变浆距双馈型风力发电机组的结构和原理-訾恒编著

合集下载

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究变速恒频发电技术变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。

这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。

其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。

上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。

其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。

尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。

目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。

主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。

其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。

基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

变速恒频双馈风力发电机基本原理双馈电机的结构类似于绕线式异步电机,旋转电机的定子和转子均安放对称三相绕组,其定子与普通交流电机定子相似,定子绕组由具有固定频率的对称三相电源激励。

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析1 双馈式风力发电机的结构双馈发电机(Doubly—Fed Induction Generator,简称DFIG)最初的设想来自于一位英国学者,是在自级联异步电机的基础上发展出来的。

其在结构上与绕线异步电机较为类似,由于其转子和定子两部分都能馈入或馈出能量,因此得名“双馈”,同时,由于双馈式发电机是通过转子来产生交流磁场,所以,双馈式发电机也被形象的称为交流励磁发电机。

双馈式发电机的结构一般是由转子、定子和气隙三个组成的。

在双馈式电机定子的铁心上,均匀的分布着同形状的凹槽,它的主要作用就是用来嵌入定子绕组,使得通过定子的三相电流能够产生旋转磁场,同样,在转子中也有嵌入用绝缘导线组成的三相绕组,如图1,从示意图中可以清楚的看到,转子上引出的三相线先连接到位于转轴上的集电环上,然后再由电刷引出。

一般情况下,定子是直接接到工频电网上,而转子则通过变换器连接到电网上,以用于转子进行交流励磁用。

2 双馈式风力发电机的原理双馈式电机交流励磁变速恒频发电系统图2所示即为双馈式发电机交流励磁变速恒频发电系统的基本组成示意图。

图的最左端为风机的桨叶,当桨叶通过风力的推动转动时,连杆经过齿轮箱的变速后带动发电机转动。

当风速发生变化时,势必带动发电机的转速发生变化,此时,可以通过变频器有针对的控制输入到转子侧的励磁电流的频率,来改变转子磁场的旋转速度,这样,就能使定子侧感应出同步转速,将变速恒频发电变为现实。

n+(-)60f1/p=60f2/p要保持电网的频率不发生变化,我们可以通过控制转子的电流频率,即f1来确保f2恒定不变,达到变速恒频的目的。

当发电机的转速小于同步转速,即ωr<ω1时,整个发电机处于亚同步状态,在此状态下,通过励磁变频器,电网向发电机的转子提供交流励磁,补偿其转差功率,由定子向电网馈出电能;当发电机的转速大于同步转速,即ωr>ω1时,该发电机处于超同步状态之下,在此状态下,同样通过励磁变换器,转子回路向电网馈出电能,励磁变换器的能量方向与亚同步状态下相反,同时,定子回路也向电网馈出电能;当发电机的转速与同步转速相等,即ωr=ω1时,此时可以看作普通的同步电机,式2—1中fr=0,变流器向转子提供直流励磁。

