数学建模2003年a卷试题答案

合集下载

2003高教社杯全国大学生数学建模竞赛(大专组)

2003高教社杯全国大学生数学建模竞赛(大专组)

2003高教社杯全国大学生数学建模竞赛(大专组)D 题(抢渡长江)参考答案注意:以下答案是命题人给出的,仅供参考。

各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

设竞渡在平面区域进行, 且参赛者可看成质点沿游泳路线 (x (t ), y (t )) 以速度 ()(cos ()sin ())u t u t u t θθ=,前进,其中游速大小u 不变。

要求参赛者在流速 )0,()(v t v =给定的情况下控制 θ (t ) 找到适当的路线以最短的时间 T 从起点 (0,0) 游到终点 (L, H ),如图1。

这是一个最优控制问题:H T y y t u dt dyL T x x v t u dt dx t s T Min =====+=)(,0)0(),(sin )(,0)0(,)(cos ..θθ可以证明,若 θ (t ) 为连续函数, 则 θ (t ) 等于常数时上述问题有最优解。

证明见: George Leitmann, The Calculus of Variations and Optimal Control , Plenum Press, 1981. pp. 130 – 135, p. 263, Exercise 15.13. (注:根据题意,该内容不要求同学知道。

)1. 设游泳者的速度大小和方向均不随时间变化,即令 )sin cos ()(θθu u t u ,=,而流速)0,()(v t v =, 其中 u 和 v 为常数, θ 为游泳者和x 轴正向间的夹角。

于是游泳者的路线 (x (t ), y (t )) 满足cos ,(0)0,()sin ,(0)0,()dxu v x x T L dtdy u y y T H dtθθ⎧=+==⎪⎪⎨⎪===⎪⎩ (1) T 是到达终点的时刻。

令θcos =z ,如果 (1) 有解, 则⎪⎩⎪⎨⎧-=-=+=+=221,1)()(,)()(zTu H t z u t y v uz T L t v uz t x (2) 即游泳者的路径一定是连接起、终点的直线,且L T uz v ===+ (3) 若已知L, H, v, T , 由(3)可得zTvTL u vT L H vT L z -=-+-=,)(22 (4) 图1由(3)消去 T 得到)(12v uz H z Lu +=- (5) 给定L, H, u , v 的值,z 满足二次方程02)222222222=-+++u L v H uvz H z u L H ( (6)(6)的解为12z z ==, (7) 方程有实根的条件为22LH H vu +≥ (8)为使(3)表示的T 最小,由于当L, u, v 给定时,0<dzdT, 所以(7) 中z 取较大的根, 即取正号。

