,可多售出2x 件,盈利的钱数=50﹣x ,由题意得:(50﹣x )(30+2x )=2100,化简得:x 2﹣35x+300=0,解得:x 1=15,x 2=20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,答:每件商品降价20元时,商场日盈利可达到2100元.类型四、行程问题4. 一辆汽车以20m /s 的速度行驶,司机发现前方路面有情况,紧急刹车后又滑行25m 后停车.(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到15m 时约用了多少时间(精确到0.1s )?【答案与解析】解:(1)已知刹车后滑行路程为25m ,如果知道滑行的平均速度,则根据路程、速度、时间三者的关系,可求出滑行时间.为使问题简化,不妨设车速从20m/s 到0m/s 是随时间均匀变化的.这段时间内的平均车速等于最大速度与最小速度的平均值,即20010(/)2m s +=,于是刹车到停车的时间为“行驶路程÷平均车速”, 即2510 2.5()s ÷=.(2)从刹车到停车平均每秒车速减少值为“(初速度-末速度)÷车速变化时间”,即22008(/)2.5m s -=. (3)设刹车后汽车行驶到15m 用了x s ,由(2)可知,这时车速为(208)/x m s -.这段路程内的 平均车速为20(208)(/)2x m s +-,即(204)/x m s -. 由速度×时间=路程,得(204)15x x-=. 解方程,得510x ±=根据问题可知,2040x ->,即x <5,又x <2.5;所以0.9x =≈. 刹车后汽车行驶到15m 时约用了 0.9 s .【总结升华】弄清路程、速度、时间三者的关系,即可解答此题.一元二次方程的应用—巩固练习(提高)【巩固练习】一、选择题1.(2016•台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=452.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是( )A.168(1+a%)2=128 B.168(1-a%)2=128 C.168(1-2a%)2=128 D.168(1-a2%)=128 3.从一块长30cm,宽12cm的长方形薄铁片的四个角上,截去四个相同的小正方形,余下部分的面积为296cm2,则截去小正方形的边长为 ( )A.1 cm B.2 cm C.3 cm D.4 cm4.甲、乙两人分别骑车从A、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进.乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,则甲、乙两人骑车的速度分别为()千米/时.A.2,6 B.12,16 C.16,20 D.20,245.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为 ( )A.20%B.30% C.50% D.120%6.从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.则每次倒出溶液的升数为()A.5 B.6 C.8 D.10二、填空题7.某公司在2009年的盈利额为200万元,预计2011年盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元.8.有一间长20 m,宽15 m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空的宽度为________.9.一块矩形耕地大小尺寸如图1所示,要在这块地上沿东西、南北方向分别挖3条和4条水渠.如果水渠的宽相等,而且要保证余下的可耕地面积为8700m2,那么水渠应挖的宽度是米.10.有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得的两位数乘原来的两位数就得1855,则原来的两位数是.11.某省十分重视治理水土流失问题,2011年治理水土流失的面积为400 km2,为了逐年加大治理力度,计划今、明两年治理水土流失的面积都比前一年增长一个相同的百分数,到2013年年底,使这三年治理水土流失的面积达1324 km2,则该省今、明两年治理水土流失的面积平均每年增长的百分数是.12.(2014•贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=秒时,S1=2S2.三、解答题13.(2016•百色)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?14.(2015•广元)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.15.如图所示,AO=OB=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A点以2cm/s的速度向B爬行,同时另一只蚂蚁由O点以3 cm/s的速度沿OC方向爬行,是否存在这样的时刻,使两只蚂蚁与O点组成的三角形的面积为450cm2?【答案与解析】一、选择题1.【答案】A【解析】∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选A.2.【答案】B;【解析】168元降价a%后的价格为168(1-a%)元,再降价a%后为168(1-a%)(1-a%)元.根据题意可列方程168(1-a%)2=128.3.【答案】D;【解析】设截去小正方形的边长为x,则30×12-4x2=296,∴ x2=16,x1=-4(舍去),x2=4.4.【答案】C;【解析】设甲的速度为x千米/时,则乙的速度为(x+4)千米/时.根据题意,得解之,得x1=16,x2=-2.经检验:x1=16,x2=-2都是原方程的根,但x2=-2不合题意,舍去.∴当x=16时,x+4=20.5.【答案】A;【解析】设新品种花生亩产量的增长率为x.1216(),=0.2=205x x =-舍去%. 6.【答案】D ;【解析】第一次倒出的是纯酒精,而第二次倒出的就不是纯酒精了.若设每次倒出x 升,则第一次倒出纯酒精x 升,第二次倒出纯酒精(2020x -·x )升. 根据20升纯酒精减去两次倒出的纯酒精,就等于容器内剩下的纯酒精的升数.20-x -2020x -·x =5. 二、填空题7.【答案】220.【解析】方法一,设增长的百分率为x ,则2010年盈利额为200(1+x)万元,2011年的盈利额为200(1+x)2万元,依题意得200(1+x)2=242.解得x 1=10%,x 2=-2.1(舍去),∴ 200(1+x)=200(1+10%)=220.方法二,设2010年的盈利额为x 万元,则2010年增长的百分率为200100%200x -⨯, 2011年增长的百分率为242100%x x -⨯,由增长率相同可列方程200242200x x x --=, 解得x 1=220,x 2=-220(舍去)8.【答案】2.5m.【解析】设留空的宽度为x m ,则1(152)(202)20152x x --=⨯⨯,解得x 1=15(舍去),252x =. 9.【答案】1.【解析】如图2所示设水渠的宽度为xm ,即可耕土地的长为(120-4x)m ,宽为(78-3x)m .(120-4x)(78-3x)=8700,即x 2-56x+55=0,解得x 1=1,x 2=55.当x =55时,3×55=165>78,(不合题意,舍去).∴ x =1.答:水渠应挖1m 宽.10.【答案】35或53.【解析】设原两位数的十位数字为x ,则个位数字是(8-x),由题意得[10x+(8-x)]·[10(8-x)+x]=1855.化简得x 2-8x+15=0,解之得:x 1=3,x 2=5.经检验,x 1=3,x 2=5都符合题意.答:原两位数是35或53.11.【答案】10%.【解析】设该省今、明两年治理水土流失的面积每年增长的百分数为x,依题意得:400+400(1+x)+400(1+x)2=1324.即100x2+300x-31=0.解得x1=0.1=10%,x2=-3.1(不合题意,舍去).答:今、明两年治理水土流失的面积每年增长的百分数为10%.12.【答案】6.【解析】∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.三、解答题13.【答案与解析】(1)设这地面矩形的长是xm,则依题意得:x(20﹣x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00所需的费用较少.14. 【答案与解析】解:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm,由题意,得()2+()2=58,解得:x1=12,x2=28,当x=12时,较长的为40﹣12=28cm,当x=28时,较长的为40﹣28=12<28(舍去).答:李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确.理由如下:设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm,由题意,得()2+()2=48,变形为:m 2﹣40m+416=0,∵△=(﹣40)2﹣4×416=﹣64<0,∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48cm 2.15. 【答案与解析】(1)当蚂蚁在AO 段时,设离开A 点t s 后两只蚂蚁与O 点组成的三角形的面积是450cm 2. 根据题意,得(502)34502t t -=. 整理得:2251500t t -+=,解得t 1=10,t 2=15.(2)当蚂蚁爬完AO 这段距离用了50252s =后,开始由O 向B 爬行,设从O 点开始x s 后组成的 三角形的面积是450 cm 2,根据题意,得:23(25)4502x x +=, 整理得x 2+25x-150=0,解得x 1=5,x 2=-30(舍去).当x =5时,x+25=30.这时蚂蚁已由A 点爬了30s .答:分别在10s ,15s ,30s 时,两只蚂蚁与O 点组成的三角形的面积是450cm 2.。