双馈风力发电机工作原理

双馈风力发电机工作原理

双馈风力发电机工作原理双馈风力发电机由三个主要部分组成:风轮,机械传动系统和电气系统。

风轮是由叶片和轮毂组成的,它负责将风能转化为旋转能量。

机械传动系统则负责将旋转能量转移到发电机上。

而电气系统则将机械能转化为电能,并送入电网中。

首先,风轮在风速的推动下开始旋转。

当风速足够高时,风轮旋转的速度也相应增加。

旋转的风轮通过主轴将旋转能量传输给发电机的转子。

与传统的固定速度(常规)发电机不同的是,双馈风力发电机是一种变速发电机。

它的转子上设有两组绕组:定子绕组和转子绕组。

定子绕组固定在发电机的圆柱形部分上,而转子绕组则固定在转子上。

定子绕组与电网直接相连,通过电网供电并产生旋转磁场。

转子绕组上也有一个与电网连接并可以提供电能的回路。

这个循环是通过一个双级功率变换器实现的,这也是双馈风力发电机名称的由来。

双级功率变换器是由一个转子侧变频器和一个定子侧变频器组成的。

当风轮旋转的速度发生变化时,定子绕组上的旋转磁场也会发生变化。

这个变化的旋转磁场会产生感应电动势,使转子绕组上的电流发生变化。

这个变化的电流经由双级功率变换器输入到定子绕组上。

由于双级功率变换器的存在,电流可以根据需求进行加减,从而实现功率的控制。

通过双级功率变换器,转子绕组上的电流可以与定子绕组上的电压相互配合,从而实现最佳的功率传输。

定子侧的变频器控制着定子绕组上的电流和频率,保持电网的稳定性和功率质量。

而转子侧的变频器则控制着转子绕组上的电流和频率,提高了发电机的效率和可靠性。

总的来说,双馈风力发电机通过风轮将风能转化为旋转能量,然后将旋转能量通过机械传动系统传输给发电机的转子。

转子上的双级功率变换器帮助将机械能转化为电能,并将其送入电网中。

通过双级功率变换器的灵活控制,双馈风力发电机能够提高整个系统的效率和稳定性,从而更好地利用风能资源。

风机变桨系统结构、原理及典型故障处理

风机变桨系统结构、原理及典型故障处理
当风速超过额定风速时,通过控制叶片角度 来控制风机的转速和功率维持在一个最优的水平;
当风速低于额定风速时,通过调整叶片角度 从风中吸收更多的风能,得到最佳的发电功率;
当安全链被打开时,叶片转到顺桨位置,可 作为空气动力制动装置使机组安全停机;
利用风和叶轮的相互作用,减小摆动从而将 机械负载最小化。
顺桨位置
采用变桨矩调节,风机的启动性好、刹车机构 简单,叶片顺桨后风轮转速可以逐渐下降、额定点 以前的功率输出饱满、额定点以后的输出功率平滑、 风轮叶根承受的动、静载荷小。变桨系统作为基本 制动系统,可以在额定功率范围内对风机转速进行 控制。
变桨系统的构成
变桨系统包括三个主要部件,变桨轴承、变 桨驱动装置-变桨电机和变桨齿轮箱、变桨控制 柜。如果一个驱动装置发生故障,另两个驱动装 置可以安全地使风机停机。
变桨系统如何实现变桨控制
从站PLC控制操作
电气变桨系统,3 个变桨变频器控 制的变桨电机间 接变速装置(伺 服电机)
机舱内的电池系 统
变桨系统的Leabharlann 点变桨控制系统是通过改变叶片角度,实现功率 变化来进行调节的。通过在叶片和轮毂之间安装的 变桨驱动装置带动变桨轴承转动从而改变叶片角度, 由此控制叶片的升力,以达到控制作用在风轮叶片 上的扭矩和功率的目的。
电机连接 工作时间
动态工作
用一个风扇强制风冷
一个内置在定子绕组中的 Pt-100
变频器操作,增加 du/dt 值,增加铁心损耗,增加电 压峰值
单传动, 闭合环路
100 %,当制动器有飞轮 时,电机必须持续保持叶 片在工作位置
最大加速度125 1 rpm/s
扭矩限制 电缆长度 使用寿命
工作位置
变桨系统原理

