人教版数学八年级上册 第十三章《轴对称》教案设计
人教版数学八年级上册13.1.1轴对称教案

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“轴对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调轴对称的定义和性质这两个重点。对于难点部分,如对称轴的确定和不规则图形的轴对称判定,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与轴对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如剪纸或折叠纸片来观察轴对称图形。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《轴对称》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过对称的情况?”比如,我们常见的剪纸艺术,很多图案都是轴对称的。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索轴对称的奥秘。
实践活动环节,分组讨论和实验操作让学生们动手动脑,增强了他们对轴对称知识的理解。但在小组讨论中,我也注意到有些学生参与度不高,可能是因为主题过于开放或者他们对问题的理解不够深入。在今后的教学中,我需要更加注意引导学生的讨论,确保每个人都能积极参与进来。
学生小组讨论后,成果分享环节也让我看到了学生们的创造力和思考能力。他们能够将轴对称的概念与日常生活相结合,提出一些很有创意的想法。这让我感到很欣慰,也证明了我的教学方法在一定程度上是有效的。
人教版数学八年级上册教学设计13.1《轴对称》

人教版数学八年级上册教学设计13.1《轴对称》一. 教材分析人教版数学八年级上册第13.1节《轴对称》是初中数学中的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称解决实际问题。
本节内容通过具体的实例,引导学生探究轴对称的性质,培养学生的观察能力、操作能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,对图形的性质有一定的了解。
但轴对称作为一个全新的概念,对学生来说还是有一定难度的。
因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解轴对称的概念,逐步掌握轴对称的性质。
三. 教学目标1.了解轴对称的概念,能够识别生活中的轴对称现象。
2.掌握轴对称的性质,能够运用轴对称解决实际问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.轴对称的概念和性质。
2.运用轴对称解决实际问题。
五. 教学方法1.采用情境教学法,从生活实例出发,引导学生发现轴对称现象。
2.采用探究教学法,让学生通过合作交流,自主发现轴对称的性质。
3.采用实践教学法,让学生动手操作,巩固对轴对称的理解。
4.采用问题教学法,引导学生运用轴对称解决实际问题。
六. 教学准备1.准备相关的多媒体教学课件,展示生活中的轴对称现象。
2.准备一些实际的例子,用于引导学生发现轴对称的性质。
3.准备一些练习题,用于巩固学生对轴对称的理解。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现并理解轴对称的概念。
2.呈现(10分钟)呈现一些实际的例子,让学生观察并探讨轴对称的性质。
如:轴对称图形的大小、形状、位置关系等。
3.操练(10分钟)让学生分组进行操作,通过实际动手,发现并验证轴对称的性质。
可以让学生剪出一些轴对称的图形,观察并总结其性质。
4.巩固(10分钟)让学生解决一些实际问题,运用轴对称的知识。
如:设计一个轴对称的图案,或解决一些与轴对称相关的几何问题。
2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计

人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计一. 教材分析人教版八年级数学上册第十三章《轴对称》是学生在学习了平面几何基本概念和性质的基础上进行的一章内容。
本章主要让学生掌握轴对称图形的概念,性质,以及如何画出各种轴对称图形。
13.2节《画轴对称图形》是本章的第二节内容,主要让学生学会如何通过对称轴画出各种轴对称图形,培养学生的动手操作能力和空间想象能力。
二. 学情分析学生在之前的学习中已经掌握了平面几何的基本概念和性质,对一些基本的几何图形有了一定的了解。
但学生在画图方面可能还有一定的困难,特别是在画对称轴和轴对称图形时。
因此,在教学过程中,教师需要耐心引导学生,让学生逐步掌握画图的方法。
三. 教学目标1.让学生理解轴对称图形的概念,并能找出生活中的轴对称图形。
2.让学生掌握画轴对称图形的方法,提高学生的动手操作能力和空间想象能力。
3.培养学生观察、思考、交流的能力,提高学生的合作意识。
四. 教学重难点1.重点:让学生掌握轴对称图形的概念,以及画轴对称图形的方法。
2.难点:如何引导学生找出生活中的轴对称图形,以及如何让学生独立画出各种轴对称图形。
五. 教学方法采用“引导法”、“实例法”、“合作学习法”等教学方法。
教师通过引导,让学生主动探索轴对称图形的性质,找出生活中的轴对称图形。
同时,采用合作学习的方式,让学生在小组内交流讨论,共同完成画轴对称图形的任务。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备几何画图工具,如直尺、圆规等。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形实例,如剪纸、图片等,引导学生观察并思考:这些图形有什么共同特点?让学生初步感受轴对称图形的性质。
2.呈现(10分钟)教师通过课件呈现轴对称图形的定义,让学生明确轴对称图形的概念。
同时,教师通过讲解,让学生了解轴对称图形的性质,如对称轴的性质,对称点的性质等。
人教版八年级数学上册第十三章轴对称全章复习(第二课时)教学设计

四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示一组生活中的轴对称图形,如剪纸、建筑、图案等,引导学生观察并思考:这些图形有什么共同特点?它们在现实生活中有哪些应用?