一元二次方程的应用之销售问题

一元二次方程的应用之销售问题
经检验,x1=1,x2=2都是方程的解,且符合题意. 答:要使每盆的盈利达到10元,每盆应植入4株或5株.
2、某超市销售一种饮料,平均每天可售出100箱,每箱 利润120元。为了扩大销售,增加利润,超市准备适当降 价。据测算,若每箱降价1元,每天可多售出2箱。如果 要使每天销售饮料获利14000元,问每箱应降价多少元?
分析: 本题涉及的主要数量有每盆的花苗株数,平均单 株盈利,每盆花苗的盈利. 主要数量关系有: 平均单株盈利×株数=每盆盈利; 平均单株盈利=3-0.5×每盆增加的株数.
例1、某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与 每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元; 以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元. 要使每盆的盈利达到10元,每盆应该植多少株?
6.一超市销售某种品牌的牛奶, 进价为每盒1.5元,售价为每盒 2.2元时,每天可售5000盒,经过 调查发现,若每盒降价0.1元,则 可多卖2000盒。要使每天盈利 4500元,问该超市如何定价?
某公司投资新建了一商场,共有商铺30 间.据预测,当每间的年租金定为10万 元时,可全部租出.每间的年租金每增 加5000元,少租出商铺1间.该公司要 为租出的商铺每间每年交各种费用1万元, 未租出的商铺每间每年交各种费用5000 元.(1)当每间商铺的年租金定为13万元 时,能租出多少间?
方法二
解:设定价为(40+x)元,则应进(600-10x) 个 根据题意列出方程:
(40+x-30) (600-10x) =10000 解这个方程得
x1=10 x2=40 当x=10时, 40+x=50 600-10x=500 当x=40时, 40+x=80 600-10x=200 答:当定价为50元,则应进500个,当定价为80元, 则应进200个