第三章 双馈风力发电机运行控制

第三章 双馈风力发电机运行控制

第三章双馈型变速恒频风力发电系统运行控制机组主结构及控制系统运行区域及控制目标总体控制方案励磁变换器结构及原理DFIG控制(机侧变换器控制)网侧变换器控制变桨机构及其控制偏航机构及其控制其他机构及控制、保护一. 机组主结构及控制系统机组主结构:主要的机电设备控制系统:微机控制软、硬件(一)机组主结构风轮系统传动链系统发电机系统偏航/解缆系统刹车系统辅助系统机组主结构示意图1. 风轮系统桨叶轮毂变距(桨距)机构2. 传动链系统低速轴齿轮箱多级变速,变比较大(接近100)采用行星齿轮和正(斜)齿轮实现多级变速润滑油冷却或加温机构高速轴联轴器通用标准型膜片联轴器连接齿轮箱和发电机补偿轴向、径向和角度偏差易于装拆维护实现电绝缘力矩限定传动链系统布局3. 发电机系统DFIG发电机本体冷却系统保护系统励磁变流器四象限运行能力、输入、输出特性优良设计容量为机组容量30%IGBT器件,PWM调制技术动作频率为数kHz-十几kHz并网机构4.偏航/解缆系统偏航机构风向标偏航伺服电机(或液压马达)减速装置偏航液压制动器偏航行星齿轮对风/解缆操作根据风向标控制对风计算机控制的自动解缆纽缆开关控制的安全链动作报警及人工解缆偏航的作用对风,获取最大发电量减少斜风给机组带来的不平衡载荷5.刹车系统机械抱闸刹车液压驱动和电气驱动通过制定卡钳和连轴器上制动盘配对实现,一般在气动刹车后转速降低后采用安装位置:高速轴,低速轴气动刹车变桨控制变桨控制系统控制桨距角为90度偏航控制电磁刹车通过控制发电机电磁阻转矩实现6.辅助系统塔架机舱罩机舱底盘变压器防雷系统及电气保护装置冷却系统发热部件液压系统齿轮箱发电机变频器冷却方式:空气冷却,液体冷却,混合冷却其他部分(二)控制系统1. 概述与一般工业控制过程不同,风力发电机组的控制系统是综合性控制系统。

它不仅要监视电网风况和机组运行参数,而且还要根据风速与风向的变化,对机组进行优化控制,以提高机组的运行效率和发电量。

双馈异步风力发电机 原理

双馈异步风力发电机 原理

双馈异步风力发电机(DFIG)是一种常用于大型风力发电系统中的发电机。

它采用了双馈结构,即转子上的差动输出。

下面是双馈异步风力发电机的工作原理:
1. 变速风轮:风力通过变速风轮传递给风力发电机。

2. 风力发电机转子:发电机的转子由固定的定子和可旋转的转子组成。

转子上有三个绕组:主绕组、辅助绕组和外部绕组。

3. 风力传动:风力使得转子转动,转子上的主绕组感应出交变电磁力,产生主磁场。

4. 变频器控制:通过变频器,将固定频率的电网电压和频率转换为可调节的电压和频率。

5. 辅助转子绕组:辅助绕组连接到变频器,通过变频器提供的电压和频率来控制转子的电流。

6. 双馈结构:辅助转子绕组的电流经过转子上的差动输出到外部绕组,形成双馈结构。

外部绕组与电网相连。

7. 发电转换:转子上的双馈结构使得发电机能够将风能转化为电能,
并输出到电网中。

通过双馈异步风力发电机的工作原理,可以实现对风能的高效转换和可调节的发电功率输出。

同时,利用双馈结构,可以提高发电机对风速变化的适应性和控制性能,从而提高整个风力发电系统的效率和稳定性。

风力发电机结构介绍

风力发电机结构介绍

风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。

该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。

风力发电机组结构示意图如下。

1、叶片2、变浆轴承3、主轴4、机舱吊5、齿轮箱6、高速轴制动器7、发电机8、轴流风机 9、机座 10、滑环 11、偏航轴承 12、偏航驱动 13、轮毂系统各主要组成部分功能简述如下(1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。

