风力发电机组变桨系统分析

合集下载

金风1.5机组变桨系统分析

金风1.5机组变桨系统分析

变桨系统主要元件故障原因及分析——AC2和NG5故障原因及分析******专业:电力系统自动化入职时间:2010-7-1部门:技术服务中心目录目录 (1)摘要 (2)一、变桨系统的作用 (2)(一)功率调节 (2)(二)气动刹车 (2)二、主要元器件的介绍 (3)(一)变桨逆变器AC2 (3)(二)充电器NG5 (3)(三)其他元器件 (5)三、控制原理 (6)(一)变桨原理框图 (6)(二)变桨原理介绍 (6)四、典型故障分析 (7)(一)变桨逆变器OK信号丢失故障分析 (7)1、变桨逆变器OK信号形成及检测过程 (7)2、变桨逆变器OK信号丢失原因 (8)(二)充电器NG5损坏原因分析及整改建议 (9)1、NG5充电器损坏原因 (10)2、整改意见 (11)五、结束语 (15)参考文献: (16)摘要本文通过对变桨系统的重要元器件的原理和变桨控制原理进行了简单的介绍,总结了充电器NG5和逆变器AC2发生故障的原因和解决方法,并且提出本人在现场进行维护工作时发现的一些缺陷和整改意见。

关键词:变桨系统逆变器AC2 充电器NG5 浪涌保护一、变桨系统的作用(一)功率调节变桨距控制是最常见的控制风力发电机组吸收风能的方法,变桨目的是通过控制桨距角,调节叶轮吸收风能的功率。

在额定风速以下时,风力发电机组应该尽可能的捕捉较多的风能,桨距角设定值设定在能够吸收最大功率的最优值,所以这时机组运行没有必要改变将距角,一般桨距角设定为零度附近,以便让叶轮尽可能多的吸收风能,此时空气动力载荷通常比在额定风速之上时小。