专题21.19 一元二次方程的应用—营销问题(基础检测)(解析版)

专题21.19 一元二次方程的应用—营销问题(基础检测)(解析版)

专题21.19 一元二次方程的应用—营销问题(基础检测)一、单选题1.某商场对一种商品作调价,按原价的8折销售的售价为88元,则商品原价是( ) A .100元B .110元C .70.4元D .120元【答案】B【分析】根据原价和售价的关系列方程计算即可.【详解】解:设原价为x ,由题意有: 0.888x =解的110x =故选:B【点睛】此题考查的是一元一次方程的应用,关键是确定相等关系列方程求解.2.某电子产品经过连续两次降价,售价由4900元降到了3600元.设平均每月降价的百分率为x ,根据题意列出的方程是( )A .()2490013600x +=B .()2490013600x -= C .()24900123600x -=D .()2360014900x -= 【答案】B【分析】可根据:原售价×(1-降价的百分率)2=降低后的售价得出两次降价后的价格,然后即可列出方程.【详解】设平均每月降价的百分率为x ,则依题意得:()2490013600x -=,故选B.【点睛】本题考查列一元二次方程,解题的关键读懂题意,掌握原售价×(1-降价的百分率)2=降低后的售价.3.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨l 元时,每天少售出10件.若商场想每天获得3750元利润,设每件玩具涨元,可列方程为:.对所列方程中出现的代数式,下列说法错误的是( )A .表示涨价后玩具的单价 B .表示涨价后少售出玩具的数量 C .表示涨价后销售玩具的数量D .表示涨价后的每件玩具的单价【答案】D 【分析】由涨价x 元,分别表示出销量,涨价后的单价,涨价后的每件玩具的利润,判断即可.【详解】解:设涨价x 元,根据题意可得:A 、∵(30+x )表示涨价后玩具的单价,∴A 选项正确;B 、∵10x 表示涨价后少售出玩具的数量,∴B 选项正确;C 、∵(300−10x )表示涨价后销售玩具的数量,∴C 选项正确;D 、∵(30+x−20)表示涨价后的每件玩具的利润,故D 选项错误,故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程的知识,解题的关键是能够分别表示出销量,涨价后的单价,涨价后的每件玩具的利润.4.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). A .20%;B .40%;C .18%;D .36%. 【答案】A【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20%故选A .【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.5.某市楼盘准备以每平方米12000元的均价对外销售,由于近期国务院有关房地产的新政策出台后购房者持币观望。

用一元二次方程解营销问题

用一元二次方程解营销问题

05
结论
一元二次方程在营销问题中的优势
精确度高
一元二次方程能够精确地描述营 销问题中的数量关系,帮助企业
制定更加精准的营销策略。
适用范围广
一元二次方程可以应用于多种营销 问题,如价格制定、市场份额预测 等,为企业提供全面的解决方案。
可视化效果好
通过一元二次方程的解,企业可以 直观地了解营销问题的变化趋势, 更好地把握市场动态。
更加科学和全面的营销策略。
感谢您的观看
THANKS
总结词
产品生命周期与销售量之间存在曲线关系,即产品在引入期和成长期销售量逐渐增加,在成熟期和衰退期销售量 逐渐下降。
详细描述
产品生命周期是指产品从进入市场到退出市场的全过程。在引入期和成长期,企业需要加大宣传和推广力度,以 提高产品知名度和吸引消费者。随着产品逐渐进入成熟期和衰退期,企业需要不断创新和升级产品,以保持竞争 优势和维持销售量。
用一元二次方程解营销问
目录
• 引言 • 一元二次方程的基本概念 • 营销问题的一元二次方程建模 • 营销问题的具体案例分析 • 结论
01
引言
目的和背景
目的
探讨如何运用一元二次方程解决营销问题,提高营销策略的有效性。
背景
营销策略在商业活动中具有重要地位,而一元二次方程作为一种数学工具,具 有解决实际问题的能力,将两者结合可以为营销策略提供新的思路和方法。
01
02
03
04
定价策略
通过一元二次方程分析产品价 格与市场需求、销售额之间的 关系,制定最优定价策略。
市场分析
利用一元二次方程分析市场供 需关系,预测市场趋势,为制
定营销策略提供依据。
促销活动