叶轮的转动是风作用在叶片上产生的升力导致。

由叶片、轮毂、变桨系统组成。

每个叶片有一套独立的变桨机构,主动对叶片进行调节。

叶片配备雷电保护系统。

风机维护时,叶轮可通过锁定销进行锁定。

(2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。

(3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。

(4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。

明阳se 机组采用是带滑环三相双馈异步发电机。

转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。

(5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。

同时提供必要的锁紧力矩,以保障机组安全运行。

(6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。

轮毂结构是3个放射形喇叭口拟合在一起的。

(7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。

通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。

se型风电机组主要技术参数如下:(1)机组:机组额定功率:1500kw机组起动风速:3m/s机组停机风速: 25m/s机组额定风速: m/s(2)叶轮:叶轮直径:叶轮扫掠面积:5316m2叶轮速度:叶轮倾角: 5o叶片长度:叶片材质:玻璃纤维增强树脂(3)齿轮箱:齿轮箱额定功率:1663kw齿轮箱转速比:(4)发电机:发电机额定功率:1550kw发电机额定电压:690v发电机额定电流:1120A发电机额定频率:50Hz发电机转速:1750rpm发电机冷却方式:空-空冷却发电机绝缘等级:H级主刹车系统:变浆制动二级刹车系统:圆盘制动器(5)塔架:塔架型式:直立三段锥形塔架塔架高度:61830mm塔架底部直径:4200mm塔架重量:107t(6)偏航系统型式:主动对风齿轮圆盘星形驱动(7)控制器型式:PLC TwinCAT。

双馈风机发电机齿轮箱结构及工作原理讲解

双馈风机发电机齿轮箱结构及工作原理讲解
目前风电行业多选用进口轴承(SKF、FAG、 NSK、NKE、TIMKEN等)。随着国内轴承技术的逐 步提高,将来齿轮箱的轴承国产化将会完全实现。
2、轴承分类:
按载荷方向:向心轴承、推力轴承 按滚动体形态:球轴承
滚子轴承:圆柱滚子 圆锥滚子 球面滚子 滚针
3、风电齿轮箱轴承主要类型 圆柱滚子轴承:
导致小块金属剥落,
产生齿面点蚀.点蚀是 由于接触面上金属疲
劳而形成细小的疲劳
裂纹,裂纹的扩展造
成的金属剥落现象。
(3)、胶合:局部升温+重载、润滑不 够、油变质
(4)、剥落
5、塑变:
低速重载传动时,若齿轮齿面硬度较低,当齿面 间作用力过大,啮合中的齿面表层材料就会沿着 摩擦力方向产生塑性流动,这种现象称为塑性变 形。
风电齿轮箱轴承主要类型 调心滚子轴承:
调心滚子轴承有 其特点是外圈滚 道呈球面形,具 有自动调心性, 可以补偿不同心 度和轴挠度造成 的误差,但其内、 外圈相对倾斜度 不得超过3度。
风电齿轮箱轴承主要类型 圆锥滚轴承:
圆锥滚子轴承主要承受以 径向为主的径、轴向联合 载荷。轴承承载能力取决 于外圈的滚道角度,角度 越大承载能力越大。该类 轴承属分离型轴承,根据 轴承中滚动体的列数分为 单列、双列和四列圆锥滚 子轴承。单列圆锥滚子轴 承游隙需用户在安装时调 整;双列和四列圆锥滚子 轴承游隙已在产品出厂时 依据用户要求给定,不须 用户调整。即使在高速时 圆锥滚子轴承也承受很高 的径向和轴向负载。
5#管
风冷器 电机
风冷器
压力传 感器2
压力表
压力表 开关
2
1
四、风电齿轮箱的润滑
排气口
压力传感 器1

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章变浆距双馈型风力发电机组的结构和原理概述:变浆距风力发电机是在定浆距风力发电机成功运用的基础上发展起来的机型,它的桨叶角度可以调节,以达到最佳的叶尖速比,使得风力机的风能利用率大大提高。

变浆距风机相对于定浆距风机的优势是十分明显的,当风速过高时,通过调整桨叶节距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩,可以使功率输出保持稳定。