2.学生观察、讨论,教师适时引导学生发现:这些图形都是轴对称的,它们具有美观、平衡的特点,广泛应用于日常生活和艺术设计中。
5.拓展作业:
-鼓励学生阅读与轴对称相关的书籍、文章,了解轴对称在历史、文化、艺术等方面的应用。
-组织学生参加学校或社区举求:
1.学生需独立完成作业,遇到问题可向同学和老师请教,培养自主解决问题的能力。
2.提交作业时,要求书写工整、条理清晰,解题过程和答案正确。
4.掌握轴对称图形的折叠与展开,培养空间想象能力和动手操作能力。
(二)过程与方法
1.通过观察、操作、探索等活动,让学生在自主探究和合作交流中体验轴对称的性质和运用,提高解决问题的能力。
2.利用实际问题情境,引导学生运用轴对称的性质进行分析和解决,培养学生运用数学知识解决实际问题的能力。
3.设计具有挑战性的问题和任务,激发学生的思维,培养他们勇于挑战、善于思考的品质。
3.教师总结:轴对称不仅是几何图形的一种特性,还广泛应用于现实生活中的各个方面。今天我们将进一步学习轴对称的相关知识。
(二)讲授新知
1.教师引导学生复习轴对称的定义,强调对称轴的概念,让学生理解轴对称图形的对称性质。
2.讲解轴对称的性质和定理,如对称轴上的点、线段、角的轴对称映像等,结合实例进行解释,让学生直观地理解轴对称的性质。
3.应用作业:
-利用轴对称性质,解决一道实际问题,如最短路线问题、图形面积计算等。
八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。
本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。
教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。
但轴对称概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。
三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。
2.培养学生观察、分析和推理的能力。
3.引导学生运用轴对称的性质解决实际问题。
四. 教学重难点1.轴对称的概念及性质。
2.如何运用轴对称的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。
在小组合作学习中,培养学生团队合作精神和沟通能力。
六. 教学准备1.准备与轴对称相关的实例图片和练习题。
2.准备课件,展示轴对称的性质和应用。
3.准备黑板,用于板书重要知识点。
七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。
提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。
2. 呈现(10分钟)展示轴对称的定义和性质。
通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。
同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。
3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。
讨论结束后,每组选代表进行分享。
教师对每组的分享进行点评,指出优点和需要改进的地方。
人教版八年级数学上册第十三章轴对称单元教材分析优秀教学案例

(一)导入新课
1.利用实物模型、图片等展示轴对称现象,如剪纸、折叠等,让学生直观感受轴对称的美妙。
2.通过PPT、视频等多媒体手段,展示生活中的轴对称实例,如建筑物的设计、艺术作品等,引导学生关注轴对称在生活中的应用。
3.创设问题情境,如“你能找出周围的轴对称现象吗?”等,让学生在解决实际问题的过程中,自然引入轴对称的概念。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结自己在探究过程中的收获和不足。
2.组织学生进行自我评价,鼓励学生树立自信,勇于面对困难和挑战。
3.教师对学生的学习过程和结果进行评价,关注学生的个体差异,给予有针对性的指导和建议。
4.结合学生的反馈,及时调整教学策略,提高教学效果。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的创新意识和思维能力。同时,我会设计具有挑战性的数学题目,激发学生的学习兴趣,提高学生的数学素养。在整个教学过程中,我将注重培养学生的情感态度与价值观,使学生在学习数学的过程中,不仅能获得知识与技能的提升,还能在情感态度与价值观方面得到全面发展。
4.教师引导学生总结本节课的主要内容,加深学生对轴对称知识的理解和记忆。
(五)作业小结
1.布置具有针对性的作业,让学生巩固本节课所学知识,提高学生的实际应用能力。
2.要求学生对自己的作业进行自我评价,发现自己的不足,为下一步学习做好准备。
3.教师及时批改作业,给予学生反馈,帮助学生提高。