初三数学_一元二次方程的应用营销问题共42页文档

初三数学_一元二次方程的应用营销问题共42页文档
初三数学_一元二次方程的应用营销


26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
42

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
问题

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

一元二次方程营销类问题

一元二次方程营销类问题

一元二次方程应用——营销类问题
列方程解应用题:
1.某种服装,平均每天可以销售20件,每件赢利44元,在每件降价幅度不超过30元的情况下,若每件降价1元,则每天可多售5件,如果每天要赢利1900元,每件应降价多少元?
2.某果园原计划种100棵桃树.一棵桃树平均结300个桃子,现准备多种一些桃树以提高产量.实验发现,每多种1棵桃树,每棵桃树的产量就会减少2个,但多种桃树不能超过25棵.如果要使产量增加4%,那么应多种多少棵桃树?
3.某商场服装部销售一种服装,每件进价30元,若售价定价70元,平均每天可售出30件.为了尽可能给顾客的到实惠,商场决定降价销售,经调查,每件降价3元时,平均每天可多卖出6件.
(1)若商场要求该服装部每天盈利1400元,问每件售价为多少元?
(2)若商场要求该服装部每天盈利1600元,问这个要求能否实现?请说说你的理由.
4.将进价为90元/个的某种商品按100元/个出售时,能卖出500个,已知这种商品每个每涨价1元,其销售数量就减少10个,若想使利润达到9000元,售价应是多少?设售价为x元/个,则可列方程()
A.(x﹣100)(500﹣10x)=9000B.(x﹣90)(500﹣10x)=9000
C.(x﹣100)[500﹣10(x﹣100)]=9000D.(x﹣90)[500﹣10(x﹣100)]=9000
第1页(共1页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题21.20 一元二次方程的应用—营销问题(拓展提高)一、单选题1.疫情期间,育才中学为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元.若学校购买洗手液共花费1200元,则购买洗手液的瓶数是( ) A .200 B .150C .150或200D .200或300【答案】A【分析】设购买洗手液x 瓶,列出一元二次方程计算即可; 【详解】设购买洗手液x 瓶, ∵8100800⨯=<1200, ∴x >100, ∴10080.2120010x x -⎛⎫-⨯= ⎪⎝⎭, 解得:1200x =,2300x =, ∵10080.2510x --⨯≥,∴250x ≤, ∴200x =; 故答案选A .【点睛】本题主要考查了一元二次方程的应用,准确计算是解题的关键.2.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程正确的是( ) A .56(1﹣x )2=31.5 B .56(1﹣x )÷2=31.5 C .56(1+x )2=31.5 D .31.5(1﹣x )2=56【答案】A【分析】设降价的百分率为x ,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是56(1﹣x ),第二次后的价格是56(1﹣x )(1-x ),据此即可列方程求解. 【详解】解:设降价的百分率为x ,根据题意得: 56(1﹣x )2=31.5.故选:A .【点睛】本题考查方程的应用,在正解理解题意的基础上设定合适的未知数列出方程是解题关键 . 3.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元? 这道应用题如果设每件玩具应涨x 元,则下列说法错误..的是( ) A .涨价后每件玩具的售价是(30)x +元;B .涨价后每天少售出玩具的数量是10x 件C .涨价后每天销售玩具的数量是(30010)x -件D .可列方程为:(30)(30010)3750x x +-= 【答案】D【解析】A.涨价后每件玩具的售价是()30x +元,正确;B.涨价后每天少售出玩具的数量是10x 件,正确;C.涨价后每天销售玩具的数量是()30010x -件,正确;D.可列方程为:()()30300103750x x +-=,错误,应为(30+x-20)(300-10x)=3750,故选D.4.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.若生产的产品一天的总利润为1120元,且同一天所生产的产品为同一档次,则该产品的质量档次是( ) A .6 B .8C .10D .12【答案】A【分析】设该产品的质量档次是x 档,则每天的产量为[95﹣5(x ﹣1)]件,每件的利润是[6+2(x ﹣1)]元,根据总利润=单件利润×销售数量,即可得出关于x 的一元二次方程,解之取其小于等于10的值即可得出结论.【详解】设该产品的质量档次是x 档,则每天的产量为[95﹣5(x ﹣1)]件,每件的利润是[6+2(x ﹣1)]元, 根据题意得:[6+2(x ﹣1)][95﹣5(x ﹣1)]=1120, 整理得:x 2﹣18x+72=0, 解得:x 1=6,x 2=12(舍去). 