在风力发电机启动时需要较大的气动扭矩,也需要通过变浆系统的动作以获得足够的气动转矩。

其实风机设计人员最初设计的风力发电机都是倾向于变浆距的,但是由于技术条件有限,控制系统、变浆系统不成熟,在极端条件下往往不能满足风力发电机的安全运行条件。

所以变浆距风机在很长一段时间里得不到发展。

经过定浆距风机的运行实践,设计人员对风力发电机组的运行工况和各种受力状态有了更深入的了解,变浆距风机的先天优势重新进入设计人员的视线,变浆距风机的设计重新被重视起来,当前的变浆距风力发电机已经成为市场的主流,目前投入商业运行的变浆距双馈型机组有很多,但其结构和原理大同小异,其中丹麦维斯塔斯的V90系列应用较为广泛,市场占有率较高,结构也很典型。

这一章将以Vestas的V90-1.8/2.0MW风机为例来学习变浆距双馈型机组的结构和原理。

4.1维斯塔斯V90-1.8/2.0MW风机的特点维斯塔斯是进入中国市场的第一家风机供应商,拥有20%的全球市场份额,是世界风能解决方案的领先供应商。

已在全球六大洲66个国家和地区安装了43,000多台风机。

维斯塔斯拥有中国最大的风力发电制造厂,生产发电机、叶片、机舱、轮毂和控制系统。

已经在中国三个不同的省份拥有五家风机制造工厂。

维斯塔斯V80/V90-1.8/2.0MW风机是维斯塔斯公司目前的主力机型,属于桨距调节的上风向风机,配有主动偏航和三叶片风轮。

V90-1.8/2.0MW风机采用了先进的叶片设计和技术,其叶片的重量与V80-2.0MW风机叶片的重量相同,但叶片的扫掠面积增加了27%。

其机舱采用的是V80的设计,但齿轮箱和传动系统都有所改进,能够承受来自转子的更大的负荷。

因此,V80和V90风机的主要构造区别不大,所以我们之后的介绍以V90系列为例。

V90-1.8/2.0MW风机风机风轮直径为90米,额定功率为1.8/2.0MW。

独特的OptiSpeed(最佳转速)功能(控制系统中详细介绍)可使风轮变速运转。

所有的V90风机都配有独特的维斯塔斯桨距调节系统。

通过该系统,叶片桨距角可不断根据当前风况调到最佳角度,从而优化了风机出力和噪声水平。

主轴通过变速箱将动力传递到发电机。

变速箱为行星齿轮和斜齿轮组合变速箱。

动力从变速箱通过一个免维护复合联轴器传递到发电机。

发电机为专用绕线转子四极异步发电机。

在高风速时,OptiSpeed和桨距调节使功率在不同的空气温度和密度下始终保持额定出力。

在低风速时,OptiTip(最佳浆距)系统和OptiSpeed通过选择最佳转速和桨距角来优化出力。

风机通过全顺桨叶片实现制动。

变速箱高速轴上装有机械刹车单元。

由一台基于微处理器的控制器VMP控制器(维斯塔斯多处理器控制器)监控风机的所有功能。

控制系统和变压器都装在机舱内。

叶片位置由液压/机械变桨系统调节,该系统可使叶片旋转95°,同时也为盘式制动器系统提供压力。

在急停操作模式下,风机通过全顺桨叶片(空气动力制动装置)实现制动。

四个电动偏航齿轮使偏航小齿轮旋转,它们与装在塔架顶部带齿的大偏航环啮合。

偏航轴承系统为具有内置摩擦的滑动轴承系统。

玻璃纤维增强的机舱壳为机舱内所有部件提供防雨、防雪、防尘、防晒等保护。

中心开口提供从塔架到机舱的通道。

机舱内有一架800kg维护用起重机,其吊重能力可以被扩大到能提升7,500kg的主要部件。

维斯塔斯V90-1.8/2.0MW的技术参数转子直径: 90米扫风面积: 6,362平方米额定转速: 14.9转/分运行范围: 9.0-14.9转/分叶片数量: 3功率调节: 变桨/OptiSpeed空气制动: 通过三个独立的桨距执行机构调节的全叶片桨距轮毂高度: 80米,95米,105米切入风速: 3.5米/秒 2.5米/秒额定风速: 12米/秒13米/秒切出风速: 25米/秒25米/秒/ 21米/秒发电机类型: 异步发电机异步发电机额定输出: 1,800 kW 2,000 kW运行数据: 50 Hz 690 V 50 Hz 690 V齿轮箱类型: 行星/斜齿轮控制类型: 微处理器监控所有风机功能,备选远程监控。