额定风速以上阶段变速控制器和变桨控制器共同作用,通过变速控制器即控制发电机的扭矩使其恒定,从而恒定功率;通过变桨调节发电机转速,使其始终跟踪发电机转速的设定值。

(二)气动刹车金风1500kW风力发电机组变桨系统是目前该系统唯一的停车机制,通过将桨叶迅速顺至停机位置来完成气动刹车。

主控的所有停机指令,包括普通停机,快速停机和紧急停机,最后都是通过总线发给变桨系统来执行。

风力发电机组变桨距控制系统的研究

风力发电机组变桨距控制系统的研究

风力发电机组变桨距控制系统的研究风力发电机组变桨距控制系统的研究近年来,随着环境问题的加剧和清洁能源的重要性逐渐凸显,风力发电作为一种潜在的可再生能源广泛应用。

风力发电机组是将风能转化为电能的关键设备,而变桨距控制系统则是提高风力发电效率的重要技术手段之一。

本文将对风力发电机组变桨距控制系统的研究进行探讨,从控制系统的结构、控制策略以及实际运行效果等方面进行分析。

1. 控制系统的结构风力发电机组的变桨距控制系统主要由传感器、执行器、控制器和信号传输部分组成。

传感器用于感知风力、转速以及叶片位置等信息,将这些信息传递给控制器。

控制器根据传感器获取的信息,通过控制策略对执行器发出信号,调节叶片角度,从而实现对风力发电机组的变桨距控制。

2. 控制策略目前,常用的控制策略主要有定角度控制和最大功率控制两种。

定角度控制是通过固定叶片角度来控制风力发电机组的输出功率,通常适用于恒定风速下的风机运行。

而最大功率控制则是根据风速大小实时调整叶片角度,以实现风力发电机组在不同风速下的最佳输出功率。

最大功率控制策略可以提高风力发电机组的效率,适应不同风速环境,并降低对外部条件的敏感性。

3. 实际运行效果根据实际应用情况和研究成果分析,风力发电机组的变桨距控制系统在提高发电效率、保护设备安全方面取得了显著效果。

通过使用最大功率控制策略,风力发电机组可以根据风速变化实时调整叶片角度,充分利用风能,并在恶劣天气条件下及时响应,减轻设备负荷。

同时,变桨距控制系统的应用也大大降低了由于风电机组运行时桨叶受损引起的事故风险,增加了设备的可靠性和安全性。

4. 研究展望尽管风力发电机组变桨距控制系统已取得一定的研究进展,但仍存在一些挑战和待解决的问题。

首先,尽管最大功率控制策略可以提高发电效率,但在不同风速区间的切换问题仍需要进一步优化。

其次,传感器的稳定性和可靠性也是需要关注的焦点,特别是在恶劣环境下的应用。

另外,随着风力发电技术的发展,新型的控制策略和技术工具也需要不断研发和应用,以进一步提高风力发电机组的性能和可靠性。

风力发电变桨系统浅析

风力发电变桨系统浅析

风力发电变桨系统浅析摘要:变速变桨距风力发电机组目前已成为大型风力发电机组研发和应用的主流机型。

变桨距机构就是在额定风速附近,依据风速的变化随时调节桨距角,控制吸收的机械能,一方面保证获取最大的能量(与额定功率对应),同时减少风力对风力机的冲击。

在并网过程中,变桨距控制还可实现快速无冲击并网。

关键词:变桨、限位开关、羽状位置、变频一、变桨系统概述变桨控制系统实现风力发电机组的变桨控制,在额定功率以上通过控制叶片桨距角使输出功率保持在额定状态。

变桨控制柜主电路采用交流--直流--交流回路,由逆变器为变桨电机供电,变桨电机采用交流异步电机,变桨速率由变桨电机转速调节。

二、机械和电气部分1、变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。

从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。

如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。

2、变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。

通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。

在90度迎角时是叶片的工作位置。

在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。

一般变桨角度范围为0~86度。

采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。

变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。

3、变桨控制系统有四个主要任务:(1)通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。

(2)当安全链被打开时,使用转子作为空气动力制动装置把叶片转回到羽状位置(安全运行)。

(3)调整叶片角以规定的最低风速从风中获得适当的电力。

(4)通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。

变桨系统分析范文

变桨系统分析范文

变桨系统分析范文变桨系统是风力发电机组中的一个重要组成部分,其主要功能是控制风力发电机的转动速度以及调整叶片的角度,以最大限度地捕捉风能并转化为电能。

变桨系统的设计和分析对于提高风力发电机组的性能和效率至关重要。

首先,变桨系统的设计要考虑到风力的不稳定性以及不同桨叶之间的协调。

由于风速和风向会不断变化,变桨系统需要能够实时监测风速和风向,并根据这些信息来调整叶片角度。

这样可以确保叶片始终与风的方向保持一致,使得风能能够最大化地被转化为电能。

其次,变桨系统的设计还需要考虑到风力发电机组的安全性和稳定性。

在风力风速超过预设范围或者发生异常情况时,变桨系统需要能够快速响应并采取相应措施,例如自动停机等,以保证风力发电机组的安全运行。

此外,变桨系统还需要考虑到桨叶与风轮之间的匹配,以避免不必要的振动和损耗。

另外,变桨系统的设计还需要考虑到节能和环保的因素。

在设计中需要采用先进的变桨技术和材料,以提高变桨系统的效率并减少能源的消耗。

例如,使用轻量化的材料可以减轻叶片的负荷,从而减少能耗。

同时,变桨系统还可以根据风速和负载状况自动调整变桨角度,以实现最佳风能转化效果。

此外,变桨系统的设计还要考虑到系统的可靠性和可维护性。

风力发电机组通常安装在海上或者偏远地区,维护困难且成本较高。

因此,变桨系统需要具有自动故障检测和诊断功能,并能够通过远程监控进行实时数据传输和维护。

这样可以大大提高系统的可靠性,并减少维护成本和停机时间。

最后,变桨系统的设计还需要兼顾成本的因素。

变桨系统通常占据整个风力发电机组的一定比重,因此需要在设计中考虑到成本效益和性能之间的平衡。

这可能涉及到不同变桨系统的选择和优化,以找到最佳的设计方案。

综上所述,变桨系统的设计和分析需要综合考虑风力的不稳定性、风力发电机组的安全性和稳定性、节能环保、系统可靠性和可维护性以及成本效益等因素。

通过合理的设计和分析,可以提高风力发电机组的性能和效率,从而实现更高效的风能转化。

风力发电机变桨系统的故障分析与处理

风力发电机变桨系统的故障分析与处理

风力发电机变桨系统的故障分析与处理摘要:随着我国科学技术的不断发展,对能源的需求越来越高,风力发电作为新能源之一,具有发电量大的环境污染小等特点被广泛使用,但是风力发电机组变桨系统故障一直是风力发电的难点之一,本文通过研究风力发电机组变桨系统故障分析,希望能推动我国新能源不断发展。