故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 5.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用5元.为尽快回笼资金,该电商计划开展降价促销活动.通过市场调研发现,该时装售价每降价1元,每天销量增加4件.若该电商每天扣除平台推广费之后的利润要达到4500元,则适合的售价应定于( ) A .70元 B .80元C .70元或90元D .90元【答案】A【分析】设降价x 元后利润达到4500元.则每天可售出(204)x +件,每件盈利(110405)x ---元.再根据相等关系:每天的获利=每天售出的件数⨯每件的盈利;列方程求解即可. 【详解】解:设降价x 元后利润达到4500元, 由题意得:(110405)(204)4500x x ---+= 解得:120x =,240x =, ∵为尽快回笼资金 ∴40x =,∴售价应定为1104070-=元 故选:A【点睛】此题考查了一元二次方程的应用,找到题目的相等关系:每天的获利=每天售出的件数⨯每件的盈利是解答本题的关键.6.西菜市场某商户销售冰鲜海产品,平均每天可售出 20 件,每件盈利 40 元,期间发现销售单价每降低 1 元,平均每天可多售出 2 件,在每件盈利不少于 25 元的前提下,要取得每天利润为 1200 元,每件商品降价( ) A .10元 B .20元C .10元或20元D .15元【答案】A【分析】设每件商品应降价为x 元,则平均每天可多售出2x 件,根据总利润=单个利润×数量,单个利润=售价-成本,列出方程,求解x.【详解】解:设每件商品应降价为x 元,则平均每天可售出(20+2x)件,每件的利润为(40-x)元, 由题意知:(20+2x)(40-x)=1200 解得:x 1=10,x 2=25, ∵ 要求每件盈利不少于25,∴ 当x 1=10时,盈利为40-10=30>25,符合题意, 当x 2=25时,盈利为40-25=15<25,不符合题意,故舍去.故答案选A.【点睛】本题考查了一元二次方程在实际中的应用,要抓住关键公式:总利润=单个利润×数量,本题属于中档题,熟练掌握公式是解题关键.二、填空题7.某医药超市平均每天卖出口罩100个,每个赢利2元,为了尽快减少库存,该超市准备采取适当的降价措施.调查发现,如果每个口罩售价减少0.5元,那么平均每天可多售出80个.若该超市想平均每天赢利270元,每个口罩应降价多少元?若设每个口罩降价x 元,可列方程为_____________________.(不需要化简)【答案】(2)100802700.5x x ⎛⎫-+⨯= ⎪⎝⎭【分析】设每个口罩降价x 元,则每个口罩盈利(2)x -元,平均每天的销售量为100800.5x ⎛⎫+⨯⎪⎝⎭个,根据该超市每天销售口罩的利润=每个口罩的盈利×平均每天的销售量,即可得出关于x 的一元二次方程,此题得解. 【详解】解:设每个口罩降价x 元,则每个口罩盈利(2)x -元,平均每天的销售量为100800.5x ⎛⎫+⨯ ⎪⎝⎭个,依题意得:(2)100802700.5x x ⎛⎫-+⨯= ⎪⎝⎭.故答案为:(2)100802700.5x x ⎛⎫-+⨯= ⎪⎝⎭. 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 8.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,若每降价1元,每星期可多卖出20件,现要尽量优惠顾客的前提下,同时每星期获利6080元,每件商品应降价______元. 【答案】4【分析】设每件商品降价x 元,则每件商品的利润为(60-40-x )元,每星期可卖出(300+20x )件,根据每星期获得的利润=销售每件商品的利润×每周的销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】解:设每件商品降价x元,则每件商品的利润为(60-40-x)元,每星期可卖出(300+20x)件,依题意,得:(60-40-x)(300+20x)=6080,整理,得:x2-5x+4=0,解得:x1=1,x2=4,又∵要尽量优惠顾客,∴x=4.故答案为:4.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价_________元.【答案】4【分析】设降价为x,根据降价一元,多售5件,得出销售件数增加到(20+5x)件;接下来根据“总盈利=每件盈利×销售件数”列出方程,解方程即可得到答案.【详解】设每件应降价x元,则每件可盈利(44-x)元,销售件数增加到(20+5x)件,则(44-x)(20+5x)=1600即x2-40x+144=0,解得x1=4,x2=36(舍去),∴应降价4元.故答案为4.【点睛】此题考查了一元二次方程的应用-销售问题,找出题中的等量关系是解本题的关键.解答本题时还应明确:利润=售价-进价,总利润=单个利润×数量.10.某农产品公司以64000元的成本收购了某种农产品80吨,目前可以1200元/吨的价格直接售出.如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.那么要获利122000元且尽早卖出,需要将这批农产品储藏____星期.