输出调节及优化通过OptiSpeed和OptiTip® 桨距调节实现。

机舱重量:68 t叶轮重量:38 t轮毂高度:80米150 t 150 t -95米200 t - 200 t105米- - 225 t机舱配置如图1所示。

图1 机械结构1. 基架12. 偏航齿轮2. 主轴13. 偏航环3. 风轮轮毂14. 偏航控制4. 叶片15. VMP顶部控制器5. 叶片轴承16. VMP轮毂控制器6. 变速箱17. 变压器7. 转矩臂18. 发电机冷却器8. 盘式制动器19. 变速箱冷却器9. 发电机20. 变桨液压缸10. 复合联轴器21. 起重机11. 液压单元4.2维斯塔斯V90-1.8/2.0MW风机的结构㈠风轮概述:上一章我们已经学习了定浆距风力机的风轮构成,变浆距风机的风轮和定浆距风机的风轮主体机构是相似的,区别是变浆距风机的桨叶的迎角是可以调节的,因此轮毂上应该装有变浆轴承、变浆执行机构和变浆控制系统。

①桨叶维斯塔斯在叶片设计方面具有优势,其叶片重量一直是最轻的。

V90风机在这一方面实现了新的突破。

其叶片是由玻璃纤维增强环氧树脂和碳纤维组成。

每个叶片包含两个叶片外壳,粘合到一个支撑梁上。

V90新型叶片采用了几种轻质材料,特别是承重翼梁采用了碳纤维材料。

碳纤维不仅比以前叶片中的玻璃纤维轻,而且强度大、刚度好,可显著减少材料用量。

虽然V90风机的扫风面积比V80多27%,但其叶片重量实际上与较短的V80叶片基本相同。

V90叶片的外形就空气动力学而言比以往的风机更优越。

通过优化总负荷对风机的影响与年发电量之间的关系,维斯塔斯研发出了具有全新的平面外形和曲线形后缘的翼型。

V90叶片的翼面不仅提高了风机效率,同时降低了叶片前缘对尘土的敏感度,优化了连续翼面厚度之间的几何关系。

桨叶上装有接闪器,防止雷电损坏桨叶。

②轮毂和变浆轴承变浆距轮毂为铸造结构,叶片与轮毂的连接部分装有用来调节叶片桨距的轴承,在轮毂内还装有浆距调节的执行机构和控制系统,其它部分和金风系列相似不再累述。

变浆轴承是一个四点球轴承,带有内外密封,用螺栓连接到风轮轮毂上。

专用螺纹插件将叶片与变浆轴承连接起来。

对于电机驱动的齿轮式变浆机组,轴承会带有内齿,和变浆减速器齿轮咬合,实现变浆。

此外金风直驱式机组采用了一种电机驱动齿形带的方式变浆,轴承部分需配合齿形带。

③变浆执行机构概述:变浆距执行结构的作用是使叶片绕着轴承旋转,根据控制系统的指令改变叶片的浆距角,从而改变风力发电机组的气动性能,变浆距执行机构按驱动机构形式一般分为两种,一种是液压变浆式,一种是电动变浆式,即以伺服电机驱动减速机实现变浆调节。