关键词:风力发电机;变桨系统;故障分析与处理引言风力发电机变桨系统是风力发电机组控制系统的重要组成部分之一,风力发动机变桨系统对风力发电站整体安全稳定的运营有着非常重要的作用,当外部环境发生变化时,风力发电机变桨系统可以通过传感器给出的数据改变桨叶位、电源等控制系统,保证风力发电机,每一片叶片都能达到最佳的一个状态,使其最大化地利用风力,保证风力发电机组输出的发电功率十分稳定。

一、风电机组变桨系统的作用风电机组变桨系统在整个风电机组当中负责实时调整叶片转动的角度,确保风电机组的主轴转速稳定。

风电机组变桨系统能够非常精确地将风电机的转速在不同的风速下稳定为一个稳定的转速,确保供电的稳定。

当风电机组变桨系统发生故障的时候,会有整机采集各个系统的故障信息及结合机组的实际情况,判断风电机组变桨系统故障的等级,根据之前确定好的预案,选择最优的办法处置故障。

如果故障较严重,就需要执行安全链断开保护。

此时,风电机组将会利用后备电源,为风电机变桨系统供电,快速地将桨叶转到最安全的位置,保证风电机组不会受到严重的损害。

如果风电机组变桨系统遇到主电网瞬间失压或者给风电机组供电的电压跌落到一定范围内,风电机组变桨系统将会通过快速运转最大程度上,减少由于风转交互作用引起风电机组整机的振动,将由于电压对整体风电机组的影响减少到最小程度。

二、风力发电机变桨系统常见的故障分析与处理1.变桨角度的差异在风电机组运行的过程中,如果三个叶片的变桨角度有差异,就容易对风电机组的稳定运行产生巨大影响。

风力发电机变桨系统会根据两个叶片角度之间的传感器得到的叶片角度作为参考,如果两者的数据相差太大,就会上报变桨角度错误。

风力发电机组变桨系统的优化设计

风力发电机组变桨系统的优化设计

风力发电机组变桨系统的优化设计一、引言风力发电是一种清洁、可再生的能源,受到越来越多国家的重视和广泛应用。

在风力发电站中,风力发电机组的变桨系统是其中一个重要部分,它负责调整叶片的角度来适应不同的风速和风向,以获取最大的风能转换效率。

本文将针对风力发电机组的变桨系统进行优化设计,以实现更高的发电效率。

二、变桨系统的工作原理风力发电机组的顶部装有三个或更多的叶片,在风的作用下转动。

为了在不同的风速和风向下都能高效转换风能,变桨系统起到重要作用。

变桨系统通常由电机、控制器和叶片构成,通过控制器感知风速、方向的变化,然后通过电机调整叶片的角度来获得最佳的风能转换效率。

三、优化设计方案1. 变桨系统感知风速和风向的精准度为了获得最佳的发电效率,变桨系统需要精确感知风速和风向的变化。

目前常用的风速传感器包括热线式、超声波式和激光式等。

优化设计中,可以选择合适的传感器,提高其精准度和可靠性,以确保系统能够准确感知风速和风向的变化。

2. 变桨系统叶片的材料选择和结构设计叶片的材料和结构对风能转换效率有着重要影响。

在优化设计中,可以选择轻量化材料和优化的叶片结构,以减小叶片的质量和空气阻力,提高风能的转换效率。

3. 变桨系统的控制策略变桨系统的控制策略直接影响到发电效率。

一种常见的控制策略是根据风速和风向的变化来调整叶片的角度,使其始终能够处于最佳的风能转换状态。

在优化设计中,可以改进控制器的算法和响应速度,提高系统的控制精度和响应性能。

4. 变桨系统的安全性设计在风力发电站中,变桨系统需要能够在恶劣的天气条件下工作,并保持良好的可靠性和安全性。

在优化设计中,需要考虑系统的抗风性能和抗冰性能,确保系统能够正常工作并不会受到外部环境的影响。

5. 变桨系统的维护和保养优化设计还需要考虑到变桨系统的维护和保养成本。

设计合理的结构和材料,以降低维护和保养的频率和成本,并提高系统的可靠性和寿命。

四、优化设计的效益通过对风力发电机组的变桨系统进行优化设计,可以实现以下几方面的效益:1. 提高发电效率优化设计可以使变桨系统更加灵敏和准确地感知风速和风向的变化,并通过调整叶片的角度来获得最佳的风能转换效率,从而提高发电效率。