【答案】15【分析】设储藏x星期出售这批农产品可获利122000元,则需要支付费用1600x元,损失2x吨,价格为(1200+200x)元,根据获利122000元,列方程求解.【详解】设储藏x星期出售这批农产品可获利122000元,由题意得(1200+200x)×(80−2x)−1600x−64000=122000,解得:x 1=x 2=15.即储藏15星期出售这批农产品可获利122000元.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.11.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为实现平均每月10000元的销售利润,则这种台灯的售价应定为________元. 【答案】50【分析】设这种台灯应涨价x 元,那么就少卖出10x 个,根据利润=每个台灯的利润×销售量,可列方程求解.【详解】设这种台灯应涨价x 元, 依题意得,()()106001010000x x +-=,解得:110x =,240x =(不合题意,舍去) 40+10=50(元)答:这种台灯售价定为50元. 故答案是:50元12.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套_______元. 【答案】50元或60元【分析】设第二个月的销售定价为x 元,则销售量为[180-10(x-52)]元,根据两个月的销售利润为4160元建立方程求出其解即可.【详解】设第二个月的销售定价为x 元,则销售量为[180−10(x−52)]元,由题意,得 180×(52−40)+(x−40)[180−10(x−52)]=4160, 解得:x 1=50,x 2=60. 故答案为:50元或60.【点睛】此题考查一元二次方程的应用,解题关键在于理解题意找到等量关系列出方程. 13.有下列四个结论: ①a÷m+a÷n=a÷(m+n);② 某商品单价为a 元.甲商店连续降价两次,每次都降10%.乙商店直接降20%.顾客选择甲或乙商店购买同样数量的此商品时,获得的优惠是相同的; ③若222450x y x y ++-+=,则x y 的值为12; ④关于x 分式方程211x ax -=-的解为正数,则a >1. 请在正确结论的题号后的空格里填“√” ,在错误结论的题号后空格里填“×”: ①______; ②______; ③______; ④______ 【答案】× × √ × 【解析】①()a m n a a a m a n m n mn+÷+÷=+= 故错误; ②由题意得甲商店优惠:()2110%a a -- 元,乙商店优惠为:20%a 元,故错误; ③222450x y x y ++-+=,()()222221440120x x y y x y +++-+=++-=解得:1,2x y =-=,∴1122xy -==,故正确; ④由题意得:21x a x -=-,解得:1x a =-, ∵x 为正数 ,∴10,1a a ->>, 又∵1x ≠,∴2a ≠即a 的范围为:1a >且2a ≠,故错误.【点睛】本题属于综合题,要熟记多项式的运算规则,因式分解的方法以及一元二次方程的应用. 14.近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A 、B 两种伴手礼礼盒,A 礼盒装有2个福字饼,2个禄字饼:B 礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A 、B 两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A 种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A 、B 两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为_____元. 【答案】5740【分析】根据题意可得A 礼盒的成本价格,进而可求出1个福字饼和1个禄字饼的成本和为40元,再设一个福字饼成本x 元,一个禄字饼成本(40﹣x )元,A 种礼盒m 袋,B 种礼盒n 袋,列出方程得到xn =20n+250,最后求出每日卖出礼盒的实际总成本即可.【详解】解:设A 礼盒成本价格a 元,根据题意,得 96﹣a =20%a , 解得a =80,∵A 礼盒装有2个福字饼,2个禄字饼, ∴2个福字饼和2个禄字饼的成本价格为80元, ∴1个福字饼和1个禄字饼的成本价格为40元,设个福字饼成本价x 元,1个禄字饼成本价(40﹣x )元,则1个寿字饼成本价为13(40﹣x )元, A 种礼盒m 袋,B 种礼盒n 袋, 根据题意,得 m+n =7880m+n[x+2(40﹣x )+3×13(40﹣x )]+500=80m+n[(40﹣x+2x+3×13(40﹣x )] ∴xn =20n+250设A 、B 两种礼盒实际成本为w 元,则有 w =80m+xn+2n (40﹣x )+n×133(40﹣x ) =80(m+n )﹣500 =80×78﹣500 =5740. 故答案为:5740.【点睛】本题考查了一元二次方程的应用,解决本题的关键是求出A 礼盒的成本.三、解答题15.夏季是葡萄上市的季节,某超市7月购进巨玫瑰和金手指两个品种的葡萄进行销售.