2003高教社杯全国大学生数学建模竞赛题目

2003高教社杯全国大学生数学建模竞赛题目

2003高教社杯全国大学生数学建模竞赛题目(请先阅读 “对论文格式的统一要求”)D 题 抢渡长江“渡江”是武汉城市的一张名片。

1934年9月9日,武汉警备旅官兵与体育界人士联手,在武汉第一次举办横渡长江游泳竞赛活动,起点为武昌汉阳门码头,终点设在汉口三北码头,全程约5000米。

有44人参加横渡,40人达到终点,张学良将军特意向冠军获得者赠送了一块银盾,上书“力挽狂澜”。

2001年,“武汉抢渡长江挑战赛”重现江城。

2002年,正式命名为“武汉国际抢渡长江挑战赛”,于每年的5月1日进行。

由于水情、水性的不可预测性,这种竞赛更富有挑战性和观赏性。

2002年5月1日,抢渡的起点设在武昌汉阳门码头,终点设在汉阳南岸咀,江面宽约1160米。

据报载,当日的平均水温16.8℃, 江水的平均流速为1.89米/秒。

参赛的国内外选手共186人(其中专业人员将近一半),仅34人到达终点,第一名的成绩为14分8秒。

除了气象条件外,大部分选手由于路线选择错误,被滚滚的江水冲到下游,而未能准确到达终点。

假设在竞渡区域两岸为平行直线, 它们之间的垂直距离为 1160 米, 从武昌汉阳门的正对岸到汉阳南岸咀的距离为 1000米,见示意图。

请你们通过数学建模来分析上述情况, 并回答以下问题:1. 假定在竞渡过程中游泳者的速度大小和方向不变,且竞渡区域每点的流速均为 1.89 米/秒。

试说明2002年第一名是沿着怎样的路线前进的,求她游泳速度的大小和方向。

如何根据游泳者自己的速度选择游泳方向,试为一个速度能保持在1.5米/秒的人选择游泳方向,并估计他的成绩。

1160m 长江水流方向 终点: 汉阳南岸咀 起点: 武昌汉阳门2. 在(1)的假设下,如果游泳者始终以和岸边垂直的方向游, 他(她)们能否到达终点?根据你们的数学模型说明为什么 1934年 和2002年能游到终点的人数的百分比有如此大的差别;给出能够成功到达终点的选手的条件。

3. 若流速沿离岸边距离的分布为 (设从武昌汉阳门垂直向上为 y 轴正向) : ⎪⎩⎪⎨⎧≤≤<<≤≤=米米秒,米米米秒,米米米秒,米1160960/47.1960200/11.22000/47.1)(y y y y v游泳者的速度大小(1.5米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩。

2003年数学建模A题

2003年数学建模A题

2003高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。

(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件2提供的数据供参考。

(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。

附件3提供的数据供参考。

(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。

附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。

前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。

在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。

希望这种分析能对认识疫情,安排后续的工作生活有帮助。

1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。

则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。

2003高教社杯全国大学生数学建模竞赛A题

2003高教社杯全国大学生数学建模竞赛A题

2003高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。

(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件2提供的数据供参考。

(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。

附件3提供的数据供参考。

(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。

附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。

前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。

在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。

希望这种分析能对认识疫情,安排后续的工作生活有帮助。

1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。

则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。

高中数学建模试题及答案

高中数学建模试题及答案

高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。

答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。

答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。

答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。

《数学建模与实验》习题库a

《数学建模与实验》习题库a

Hyundai 车价$12,400 预付$500 月利率 6.5%直到 48 个月
你每个月为买车最多能付 475 美元。利用动力系统模型来决定你应该买哪家公司的车。
1.2 习题
1.从引进到 Tasmania 岛的新环境里的养群数量的增长得到下面的数据。

1814 1824 1834 1844 1854 1864
1810
7,240,000
1820
9,638,000
1830
12,866,000
1840
17,069,000
1850
23,192,000
1860
31,443,000
1870
38,558,000
1880
50,156,000
1890
62,948,000
1900
75,995,000
1910
91,972,000Leabharlann 数量 125275
830
1200 1750 1650
根据数据画图形,能看出某种趋势吗?画出 1814 年后数量变化对年份的图形。构建一个
能合理地近似描述你所观察到的变化的离散动力系统。
2.下列数据表示从 1790 年到 2000 年的美国人口数据
年份
人口
1790
3,929,000
1800
5,308,000
《数学建模与实验》习题库 a
感谢信息与计算科学 02 级的五位同学, 作为毕业设计英文翻译任务完成了此习题库的 构建工作, 他(她)们的工作分别为:
刘 静: 第 1, 4 章; 朱佳琦: 第 2, 3, 6 章; 李新颖: 第 5, 7 章; 朱晓强: 第 8, 9, 10 章; 甘永生: 第 11, 12 章.

数学建模期末答案

数学建模期末答案

《数学建模》期末考试A卷姓名:专业:学号:学习中心:成绩:一、判断题(每题3分,共15分)1、模型具有可转移性。

------------------------------(√)2、一个原型,为了不同的目的可以有多种不同的模型。

------(√)3、一个理想的数学模型需满足模型的适用性和模型的可靠性。

---------------------------------------------(√)4、力学中把质量、长度、时间的量纲作为基本量纲。

-------(√)5、数学模型是原型的复制品。

-------------------- (×)二、不定项选择题(每题3分,共15分)1、下列说法正确的有AC 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

2、建模能力包括ABCD 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力3、按照模型的应用领域分的模型有AE 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型4、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法5、一个理想的数学模型需满足AC 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性三、用框图说明数学建模的过程。

(10分)四、建模题(每题15分,共60分)1、四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?解:4条腿能同时着地(一)模型假设对椅子和地面都要作一些必要的假设:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