变桨系统原理及维护

变桨系统原理及维护

变桨系统原理及维护一、变桨系统原理变桨系统是风能发电机组的关键部件之一,主要负责控制风轮桨叶的角度,以实现最佳风能转换效率。

其主要原理如下:1.控制原理:变桨系统通过感知风速、桨叶角度和发电机输出功率等参数,并根据实时监测的风速变化情况来控制桨叶的角度调整,以使风轮桨叶能够始终迎向风速的最佳方向。

2.传动原理:变桨系统通过主轴和传动电机等组件完成角度调整。

其中,主轴连接了风轮和齿轮箱,通过传动电机以及相应的齿轮传动机构控制风轮桨叶的角度调整。

3.控制模式:一般来说,变桨系统可以采用定角控制模式和变角控制模式。

定角控制模式适用于大部分工况,根据实时风速的大小选择恰当的桨叶角度。

而变角控制模式则可以在遇到特定工况时,根据不同的发电机输出功率等参数来调整桨叶角度。

4.安全保护机制:变桨系统还需要具备一定的安全保护机制,以应对突发情况。

比如,当变桨控制系统出现故障时,可以自动切断桨叶的调整功能,确保风轮系统的稳定运行。

二、变桨系统维护为确保变桨系统的正常运行和延长其使用寿命,需要进行定期的维护和保养。

下面是一些常见的维护措施:1.日常巡检:定期对变桨系统进行巡视,检查主轴、传动电机以及传动装置的工作情况。

特别要关注是否存在松动、磨损或损坏等问题,并及时进行维修或更换。

2.清洁保养:通过对变桨系统的清洁保养,去除积灰、杂物等异物,防止其对系统的正常运行产生影响。

3.润滑维护:应定期对润滑系统进行检查,确保润滑油的质量符合要求,并及时更换润滑油,以保持传动装置的正常运转。

4.故障排除:一旦发现变桨系统出现异常情况,应及时排除故障。

对于无法解决的故障,应请专业维修人员进行处理。

5.数据分析:通过对变桨系统监测数据的分析,可以及时发现潜在的问题和异常,对系统进行精确的调整和维护。

综上所述,变桨系统的原理是通过感知风速和发电机输出功率等参数,控制风轮桨叶角度的调整,以实现最佳风能转换效率。

为保证变桨系统的正常运行和延长使用寿命,需要定期进行维护和保养,包括日常巡检、清洁保养、润滑维护、故障排除和数据分析等措施。

风力发电机组变桨系统的设计与优化

风力发电机组变桨系统的设计与优化

风力发电机组变桨系统的设计与优化1. 引言风力发电是一种可再生能源的重要组成部分,风力发电机组的性能直接影响着发电效率和运行成本。

变桨系统作为风力发电机组的核心部件之一,对于风力发电的效率和可靠性具有重要作用。

本文将探讨风力发电机组变桨系统的设计与优化,旨在提高发电效率和降低运行成本。

2. 风力发电机组的变桨系统风力发电机组变桨系统主要包括桨叶、桨叶轴承、变桨机构和控制系统等部分。

桨叶通过变桨机构连接到发电机组的主轴上,根据风速和转速的变化,调节桨叶的角度以获得最佳发电效果。

变桨系统的设计和优化将直接影响发电机组的功率输出和系统的可靠性。

3. 变桨系统的设计原则(1)轻量化设计:桨叶是风力发电机组的核心部件,其质量直接影响转速和稳定性。

因此,在变桨系统的设计中,需要选择轻量化材料,并合理设计桨叶的结构,以降低整体质量,提高转速和响应速度。

(2)可靠性设计:风力发电机组通常处于复杂的气候环境下运行,如强风、冰雪等。

因此,变桨系统的设计需要考虑系统的可靠性和抗风能力,确保在恶劣环境下仍能正常运行。

(3)高效控制:变桨系统的控制是关键,需要根据风速和转速的变化,实时调节桨叶的角度,以获得最佳的发电效果。

因此,需要采用高效的控制算法和传感器,提高响应速度和控制精度。

4. 变桨系统的优化方法(1)结构优化:通过有限元分析等方法对桨叶和变桨机构的结构进行优化,以提高刚度和辨识度,降低振动和噪声,并达到减负荷的效果。