已知巨玫瑰葡萄的售价为40元/千克,金手指葡萄的售价为50元/千克,统计发现,第一周共卖岀两个品种的葡萄800千克. (1)若卖出巨玫瑰葡萄的总销售额不低于金手指葡萄的45,求至少卖岀巨玫瑰葡萄多少千克; (2)由于7月份第二周葡萄大量上市,该店决定对两ˆ品种的葡萄进行降价销售.巨玫瑰葡萄降价1%2a ,金手指葡萄降价2%a ,结果巨玫瑰葡萄的销量在(1)中的最小销量下增加4%a ,而金手指葡萄的销量在(1)中最高销量基础上增加了8%5a ,最终7月份第二周的总销售额为36000元,求a 的值. 【答案】(1)至少卖出巨玫瑰葡萄400千克;(2)a 的值为50.【分析】(1)设卖出巨玫瑰葡萄x 千克,则金手指葡萄卖出(800-x )千克,由题意易得()440508005x x ≥⨯-,然后求解即可; (2)由题意易得()()1840140014501240013600025a a a a ⎛⎫⎛⎫-⨯++-⨯+= ⎪ ⎪⎝⎭⎝⎭%%%%,然后求解即可. 【详解】解:(1)设卖出巨玫瑰葡萄x 千克,则金手指葡萄卖出(800-x )千克,由题意得:()440508005x x ≥⨯-,解得:400x ≥,答:至少卖出巨玫瑰葡萄400千克. (2)由题意得:()()1840140014501240013600025a a a a ⎛⎫⎛⎫-⨯++-⨯+= ⎪ ⎪⎝⎭⎝⎭%%%%, 令a t =%,化简得:220t t -=, 解得:1250,0t t ==%(舍去), ∴50a =.【点睛】本题主要考查一元一次不等式及一元二次方程的应用,熟练掌握一元一次不等式及一元二次方程的应用是解题的关键.16.疫情期间,某企业每日需向疫情严重的地区捐赠20万只口罩.该企业原口罩日产量为40万只,经政府出资两次加大设备投入后,日产量提升为90万只.每日用于销售的口罩当日全部售出,且每只口罩的成本和销售单价始终不变.该企业原来每日亏损4万元,加大设备投入后,每日盈利11万元. (1)求两次口罩日产量的平均增长率; (2)求每只口罩的成本和单价;(3)该企业将每天生产的口罩达成90包(每包1万只),现从捐赠和自行销售的口罩中分别抽取若干包以成本价支持本地防疫工作,企业规定口罩捐赠量高于自行销售量的13.若企业每日仍盈利4万元,则从捐赠和自行销售的口罩中各抽取多少包?【答案】(1)50%;(2)成本为0.5元,单价为0.8元;(3)捐赠口罩为23包,自行销售为67包 【分析】(1)设求两次口罩日产量的平均增长率为x ,根据题意列出方程,解之即可; (2)设每只口罩的成本为m 元,销售单价为n 元,根据题意列出方程组,解之即可;(3)设捐赠口罩为a 包,自行销售为()90a -包,列出不等式组,求出a 的范围,再根据每日仍盈利4万元,得到a 值,可得结果.【详解】解:(1)设求两次口罩日产量的平均增长率为x , 由题意可列式得240(1)90x +=, 解得1150%2x ==,252x =-(舍去),∴两次口罩日产量的平均增长率为50%.(2)设每只口罩的成本为m 元,销售单价为n 元, 由题意可列式得20000040000040000700000900000110000n m n m -=-⎧⎨-=⎩ ,解得0.50.8m n =⎧⎨=⎩,∴每只口罩的成本为0.5元,销售单价为0.8元. (3)设捐赠口罩为a 包,自行销售为()90a -包,由题意可列式得()19030900a a a a ⎧>-⎪⎪>⎨⎪->⎪⎩,解得22.590a <<,由(2)得,每只口罩成本0.5元,销售单价为0.8元, 则18000(90)900000400002a --⨯=, 解得552a =, ∵22.590a <<,∴23a =,∴9067a -=,∴捐赠口罩为23包,自行销售为67包.【点睛】本题考查了一元二次方程的应用、二元一次方程的应用以及一元一次不等式组的应用,解题的关键是找准等量关系,正确列出方程(组)和不等式组.17.某商场经营一种新型台灯,进价为每盏300元.市场调研表明:当销售单价定为400元时,平均每月能销售300盏;而当销售单价每下降1元时,平均每月的销售量就增加10盏.(1)当销售单价为多少时,该型台灯的销售利润平均每月能达到40000元?(2)临近春节,为了回馈广大顾客,商场部门经理决定在一月份开展降价促销活动,估计分析:若每盏台灯的销售单价在(1)的最高销售单价基础上降价m %,则可多售出2m %.要想使一月份的销售额达到209950元,并且保证不亏损,求m 的值.【答案】(1)当销售单价为350元或380元时,该型台灯的销售利润平均每月能达到40000元;(2)m 的值为15【分析】(1)当降价为x 元时,该型台灯的销售利润平均每月能达到40000元,利用总利润等于每盏灯的利润乘以销售量列方程得(10x +300)(400-300-x )=40000,然后解方程即可;(2)当x =380时,销售量为500盏,则利用一月份的销售额达为209950元列方程得380(1-m %)×500(1+2m %)=209950,然后解关于m %的一元二次方程即可得到m 的值.【详解】解:(1)当降价为x 元时,该型台灯的销售利润平均每月能达到40000元,根据题意得(10x +300)(400-300-x )=40000,解得x 1=50,x 2=20,所以400-50=350(元),400-20=380(元).答:当销售单价为350或380元时,该型台灯的销售利润平均每月能达到40000元;(2)当售价380时,此时销售量为500盏.