2003年全国高中数学联赛试题及解答

2003年全国高中数学联赛试题及解答

2003年全国高中数学联合竞赛试卷第一试(10月12日上午8:00 9:40)一、选择题(每小题6分,共36分)1.(2003年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是A. B. C. D.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB 的中垂线与x轴交于点P,则线段PF的长等于(A)163(B)83(C)163 3 (D) 8 34.若x∈[-512,-3],则y=tan(x+23)-tan(x+6)+cos(x+6)的最大值是(A)125 2 (B)116 2 (C)116 3 (D)125 35.已知x,y都在区间(-2,2)内,且xy=-1,则函数u=44-x2+99-y2的最小值是(A)85(B)2411(C)127(D)1256.在四面体ABCD中,设AB=1,CD=3,直线AB与CD的距离为2,夹角为3,则四面体ABCD 的体积等于(A)32(B)12(C)13(D)33二.填空题(每小题9分,共54分)7.不等式|x|3-2x2-4|x|+3<0的解集是.8.设F1、F2是椭圆x29+y24=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积等于.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若A B,则实数a的取值范围是.10.已知a,b,c,d均为正整数,且log a b=32,log c d=54,若a-c=9,则b-d=.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于.12.设M n={(十进制)n位纯小数0.-a1a2…a n|a i只取0或1(i=1,2,…,n-1),a n=1},T n是M n中元素的个数,S n是M n中所有元素的和,则limn→∞S nT n=.三、(本题满分20分)13.设32≤x≤5,证明不等式2x+1+2x-3+15-3x<219.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A 刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A 取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠P AC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104=⎩⎨⎧⎭⎬⎫3n 104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).1997年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 2049解:452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2003-1980=23项.由2025+23=2048.知选C.2.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是A. B. C. D.解:曲线方程为x2a+y2b=1,直线方程为y=ax+b.由直线图形,可知A、C中的a<0,A图的b>0,C图的b<0,与A、C中曲线为椭圆矛盾.由直线图形,可知B、D中的a>0,b<0,则曲线为焦点在x轴上的双曲线,故选B.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB 的中垂线与x轴交于点P,则线段PF的长等于(A)163(B)83(C)163 3 (D) 8 3解:抛物线的焦点为原点(0,0),弦AB所在直线方程为y=3x,弦的中点在y=pk=43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.4.若x∈[-512,-3],则y=tan(x+23)-tan(x+6)+cos(x+6)的最大值是(A)125 2 (B)116 2 (C)116 3 (D)125 3解:令x+6=u,则x+23=u+2,当x∈[-512,-3]时,u∈[-4,-6],y=-(cot u+tan u)+cos u=-2sin2u+cos u .在u∈[-4,-6]时,sin2u与cos u都单调递增,从而y单调递增.于是u=-6时,y取得最大值1163,故选C.5.已知x,y都在区间(-2,2)内,且xy=-1,则函数u=44-x2+99-y2的最小值是(A)85(B)2411(C)127(D)125解:由x,y∈(-2,2),xy=-1知,x∈(-2,-12)∪(12,2),u=44-x2+9x29x2-1=-9x4+72x2-4-9x4+37x2-4=1+3537-(9x2+4x2).当x∈(-2,-12)∪(12,2)时,x2∈(14,4),此时,9x2+4x2≥12.(当且仅当x2=23时等号成立).此时函数的最小值为125,故选D.6.