按叶片变浆又可分为单叶片独立变浆和多叶片共同变浆两种。

电动变浆多用在单叶片独立变浆风机上,液压变浆适用较为广泛可单用也可多用。

液压变浆具有转动力矩大,重量较轻,刚度较大,定位精确,执行机构动态响应速度快等优点,但液压变浆距机构控制环节多,机构较复杂,成本较高,油密封和润滑要求较高。

电机变浆机构紧凑,控制灵活可靠,不存在密封要求,但电机重量偏重,转矩较小。

⑴液压变浆执行机构液压单独变浆执行机构的3个液压缸布置在轮毂内,每一个叶片都有一个液压缸,以曲柄滑块的运动方式分别给3个叶片提供变浆驱动力,独立变浆过程彼此独立,当一组变浆机构出现故障时,其余两组变浆机构仍然可以通过变浆完成气动制动,其控制可靠灵活,安全冗余较大,但它需要三套相同的控制执行机构,成本较高,此外3叶片还需要保证精确的同步变距,以避免3叶片的浆距角差异。

液压统一变浆机构通过1个液压缸驱动3个叶片同步变浆,液压缸放置在机舱里,三个桨叶上有三个带长槽的摇臂,摇杆卡在摇臂中连接在万象盘上,活塞杆穿过主轴与轮毂内部的同步盘连接,动作时液压油驱动活塞缸活塞运动,从而推动推杆、同步盘运动,同步盘通过转轴、连杆、长转轴推动偏心盘转动,偏心盘带动叶片进行变距。

维斯塔斯早期采用的就是这种液压统一变浆系统。

变浆系统存在一个技术难点就是如何在机舱和轮毂之间传输控制通讯信号、电能和液压动力。

维斯塔斯V90风机的旋转传输单元通过一种带流体轴承的双向低摩擦旋转液压接头从液压站向轮毂传输液压动力。

通过非接触环单元传输网络通讯信号。

通过旋转变压器把低压电传输给轮毂。

通过滑环装置从机舱向轮毂传输高压电。

三个系统都安装在齿轮箱后侧与风轮中心同心的突出的中空轴上,并随着叶轮转动。

旋转变压器位于距离齿轮箱最近的位置,其定子固定在齿轮箱箱体上。

转动的Arc-net 非接触通讯系统,用来传递轮毂与控制系统之间的来往信号,装在旋转变压器的外侧,并罩有筒形外壳。

在中空轴末端,液压旋转耦合单元用螺栓固定在转接器上,而转接器则用螺钉紧固在中空轴末端。

液压旋转耦合单元的定子则用液压软管固定。

高压 Hyac -Heat 变浆系统储能器加热器电能传输和变浆系统控制信号传输装置的滑环装置装在液压旋转耦合单元转接头上,并固定在旋转Arc-net 传输装置的固定壁上。

1.旋转变压器 低压输出2.Arc-net 传输系统 只传输通讯信号3.旋转接头 有孔能穿过旋转接触电缆4.Hyac-Heat 旋转接触 电压和信号直接传输5.液压旋转耦合单元 调桨系统的液压动力6.罩子⑵电动变浆执行机构电动变浆系统一般是三叶片独立变浆系统,单个叶片变浆机构一般包括控制器、伺服驱动器、伺服电机、减速机、传感器、角度限位开关、蓄电池、变压器等组成。

伺服驱动器驱动伺服电机实现变浆角度的控制,传感器用于测量电机的已安装转动传输单元的齿轮Vestas 的转动传输单元转速和当前的浆距角,蓄电池是保证停电时变浆系统动作的备用电源。

伺服电动机与减速机和传动小齿轮连接在一起,固定在轮毂上,电动机带动减速机旋转减少转速增加了扭矩,通过减速机的输出轴小齿轮与变浆距轴承的内齿圈啮合驱动变浆距轴承的内圈和叶片一起旋转,实现变浆的目的。

变浆减速机的原理与上一章所讲的偏航减速机结构和原理相似,都是通过行星齿轮或行星齿轮和其它齿轮配合进行减速。

此外金风的直驱系列风机采用了电机齿形带变浆的形式,也可归类为电机变浆的一种形式,在下一章中将详细叙述。

④变浆控制系统变浆距风力发电机组与定浆距风力发电机组相比,具有在额定功率点以上输出功率平稳的特点。

相关文档
最新文档