(2)控制算法优化:通过数学建模和仿真,针对不同的风速和转速,优化变桨系统的控制算法,确保桨叶角度的调节与实际运行环境的需求相匹配。

(3)传感器优化:选择高精度和高可靠性的传感器,如风速传感器和角度传感器,准确获取变桨系统所需的实时数据,并将其输入到控制系统中。

5. 变桨系统的未来发展趋势(1)智能化:随着人工智能和大数据技术的快速发展,未来的变桨系统将趋向于智能化,可以通过学习和优化算法,自动调整桨叶的角度,并根据实时数据进行预测和预防故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要: (2)一、变桨系统论述 (2)(一)变桨距机构 (2)(二)电动变桨距系统 (3)1. 机械部分 (4)2. 气动制动 (5)二、变桨系统 (5)(一)变桨系统的作用 (5)1. 功率调节作用 (5)2. 气动刹车作用 (5)(二)变桨系统在轮毂内的拓扑结构与接线图 (7)三、变桨传感部分 (9)(一)旋转编码器 (9)(二)接近开关 (10)四、变桨距角的调节 (11)(一)变桨距部分 (11)(二)伺服驱动部分 (12)总结 (14)参考文献: (14)致谢 (15)风力发电机组変桨系统分析摘要:风能是一种清洁而安全的能源,在自然界中可以不断生成并有规律得到补充,所以风能资源的特点十分明显,其开发利用的潜力巨大。

本文对大型的兆瓦级风力发电机变桨系统做简单的介绍。

变速恒频技术于20世纪90年代开始兴起,其中较为成功的有丹麦VESTAS的V39/V42-600KW机组和美国的Zand的Z-40-600KW机组。

变速恒频风力发电机组风轮转速随着风速的变化而变化,可以更有效地利用风能,并且通过变速恒频技术可得到恒定频率的电能。

变速恒频机组的显著优点已得到风力机生产厂和研究机构的普遍承认,将成为未来的主流机型。

但变速恒频风力机组仅通过电机自身调节要达到减小风速波动冲击的目的是很困难的,因为自然界中风速瞬息万变,特别是在额定风速以上工况,风力机有可能受到很大的静态或动态冲击。

但是变桨风机不会产生此类情况,变桨距是指大型风力发电机安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小从而改变叶片气动特性,使桨叶和整机的受力状况大为改善。

近年来,电动变桨距系统越来越多的应用到风力发电机组当中,直驱型风力发电机组为变桨距调节型风机,叶片在运行期间,它会在风速变化的时候绕其径向轴转动。

因此,在整个风速范围内可能具有几乎最佳的桨距角和较低的切入风速,在高风速下,改变桨距角以减少功角,从而减小了在叶片上的气动力。

这样就保证了叶轮输出功率不超过发电机的额定功率。

但是直驱式发电机组在我国目前还没有形成大规模的产业化。

我们对直驱型的风机设计还在不断的进行探讨和摸索当中,同时还要通过长期的试验和收集数据,对模型进行细化、修正和完善。

关键词:变桨系统;额定功率;功率调节一、变桨系统论述(一)变桨距机构变桨距机构就是在风速大于额定风速时,依据风速的变化随时调节桨距角,控制吸收的机械能,一方面保证获取最大的能量(与额定功率对应),同时减少风力对风力机的冲击。

在并网过程中,变桨距控制还可实现快速无冲击并网。

变桨距控制系统与变速恒频技术相配合,最终提高了整个风力发电系统的发电效率和电能质量。

(二)电动变桨距系统电动变桨距系统就是三个叶片分别装有独立的电动变桨距系统,主要包括回转支撑,减速机装置和伺服电动机及其驱动器等。

它提供给风力发电机组功率输出和足够的刹车制动能力,这样可以避免过载对风机的破坏。

三套蓄电池和轴控制盒以及伺服电机和减速机放置于轮毂处,每支桨叶一套,一个总电气开关盒放置在轮毂和机舱连接处,整个系统的通讯总线和电缆靠滑环与机舱的主控制器连接,整个系统的通讯总线和电缆靠滑环与机舱的主控制器连接如图1-1。