在四面体ABCD 中, 设AB=1,CD=3,直线AB 与CD 的距离为2,夹角为3,则四面体ABCD的体积等于(A) 32 (B) 12 (C) 13 (D) 33解:如图,把四面体补成平行六面体,则此平行六面体的体积=1×3×sin π3×2=3. 而四面体ABCD 的体积=16×平行六面体体积=12.故选B . 二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0解:即|x |3-2|x |2-4|x |+3<0,(|x |-|x |<-5+12,或5-12<|x |<3.∴ 解为(-3,-5-12)∪(5-12,3).8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .解:F 1(-5,0),F 2(5,0);|F 1F 2|=25.|PF 1|+|PF 2|=6,|PF 1|=4,|PF 2|=2.由于42+22=(25)2.故PF 1F 2是直角三角形55. ∴ S=4.9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }若A B ,则实数a 的取值范围是 .解:A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .解:a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9. ∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45而得.设E 的射影为N ,则 MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .解:由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -20.11…1+2n -210-n .∴ lim n →∞S n T n =12 19=118.三、(本题满分20分)13.设32≤x ≤5,证明不等式2x +1+2x -3+15-3x <219.N MDC B A解:x +1≥0,2x -3≥0,15-3x ≥0.32≤x ≤5. 由平均不等式x +1+x +1+2x -3+15-3x 4≤x +1+x +1+2x -3+15-3x 4≤14+x4.∴ 2x +1+2x -3+15-3x=x +1+x +1+2x -3+15-3x ≤214+x .但214+x 在32≤x ≤5时单调增.即214+x ≤214+5=219.故证.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R )与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.解:曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c sin 4t ) ∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ① 若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c 0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0,此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A 刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A 取遍圆周上所有点时,求所有折痕所在直线上点的集合.解:对于⊙O 上任意一点A ,连AA ,作AA 的垂直平分线MN ,连OA .交MN 于点P .显然OP +P A=OA =R .由于点A 在⊙O 内,故OA=a <R .从而当点A 取遍圆周上所有点时,点P 的轨迹是以O 、A 为焦点,OA=a 为焦距,R (R >a )为长轴的椭圆C . 而MN 上任一异于P 的点Q ,都有OQ +QA=OQ +QA >OA .故点Q 在椭圆C 外.即折痕上所有的点都在椭圆C 上及C 外.反之,对于椭圆C 上或外的一点S ,以S 为圆心,SA 为半径作圆,交⊙O 于A ,则S 在AA 的垂直平分线上,从而S 在某条折痕上.最后证明所作⊙S 与⊙O 必相交.1 当S在⊙O 外时,由于A 在⊙O 内,故⊙S 与⊙O 必相交; 2 当S 在⊙O 内时(例如在⊙O 内,但在椭圆C 外或其上的点S ),取过S 的半径OD ,则由点S 在椭圆C 外,故OS +S A ≥R (椭圆的长轴).即S A ≥S D .于是D 在⊙S 内或上,即⊙S 与⊙O 必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C 上及C 外的所有点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠P AC .分析:由∠PBC=∠CDB ,若∠DBQ=∠P AC=∠ADQ ,则BDQ ∽DAQ .反之,若BDQ ∽DAQ .则本题成立.而要证BDQ ∽DAQ ,只要证BD AD =DQAQ即可.证明:连AB .∵ PBC ∽PDB , ∴ BD BC =PD PB ,同理,AD AC =PD P A . ∵ P A=PB ,∴ BD AD =BC AC. ∵ ∠BAC=∠PBC=∠DAQ ,∠ABC=∠ADQ .