根据题意得380(1-m %)×500(1+2m %)=209950, 解得m =15或m =35,当m =15时,销售单价为323元;当m =35时,销售单价为247元,将亏损,故舍去.答:m 的值为15.【点睛】本题考查了一元二次方程的应用:列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.解决本题的关键是理解总利润等于每盏灯的利润乘以销售量.18.为培育和践行社会主义核心价值观,弘扬传统美德,学校决定购进相同数量的名著《平凡的世界》(简称A )和《恰同学少年》(简称B ),其中A 的标价比B 的标价多25元,为此,学校划拨了1800元用于购买A ,划拨了800元用于购买B .(1)求A 、B 的标价各多少元?(2)阳光书店为支持学校的读书活动,决定将A 、B 两本名著的标价都降低m %后卖给学校,这样,A 的数量不变,B 还可多买2m 本,且总购书款不变,求m 的值.【答案】(1)45元,20元;(2)35.【分析】(1)设B 的标价为x 元,则A 的标价为(x +25)元,列方程180080025x x=+,解方程即可; (2)将A 、B 两本名著的新标价计算出来,根据数量×单价+数量×单价 =2600,列方程求解即可.【详解】解:(1)设B 的标价为x 元,则A 的标价为(x +25)元,列方程180080025x x =+, 解方程,得x =20,经检验,x =20是原方程的根,所以x +25=45,答:A 的标价是45元,B 的标价是20元;(2)将A 、B 两本名著的标价都降低m %后,A 的标价为45(1- m %)元,B 的标价为20(1- m %)元,原购买数量为A :180045=40(本),变化后的购买数量:A 种40本,B 种(40+2m )本, 根据题意,得40×45(1- m %)+(40+2m )×20(1- m %)=2600, 2350,m m ∴-=解得:1235,0,m m ==经检验:20m =不合题意舍去,取135,m =答:m 的值为35.【点睛】本题考查了分式方程的应用,熟记数量×单价=费用是解题的关键,注意分式方程必须要验根. 19.某医疗器械生产厂生产某种医疗器械,80条生产线齐开,每条生产线每个月可生产8台该种医疗器械.该厂经过调研发现:当生产线适当减少后(减少的条数在总条数的20%以内时),每减少10条生产线,每条生产线每个月反而会多生产4台.若该厂需要每个月的产能达到840台,那么应减少几条生产线?【答案】10.【分析】先设减少x 台生产线,求出x 的取值范围,接下来通过相等关系列出方程求解即可.【详解】解:设减少x 台生产线∵80×20%=16∴016x ≤< ∴()488084010x x ⎛⎫+-= ⎪⎝⎭,即 20.4242000x x -+-=解得:110x =,250x =(舍去),所以应减少10条生产线.【点睛】本题主要考查了一元二次方程的应用,解决本题的关键是读懂题意,找到相等关系,列出方程,同时要注意自变量的取值范围即可.20.新冠疫情期间,邻居小王在淘宝上销售某类型口罩,每袋进价为20元,经市场调研,销售定价为每袋25元时,每天可售出250袋;销售单价每提高1元,每天销售量将减少10袋,已知平台要求该类型口罩每天销售量不得少于120袋.(1)直接写出:①每天的销售量y (袋)与销售单价x (元)之间的函数关系式;②每天的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)小王希望每天获利1760元,则销售单价应定为多少元?(3)若每袋口罩的利润不低于15元,则小王每天能否获得2000元的总利润,若能,求出销售定价;否则,说明理由.【答案】(1)①10500y x =-+;②21070010000w x x =-+-;(2)28元;(3)在每袋口罩销售利润不低于15元的情况下,不能获得2000元的总利润;理由见解析.【分析】(1)①根据销售定价为每袋25元时,每天可售出250袋;销售单价每提高1元,列代数式,即可完成求解;②结合(1)①的结论,根据每袋进价为20元列代数式,即可得到答案;(2)根据平台要求该类型口罩每天销售量不得少于120袋,通过求解一元一次不等式,得到x 的取值范围;再结合(1)②结论,通过求解一元二次方程,即可得到答案;(3)结合每袋口罩的利润不低于15元合(2)结论,得到x 的取值范围;通过求解一元二次方程,比较一元二次方程的解和x 的取值范围,即可作出判断.【详解】(1)①根据销售定价为每袋25元时,每天可售出250袋;销售单价每提高1元,得:()250102510500y x x =--=-+;②根据题意得:()()220105001070010000w x x x x =--+=-+-;(2)∵10500y x =-+120≥∴38x ≤∵21070010000x x -+-1760=解得: 128x =,242x = (舍去)∴要想获利1760元,销售单价应定为28元;(3)∵每袋口罩的利润不低于15元∴2015x -≥∴35x ≥由(2)知38x ≤∴3538x ≤≤当210700100002000w x x =-+-=时,解得:30x =或4030x =或40,与3538x ≤≤矛盾∴在每袋口罩销售利润不低于15元的情况下,不能获得2000元的总利润.【点睛】本题考查了代数式、一元一次不等式、一元二次方程的知识;解题的关键是熟练掌握代数式、一元一次不等式、一元二次方程的性质,从而完成求解.。

相关文档
最新文档