图1- 1主控制器连接主控制器与轮毂内的轴控制盒通过现场总线通讯,达到控制三个独立的变桨距装置的目的。

主控制器根据风速,发电机功率和转速等,把命令值发送到电动变桨距控制系统,并且电动变桨距系统把实际值和运行状况反馈到主控制器。

电动变桨距系统必须满足能够快速响应主控制的命令,有独立工作的变桨距系统,高性能的同步机制,安全可靠等的要求,下面就分别从机械和伺服驱动两个部分介绍一下电动变桨距系统如图1-2。

图1- 2电动变桨距系统的构成框图1.机械部分不同于液压驱动变桨距系统,电动变桨距系统采用三个桨叶分别带有独立的电驱动变桨距系统,机械部分包括回转支承,减速机和传动等。

减速机固定在轮毂上,回转支承的内环安装在叶片上,叶片轴承的外环固定在轮毂上。

当电驱动变桨距系统上电后,伺服电动机带动减速机的输出轴小齿轮旋转,而且小齿轮与回转支承的内环啮合,从而带动回转支承的内环与叶片一起旋转,实现了改变桨距角的目的如图1-3。

图1- 3变桨实物图2.气动制动制动装置的特点是空气动力学制动刹车单独由变桨距控制,桨叶获得充分的刹车作用。

即使一个桨叶刹车制动失败,其它二个叶片也可以安全结束刹车的过程,提高了整个系统的安全性。

制动系统还装备了备用电源,提供给故障或者维修时候可以快速准确地收回桨叶。

二、变桨系统变桨控制系统使叶片的角度在一定范围(0度~90度)变化,以便调节输出功率,避免了定桨距机组在确定攻角后,有可能夏季发电低,而冬季又超发的问题。

在低风速段,功率得到优化,能更好的将风能转化电能。

(一)变桨系统的作用1.功率调节作用变桨距控制是最常见的控制风力发电机组吸收风能的方法,变桨目的是通过控制桨距角,调节叶轮吸收风能的功率。

在额定风速以下时,风力发电机组应该尽可能的捕捉较多的风能,桨距角设定值设定在能够吸收最大功率的最优值,所以这时机组运行没有必要改变桨距角,一般桨距角设定在0°附近,以便让叶轮尽可能多的吸收风能,此时,空气动力载荷通常比在额定风速小。

额定风速以上阶段时,变速控制器和变桨控制器共同作用,通过变速控制器即控制发电机的扭矩使其恒定,从而恒定功率;通过变桨调节发电机转速,使其始终跟踪发电机转速的设定值。

改变桨距角充分的吸收风能使功率最大化,保证风机的利用率达到最高。

2.气动刹车作用金风1.5MW风力发电机组Vensys变桨系统是风机唯一的停车机制,通过将桨叶迅速顺桨至停机位置来完成气动刹车。

主控系统的所有停机指令,包括普通停机,快速停机和紧急停机,最后都是通过数据总线发送到变桨系统来执行。

机组安全链的最后输出到达变桨系统,在此过程中,任意一个安全链节点断开后,安全链系统送给变桨系统的高电平都会丢失,变桨系统会根据内部程序立即执行紧急停机。

在执行停机或紧急停机的时候都是变桨柜接受主控传达信息,叶片迅速顺桨,利用空气阻力使得风机进入停机过程。

无论任何原因需要风机停机,可以通过硬件或软件的方式,以设定的变桨速率朝90°方向顺桨,保证机组安全。

当风速超过额定风速后,根据软件设定的变桨控制策略适时改变叶片桨距角,在保证机组输出额定功率的同时,从机械、电气上实现机组的安全运行当风速低于额定风速时,将叶片桨距角固定在接近0°位置,以保证风机在变速的同时,最大限度地吸收风能。

当风机处于维护状态时,提供手动变桨及其它安全维护及检修的功能。

当电网电压掉电时,由备电电源提供电气系统工作电压,主要完成顺桨功能。

轴柜变桨调节方式应分为自动/手动两种模式,自动/手动模式设置通过两位置开关实现,手动模式正、反向调节及停止设置通过三位置开关实现。

当风机处于维护状态且变桨调节处于手动模式时,可以实现每个叶片单独变桨,但每次只能有一个轴柜可以通过相应控制开关,使变桨电机在正、反方向旋转来调节桨距角;其它两个叶片桨距角必须处于90°位置,否则手动变桨功能失效。