4.根据学生作业情况,调整教学策略,为下一节课的教学做好准备。
2.培养学生勇于探究、积极思考的科学精神,增强学生的自信心。
3.培养学生团队合作、交流分享的良好学习习惯,提高学生的沟通能力。
新人教版八年级数学教材上册第十三章《-轴对称》全章教案

13.1.1 轴对称教学设计【教学目标】一、知识与技能1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.了解线段垂直平分线的概念.二、过程与方法探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.三、情感态度与价值观欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。
【教学重点】轴对称的概念和性质【教学重点】轴对称的概念和性质【教学方法】观察、作图操作、类比【教学课型】新授课【教学准备】多媒体、剪刀、尺规【教学过程】一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、探索新知:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章《轴对称》教学分析一、本章在教材中的意义本章涉及到课标中图形的性质、图形的变化、图形与坐标三个部分的内容。
在图形的性质方面,本章主要学习线段的垂直平分线、等腰三角形和等边三角形的性质与判定,前有全等三角形作为探究、推理的基础,后面还会在平行四边形、圆的学习中讨论图形的对称性.在图形的变化方面,轴对称和平移、旋转都属于合同变换(将一个平面图形变换成与其相等或全等的图形的变换),初中阶段还会学习位似变换,教材在处理这些变换时,也都采取了相似的思路,即从实例中得到概念、从典型例子中总结性质、以性质为依据进行作图、在坐标系中作图探索坐标和变换的关系.在图形与坐标方面,本章的要求仅限于对称轴是坐标轴的情形,但在后续学习函数图象的对称性时,会遇到更复杂的情形.从学习过程的设计来看,本章教材在设计上加强了实验几何的成分。
(实验几何,即通过观察与实验认识几何图形、发现图形的性质、求解图形的关系。
)教材让学生通过画图、折纸、剪纸、度量等活动,探索发现几何结论,在发现结论的基础上,再经过推理证明这些结论。
二、本章教学目标和考试要求1.本章教学目标(1)通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质.(2)探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴对称的图形;认识并欣赏自然界和现实生活中的轴对称图形.(3)理解线段垂直平分线的概念,探索并曾敏线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上.(4)了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索并掌握等边三角形的性质定理及等边三角形的判定定理.(5)能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习兴趣.2.教学重、难点重点:轴对称的性质,等腰三角形的性质和判定.难点:对图形性质的推理证明.3.2018年北京市中考说明对本章的要求考试内容考试要求A B C图形与几何图形的性质线段垂直平分线理解线段垂直平分线的概念尺规作图(基本作图):过一点作已知直线的垂线,作一条线段的垂直平分线;能利用线段垂直平分线的性质与判定解决有关简单问题运用线段垂直平分线的有关内容解决有关问题等腰三角形和等边三角形了解等腰三角形和等边三角形的概念掌握等腰三角形和等边三角形的性质定理与判定定理;尺规作图(利用基本作图作三角形);已知底边及底边上的高线作等腰三角形;能用等腰三角形和等边三角形的性质定理与判定定理解决有关简单问题运用等腰三角形和等边三角形的有关内容解决有关问题图形的变化图形的轴对称了解轴对称的概念;理解轴对称的基本性质;了解轴对称图形的概念能画出简单平面图形关于给定对称轴的对称图形;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质;能利用轴对称的性质解决有关简单问题运用轴对称的有关内容解决有关问题图形与坐标坐标与图形运动在平面直角坐标系中,知道已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)后的对应顶点坐标之间的关系在平面直角坐标系中,能写出已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)后的图形的顶点坐标运用坐标与图形运动的有关内容解决有关问题三、本章教学建议1.本章知识结构框图生活中的轴对称轴对称作轴对称图形的对称轴画轴对称图形利用几何变换解决问题轴对称的概念轴对称的性质轴对称的作图线段的垂直平分线的性质坐标系中的轴对称等腰三角形等边三角形2.课时安排本章教学约15课时(含讲评),具体安排如下:13.1轴对称共3课时13.1.1轴对称1课时13.1.2线段的垂直平分线2课时13.2画轴对称图形共2课时13.3等腰三角形共6课时13.3.1等腰三角形4课时13.3.2等边三角形2课时13.4课题学习最短路径问题共2课时小结和单元检测共2课时3.教学中需要斟酌的问题(1)实例在教学中的合理运用。