∴ ABC ∽ADQ . ∴ BC AC =DQ AQ .∴ BD AD =DQ AQ.∵ ∠DAQ=∠PBC=∠BDQ . ∴ ADQ ∽DBQ .∴ ∠DBQ=∠ADQ=∠P AC .证毕.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104=⎩⎨⎧⎭⎬⎫3n 104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.解:当3l 、3m 、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l 104=⎩⎨⎧⎭⎬⎫3m 104=⎩⎨⎧⎭⎬⎫3n 104.即求满足3l 3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104). 下面先求满足3x ≡1(mod 104)的最小正整数x .∵ (104)=10412⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N *,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501. 取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).证明:设点集为V ={A 0,A 1,…,A n -1},与A i 连线的点集为B i ,且|Bi |=b i .于是1≤b i ≤n -1.又显然有O Q CD B APi =0n -1∑b i =2l ≥q (q +1)2+2.若存在一点与其余点都连线,不妨设b 0=n -1. 则B 0中n -1个点的连线数l -b 0≥12q (q +1)2+1-(n -1) (注意:q (q +1)=q 2+q =n -1)=12(q +1)(n -1)-(n -1)+1=12(q -1)(n -1)+1 ≥12(n -1)+1≥[12(n -1)]+1.(由q ≥2) 但若在这n -1个点内,没有任一点同时与其余两点连线,则这n -1个点内至多连线[n -12]条,故在B 0中存在一点A i ,它与两点A j 、A k (i 、j 、k 互不相等,且1≤i ,j ,k )连了线,于是A 0、A j 、A i 、A k 连成四边形.现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式) =12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2) (2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即(n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入)得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ① 但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3≥(q -1)(q +2)-n +3=q 2+q +1-n =0.(b 0≥q +2)② (nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③ 又(nq -q -n +3-b 0)、(nq -q +2-b 0)、q (n -b 0-1)、(q +1)(n -b 0)均为正整数,从而由②、③得, q (q +1)(n -b 0)(n -b 0-1)<(nq -q +2-b 0)(nq -q -n +3-b 0). ④ 由①、④矛盾,知原命题成立.又证:画一个n ×n 表格,记题中n 个点为A 1,A 2,…,A n ,若A i 与A j 连了线,则将表格中第i 行j 列的方格中心涂红.于是表中共有2l 个红点,当d (A i )=m 时,则表格中的i 行及i 列各有m 个红点.且表格的主对角线上的方格中心都没有涂红.由已知,表格中必有一行有q +2个红点.不妨设最后一行前q +2格为红点.其余格则不为红点(若有红点则更易证),于是:问题转化为:证明存在四个红点是一个边平行于格线的矩形顶点.若否,则表格中任何四个红点其中心都不是一个边平行于格线的矩形顶点.于是,前n -1行的前q +2个方格中,每行至多有1个红点.去掉表格的第n 行及前q +2列,则至多去掉q +2+(n -1)=q +2+q 2+q =(q +1)2+1个红点.于是在余下(n -1)×(n -q -2)方格表中,至少有2l -(q +1)2-1=q (q +1)2+2-(q +1)2-1=(q -1)(q +1)2+1=q 3+q 2-q 个红点.设此表格中第i 行有m i (i =1,2,…,n -1)个红点,于是,同行的红点点对数的总和=i =1n -1∑C 2 m i .其中n -1=q 2+q .(由于当n >k 时,C 2n +C 2k <C 2 n +1+C 2k -1,故当红点总数为q 3+q 2-q 个时,可取q 2行每行取q 个红点,q 行每行取q -1个红点时i =1n -1∑C 2 m i 取最小值,由下证可知红点数多于此数时更有利于证明.即)但 q2C 2q +q C 2q -1≤i =1n -1∑C 2 m i . 