轴柜上应设置一个控制开关,当风机处于维护状态且人员需要进入轮毂对变桨系统进行维护与检修时,该控制开关应断开,变桨电机刹车抱闸,逆变器的控制电源断电,以保证桨距角停留在某一固定位置,直到该控制开关重新闭合后,桨距角才可以改变。

除此之外,该控制开关应一直处于闭合状态。

将每个叶片配置的两个ENCODER采集到的桨距角信号进行比较,当角度偏差小于2°时,才允许PLC在需要时,对叶片桨距角进行调节;否则,只要该叶片桨距角小于90,都会以7度每秒的速度朝90°方向顺桨,其余叶片的顺桨由软件控制完成。

所有叶片在91°位置各安装一个限位开关,在0°方向均不安装限位开关,叶片当前桨距角是否小于0°,由两个ENCODER传感器测量结果经过换算确定。

轴柜变桨调节方式处于自动位置,当下列任何一种情况发生,出故障轴柜的硬件系统应保证相应叶片以7°每秒的速度朝90°方向顺桨,未受影响的轴柜,其叶片顺桨由软件控制完成。

任意轴柜内的DP从站与PLC主站之间的通讯总线出现故障,由叶轮过速、振动开关、TOPBOX 急停按钮、变流柜急停按钮、偏航限位开关串联组成的风机安全链以及与安全链串联的两个叶轮锁定信号断开(24V DC信号),无论任何一个ENCODER 出现故障,还是同一叶片的两个ENCODER测量结果偏差超过规定的门限值;任何叶片桨距角在变桨过程中小于-2°;构成安全链、释放回路中的硬件系统出现故障;对于三相交流异步变桨电机,其逆变器控制电路应提供开环频率控制U/F、闭环空间矢量控制两种调速方式,默认设置为闭环空间矢量控制,当速度传感器损坏时,逆变器控制电路应立即将调速方式切换至开环频率控制U/F模式,并使对应叶片以7度每秒的速度朝90°方向顺桨,其余叶片则由软件来控制顺桨;在风机变桨过程中,应依次启动三个变桨电机,以防止三个变桨电机同时启动时,造成滑环过载;轴柜内所有冷却风扇的启、停,应受软件控制;电网电压是否掉电,应优先选择直接判断方式,其次选择通过备电电源电压的判断方式。

轴柜应提供控制接口,以方便对备电电源性能,主要是指电网电压掉电情况下性能进行测试;轴柜应提供控制接口,以方便对轴柜内逆变器调速模式切换。

每个叶片配置的两个编码器,应保证其对叶片桨距角测量精度达到0.01°,轴柜内应有相应模块,用于显示叶片当前桨距角,以保证手动变桨模式下桨距角不会超过91°限位开关位置,轴柜变桨调节方式处于自动模式下,若风机在顺桨的过程中桨距角超过了91°限位开关的位置,此时可以将风机切换至维护状态,并通过轴柜内的手动变桨方式,将桨距角调回90°位置,轴柜变桨调节方式处于自动模式下,预防桨距角超过限位开关的措施,91°限位开关,到达限位开关时,变桨电机刹车抱闸,轴柜逆变器的释放信号及变桨速度命令无效,同样会使变桨电机静止。

变桨电机刹车抱闸的条件为轴柜变桨调节方式处于自动模式下,桨距角超过91°限位开关位置,轴柜上控制开关断开,电网掉电且备电电源输出电压低于其最低允许工作电压,控制电路器件损坏。

除上述条件外,变桨电机刹车应处于松闸位置,由手动变桨三位置开关或软件控制变桨电机处于静止位置,轴柜应将叶片是否处于-2°、90°、91°等重要位置、柜内主要器件状态及运行参数、备电电源当前电压等信息,通过PROFIBUS DP总线提供给PLC,以方便软件对变桨系统的控制如图2-1(二)变桨系统在轮毂内的拓扑结构与接线图2及信号线2及信号线及信号线1mm 2图2- 1变桨系统在轮毂内部接线图图2- 2变桨系统轮毂内拓扑结构图三、变桨传感部分(一)旋转编码器增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向),在接合数字电路特别是单片机后,增量式旋转编码器在角度测量和角速度测量较绝对式旋转编码器更具有廉价和优势。

相关文档
最新文档