(2)图形变化思想的渗透。
(3)多种形式的学习活动的合理安排。
(4)对于坐标和轴对称变换的难度把握。
(5)使用信息技术的时机与方式。
4.教学建议(1)注意联系实际,培养学生的数学素养。
(2)加强对问题分析过程的教学,克服推理难点。
(3)注意实验几何与论证几何的结合,发展学生的创新思维和推理能力。
(4)实际操作、空间想象与信息技术有效结合,帮助学生的数学学习,培养学生的空间观念。
四、各节内容分析13.1 轴对称13.1.1 轴对称【教学目标】(1)通过实例认识轴对称,体会轴对称在现实生活中的广泛应用.(2)能够识别简单的轴对称图形及其对称轴.(3)探索发现轴对称的基本性质.【重点】轴对称的基本性质.【难点】区分轴对称图形与两个图形成轴对称的概念.【典型例题】例1判断下列图案是否为轴对称图形. 如果是,找出它的对称轴.例2判断下列平面图形是否为轴对称图形. 如果是,说出它的对称轴.例3如图,△ABC和△A′B′C′关于直线l对称,∠B=90°,∠A=30°,A′B′=6cm,求AB的长和∠A′C′B′的度数.A'B'C'C BA例4剪纸是我国传统的民间艺术,直到今天还保留着过年贴窗花、嫁娶贴喜字等传统. 如图是一枚双“喜”剪纸,你知道是怎么剪出来的吗?先想一想,再动手做一做.13.1.2 线段的垂直平分线【教学目标】(1)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理.(2)理解并掌握过一点作已知直线的垂线的尺规作图.(3)能够作出轴对称图形或成轴对称的两个图形的对称轴.【重点】线段垂直平分线的性质定理.【难点】线段垂直平分线性质定理的证明.【典型例题】 例5 尺规作图:(1)经过已知直线外一点作这条直线的垂线; (2)经过已知直线上一点作这条直线的垂线.例6 如图,在△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,求△ABC 的周长.DEABC例7 如图,AD 与BC 相交于点O ,OA=OC ,∠A=∠C ,BE=DE. 求证:OE 垂直平分BD.OCBDAE例8 作图:(1)如图1,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?(2)如图2,电信部门要在图中地区修建一座电视信号发射塔,其中点A ,点B 是两个城镇,直线m ,n 是两条高速公路. ①若要将发射塔修建在高速公路n 沿线,且到A ,B 两城镇的距离相等,发射塔应修建在何处?在图上标出来;②若要使发射塔到A ,B 两城镇的距离相等,到两条高速公路m ,n 的距离也相等,应修建在什么位置?在图上标出来.A Bm nOA B图1 图2例9 如图,△ABC 中,边AB 、BC 的垂直平分线交于点P. (1)求证:PA=PB=PC ;(2)点P 是否也在边AC 的垂直平分线上呢?由此你还能得出什么结论?PABC例10 如图,AB=CD ,AC 、BD 的垂直平分线相交于点O. 求证:∠ABO=∠ODC.OBACD13.2 画轴对称图形 【教学目标】(1)能够画出简单图形(点、线段、直线、三角形等)关于给定对称轴的对称图形. (2)掌握平面直角坐标系中的图形经过轴对称(对称轴为坐标轴)后的对应点坐标之间的关系.【重点】画简单图形关于给定对称轴的轴对称图形. 【难点】轴对称在平面直角坐标系中的应用. 【典型例题】 例11 根据题意画图:(1)如图1,已知点A 和直线l ,画出点A 关于直线l 的对称点A′; (2)如图2,已知线段AB 和直线l ,画出线段AB 关于直线l 对称的图形; (3)如图3,已知△ABC 和直线l ,画出△ABC 关于直线l 对称的图形.lAl ABlABC图1 图2图3例12 如图,在3×3的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形. 图中△ABC 是一个格点三角形. 请你在图中画出一个与△ABC 成轴对称的格点三角形.AB C例13将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )① ②③④ABCD例14 如图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于y 轴和x 轴对称的图形,并分别写出顶点A ,B ,C ,D 的对应点的坐标.xy1OA BCD1例15 (课本P72-6题)如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示,用坐标描述这个运动,找出小球运动的轨迹上几个关于直线l对称的点.