由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2m i≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1993年A 题交调频率设计的参考解答1. 问题分析根据题目给出的数据条件,首先要确定输入输出的函数关系.这是一个曲线拟合问题.由于交调是因为输入u(t)的乘方产生的.故此处用多项式拟合输入输出关系是恰当的.那么,拟合多项式的最高次数是多少?因为u k (t)可能产生≤k 阶类型的交调,而题目要求考虑二阶和三阶类型的交调,故最高次数必定≥3.到底最高次数为多少,待后面通过计算再确定.2. 模型假设(1)不考虑系统外部的干扰;(2)拟合出的输入输出关系,对自变量u(t)在其有效范围内均成立.3. 模型建立及求解(1)输入输出关系的建立由前面的分析,输入输出关系应该用≥3次的多项式拟合.那么,我们试用不同次数的多项式进行拟合来比较,结果发现用≥4次的多项式进行拟合时,拟合出的多项式中次数≥4的项的系数非常小(≤10-5),以致不会对结果产生影响.故用三次多项式进行拟合已达到精度了.设拟合多项式为:y(t)=α0+α1u(t)+ α2u 2(t)+ α3u 3(t)在所给的数据中有u=0时,y=0.故选取α0=0较好,于是拟合多项式化为:y(t)= α1u(t)+ α2u 2(t)+ α3u 3(t)用最小二乘法对y(t)进行三元回归确定系数.记x 1(t)=u(t),x 2(t)=u 2(t),x 3(t)=u 3(t).令:∑=---=ϕ91i 2i 33i 22i 11i321)x a x a x a y ()a ,a ,a (求a 1,a 2,a 3使Φ(a 1,a 2,a 3)为最小. 由3,2,1k 0k ==α∂ϕ∂得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++∑∑∑∑∑∑∑∑∑∑∑∑============913391232913219131912391322912219121911391312912119121)()()()2()()()2()()(i ii i i i i i i i i i i i i i i i i i i i i ii i i i i i i i i x y a x a x x a x x x y a x a x a x x x y a x a x x a x解此方程组得a 1=0.2441a 2=0.04538a 3=-0.0004133故拟合多项式为:y(t)=0.2441u(t)+0.04538u 2(t)-0.000413u 3(t) (11.13)可以用Mathematica 软件作函数拟合与上述结果进行比较.(2)频率约束条件下的初步配置由假设(2),输入输出关系(11.13)对u(t)在其有效范围内均成立.故可将输入u(t)=∑=π31k k k t f 2cos A(14)代入(11.14)式,经整理得到输出y(t)的频率成分有以下几种:①1阶:f i ,i=1,2,3;②2阶:|f i ±f j |,i,j=1,2,3;③3阶:| f i ±f j ±f k |, i,j=1,2,3.由约束条件36≤f 1≤40,41≤f 2≤50,46≤f 3≤55得f i +f j ≥77>f 3+6| f i -f j |≤19<f 1-6f i +f j +f k >f 3+6故二阶交调和三阶交调中的f i +f j +f k ,均不在f i (i=1,2,3)产生干扰的频带[30,61]中.因此,这些交调可以不必考虑.剩余的三阶交调为如下形式:d(i,j)=2f i -f j (i ≠j)g(i,j,k)=f i +f j -f k (i ≠j ≠k) (11.15)根据条件(2)与(4)应满足下述不等式)6.11(6|f f |6|f )k ,j ,i (g |6|f )j ,i (d |j i m k ⎪⎩⎪⎨⎧≥-≥-≥-用计算机求解满足上述条件的频率组是比较容易的.具体作法是:采用穷举法,逐一选出满足(11.16)式的频率组(在计算过程中,不妨设f 1<f 2<f 3).最终求得满足频率约束(11.16),即满足条件(2),(4)的6组解为f i f 2 f 31 36 42 552 36 49 553 36 42 544 36 48 545 37 43 556 37 49 55(3)信噪比条件下的进一步配置信噪比SNR 的约束是:当交调出现在f i ±6时,要求SNR>10(dB).因此,需从上述6组解中,进一步求出满足SNR 要求的解.为此,需计算输出y(t)中频率为f i 的系数和交调2f i -f j ,f i +f j -f k (i ≠j ≠k)的系数.将(11.14)式代入(11.13)得:)17.11(y y y )cos A (a )cos A (a cos A a y 321331k k k 3231k k k 231k k k1++∆θ+θ+θ=∑∑∑===其中θk =2πf k t,a 1,a 2,a 3是拟合多项式的系数.其中y 2仅包含二阶交调,故无影响.y 3较复杂,可能出现频率成分θk ,2θk -θj , θi +θj -θk (i ≠j ≠k).要方便的求出各种频率的系数,比较好的办法是采用Fourier 级数展开,这样能够处理更一般的问题。