如果小球起始时位于(1,0)处,仍按原来方向击球,请你画出这时小球运动的轨迹.例16 (课本P72-7题)如图,分别作出△PQR 关于直线m (直线m 上各点的横坐标都为1)和直线n (直线n 上各点的纵坐标都为-1)对称的图形.它们的对应点的坐标之间分别有什么关系?13.3 等腰三角形13.3.1 等腰三角形 【教学目标】(1)了解等腰三角形的概念,探索并证明等腰三角形的性质定理. (2)探索并掌握等腰三角形的判定定理. 【重点】等腰三角形的性质与判定. 【难点】证明等腰三角形的性质定理. 【典型例题】例17 如图,在△ABC 中,AB=AC. 点D 在AC 上,且BD=BC=AD. 求△ABC 各角的度数.DAB C例18 如图,点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE. 求证:BD=CE.E B CAD例19 求证:等腰三角形底边的中点到两腰的距离相等.已知:如图,△ABC 中,AB=AC ,D 为BC 中点,DE ⊥AB 于E ,DF ⊥AC 于F. 求证:DE=DF.F E DBCA例20 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 例21例22 已知:如图,AD ∥BC ,BD 平分∠ABC. 求证:AB=AD.DBCA例23 如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高,AE 是∠BAC 的平分线,AE 与CD 交于点F ,求证:△CEF 是等腰三角形.例24 如图,已知四边形ABCD. 在条件①AB =AD ,②∠ABC =∠ADC ,③BC =CD 中,以其中两个为题设,余下的一个为结论,构成的命题是真命题吗?如果是真命题,请证明;如果是假命题,请说明理由或画出反例.DACB例25 如图,△ABC 是直角三角形. 请以直角三角形的一边为边画一个等腰三角形,使它的第三个顶点也在直角三角形的边上.B CA例26 探究:在三角形中,若两条边不相等,那么较大边所对的角较大还是较小?DABC13.3.2 等边三角形 【教学目标】(1)了解等边三角形的概念,探索并掌握等边三角形的性质定理及等边三角形的判定定理. (2)掌握含30°角的直角三角形的性质:30°的角所对的直角边等于斜边的一半. 【重点】等边三角形的性质和判定. 【难点】灵活运用等边三角形的判定定理.【典型例题】例27 如图,△ABC 是等边三角形,E 是AC 上一点,D 是BC 延长线上一点,连接BE ,DE ,若∠ABE =40°,BE =DE ,求∠CED 的度数.例28 如图,在等边三角形ABC 中,DE ∥BC. 求证:△ADE 是等边三角形.E ABCD例29 如图,P ,Q 是△ABC 的边BC 上的两点,并且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.Q B CAP例30 图①、图②中,点C 为线段AB 上一点,△ACM 与△CBN 都是等边三角形. (1)如图①,线段AN 与线段BM 是否相等?请说明理由;(2)如图②,AN 与MC 交于点E ,BM 与CN交于点F ,探究△CEF 的形状,并证明你的结论.图①图②例31 如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高. 求证:AD=14AB .例32 底角为15°的等腰三角形,若腰长为20cm ,求它的面积.例33 如图,要把一块三角形的土地均分给甲、乙、丙三家农户. 如果∠C=90°,∠B=30°,要使这三家农户所得土地的大小、形状都相同,请你试着分一分,并在图上画出来. (说明画法和理由) B AC13.4 课题学习 最短路径问题【教学目标】(1)让学生了解解决最短路径问题的基本方法.(2)在解决问题的过程中,体会其中蕴含的变换思想和化归思想.【重点】用轴对称的思想解决最短路径问题.【难点】灵活运用变换的思想转化问题.【典型例题】例34 牧马人要从A 地出发,到一条笔直的河边饮马,然后到B 地.(1)如图1,A 地和B 地在河的同侧,牧马人到河边的什么地方饮马,可使所走的路径最短?(2)如图2,河的两岸互相平行,A 地和B 地在河的两侧,现在要在河上建一座桥MN (桥MN 与河岸垂直),桥建在何处可以使牧马人所走的路径最短? l ABa b AB图1 图2例35 如图,长方形台球桌ABCD 上有两个球P ,Q.(1)请设计一条路径,使得球P 撞击台球桌边AB 反弹后,撞到球Q ;(2)请设计一条路径,使得球P 撞击台球桌边,经过两次反弹,撞到球Q. C AB PQD例36 已知锐角△ABC ,点M 在边BC 上.(1)如图,在AB边上找点P,在AC边上找点Q,使内接△MPQ的周长最小. *(2)当M在BC边上何处时,以M为顶点可以作出周长最小的内接三角形?ABC M。