将y 3表为复数形式)cos A )(cos A )(cos A (a y 31k k k31j j j 31i i i 33∑∑∑===θθθ= =)2e e A )(2e e A )(2e e A (3a 31k i i k 31j i i j 31i i i i k k j j i i ∑∑∑=θ-θ=θ-θ=θ-θ+++ =∑∑=θυ+θυ+θυ±=υυυ31k ,j ,i )(i k j i 1,,33k 3j 2i 1321e A A A 2a (11.18)显然,y 3(θ1, θ2, θ3)关于θ1, θ2, θ3均是以2π为周期的函数,故可将其展为Fourier 级数)n n n (i n ,n ,n n n n 3332211321321e C y θ+θ+θ-+∞-∞=+∞-∞=+∞-∞=∑∑∑=, (11.19)321n ,n ,n C =123)(i 32133d d d e )(y )2(1k 3j 2i 1θθθθθθπθυ+θυ+θυππ-ππ-ππ-⎰⎰⎰,, (11.20)于是y 3中对应于单频率成份θi 的系数是C 1,0,0和C -1,0,0(对应f 1)C 0,1,0和C 0,-1,0(对应f 2)C 0,0,1和C 0,0,-1(对应f 3)归纳为一般形式,得① y 3中对应于单频率成份θi 的系数是满足n 1+n 2+n 3=±1,且|n 1|+|n 2|+|n 3|=1的系数321n ,n ,n C ,类似地得② y 3中对应于频率成份2θi -θj , θi +θj -θk 的系数是满足n 1+n 2+n 3=±1且|n 1|+|n 2|+|n 3|=3的系数321n ,n ,n C .下面计算信噪比中所需频率的振幅.单频率中以θi 为例:123i 31k ,j ,i )(i k j i 1,,3330,0,1d d d e ]e A A A 2a [)2(1C 1332211321θθθπ=θ-=θυ+θυ+θυ±=υυυππ-ππ-ππ-∑∑⎰⎰⎰ =)A A 6A A 6A 3(2C231221313++ (11.21)C -1,0,0=C 1,0,0 故y 3中对应于θ1的系数中D 1,0,0=2C 1,0,0=)A A 6A A 6A 3(4323122123++ (11.22) 与(11.17)式中y 1的频率成份θ1的系数合并得对应于频率f 1的振幅为:)A A 6A A 6A 3(4a A a 1B 23122131311++++= (11.23)用同样的方法可求出对应于2θ1-θ2的系数(即振幅)为:22130,1,2A A a 43D =- (11.24) 对应于θ1+θ2-θ3的系数为: 32131,1,1A A A a 43D =- (11.25) 归纳起来,y(t)中有关频率的振幅为:①对应于频率f i 的振幅B i (i=1,2,3)为)A A 6A A 6A 3(43a A a B 2k i 2j i 3i i i i +++= , (j ≠k ≠i) (11.26) ② 对应于频率2f i -f i 的振幅(i=1,2,3.j ≠i)为j 2i 3A A a 43 (11.27) ③对应于频率f i +f j -f k (i,j,k=1,2,3.i ≠j ≠k)的振幅为 j 2i 3A A a 23 (1 1.28) 将此处所求的各种频率的振幅用于(2)中求出的满足频率约束条件的6组配置,分别计算出有关的信噪比SNR=10lg(2n 3i C /B ),检验是否SNR>10(dB).最终求出满足条件的解有二组:(36,42,55) (36,49,55)4. 稳定性分析(1)解关于拟合多项式系数的稳定性这里讨论的是当拟合多项式的系数在什么范围变化时,解仍是解,非解仍是非解.由前面的讨论中可看到,当拟合多项式系数发生变化时,输出信号中,各种频率的振幅将发生变化,但输出的频率不会发生变化.故只需讨论拟合多项式的系数变化时有关信噪比的影响,即当拟合多项式的系数在什么范围变化时,前面得到的6组频率中1,2组仍是解,3~6组仍是非解.设另有拟合多项式33221)t (u a )t (u a )t (u a )t (y ++= (11.29)同(3)中的方法一样可得)t (y 中有关频率的振幅为对应于f i 的振幅)k j i ()A A 6A A 6A 3(4a A a B 2k i 2j i 3i 3i 1i ≠≠+++= (11.30)对应于2f i -f j 的振幅j 2i 3A A a 43 (i ≠j ) (11.31) 对应f i +f j -f k 的振幅3213A A A a 23 (i ≠j ≠k) (11.32) 计算有关的信噪比,并使1,2组频率仍为解,3~组频率仍为非解,得下述不等式2221321)A A a 43(10> 2222322)A A a 43(10B >2321323)A A A a 23(10B > 2321321)A A A a 23(10B > 2322322)A A a 43(10B > (11.33) 2223323)A A a 43(10B > 有一成立⎪⎪⎪⎭⎪⎪⎪⎬⎫≤≤≤232232121223222321323)A A a 43(10B )A A a 43(10B )A A A a 23(10B 解此不等式组,即可得321a ,a .a 的变化范围,在此范围内解是稳定的.(2)高阶拟合多项式(≥阶)对解的影响前面在拟合输出函数时,采用的是三阶多项式.实际上大于等于4次的函数亦能够产生一阶、二阶、三阶的交调.但由于4次及4次以上的项其系数非常小(≤10-5).故其生产的交调的振幅相对3次项产生的该交调的振幅的变化在解的稳定范围之内.故用三次多项式作拟合函数是足够精确的.5. 推广与改进二项有意义的推广是(1)将输入信号由3项改为n 项∑=π=n1k kk t f 2cos A )t (u 研究其信噪比的计算和研究高阶交调(如5,7阶)的分析.Fourier 分析方法是研究此问题的重要工具.(2)讨论输入输出曲线的拟合在负部进行或其它假定下解的情况.。

相关文档
最新文档