激光扫描共聚焦显微镜技术
激光扫描共聚焦显微镜原理及应用

激光扫描共聚焦显微镜原理及应用激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope)是一种高分辨率的显微镜技术。
它结合了光学和计算机技术,通过使用激光扫描技术将样品的逐点扫描成像,可以获取到非常清晰的三维图像。
激光扫描共聚焦显微镜的原理是基于共焦聚焦技术。
它使用一束激光光束照射在样品表面上,并收集激光光束的反射或荧光信号。
激光光束通过一个探测镜来聚焦在样品表面上的一个非常小的点上,该点称为焦点。
通过扫描样品,系统可以获取到完整的样品图像。
1.高分辨率:激光扫描共聚焦显微镜可以获得非常高的分辨率。
由于只有焦点附近的信息被收集,所以可以消除反射和散射带来的干扰,提高图像的清晰度和分辨率。
2.三维成像:激光扫描共聚焦显微镜可以进行多个焦面的扫描,从而获取到三维样品图像。
这使得可以观察样品的内部结构和深层次的信息。
3.高灵敏度:激光扫描共聚焦显微镜可以检测到样品的荧光信号。
这在生物医学领域中非常有用,可以用于观察细胞和组织中的荧光标记物。
4.实时观察:由于激光扫描共聚焦显微镜具有快速扫描和成像的能力,因此可以进行实时观察。
这对于研究动态过程和实时观察样品的变化非常有用。
在生物医学研究中,激光扫描共聚焦显微镜被广泛应用于观察和研究活细胞及组织的结构和功能。
它可以用于观察和研究细胞器的位置和运动、细胞的分裂过程、病理细胞的形态学变化等。
在材料科学研究中,激光扫描共聚焦显微镜可以用于观察和研究材料的结构和性质。
它可以帮助研究人员观察各种材料的微观结构、表面形貌以及材料中的缺陷和分子分布等。
在纳米技术研究中,激光扫描共聚焦显微镜可以用于观察和研究纳米材料的形态和结构。
它可以帮助研究人员观察纳米粒子的形状、大小和分布,研究纳米材料的组装过程和性质等。
总之,激光扫描共聚焦显微镜是一种非常强大并且在科学研究中得到广泛应用的显微镜技术。
它通过激光聚焦和扫描技术,可以获得高分辨率、三维成像和实时观察的样品图像,并且在生物医学研究、材料科学和纳米技术等领域有着重要的应用价值。
激光扫描共聚焦显微镜技术在生物学中的应用

激光扫描共聚焦显微镜技术在生物学中的应用生物学是研究生命存在、发展规律和生命活动的科学。
在传统的生物学研究中,显微镜是不可或缺的工具。
然而,传统的显微镜技术受到分辨率和探测灵敏度等限制,难以观察到生物体内微小结构的细节,而激光扫描共聚焦显微镜技术则克服了传统显微镜的诸多局限,成为生物学研究领域中一种重要的高分辨率成像技术。
一、激光扫描共聚焦显微镜技术的原理激光扫描共聚焦显微镜技术(LSCM)在20世纪的80年代初由著名物理学家弗里茨·斯特鲁斯曼发明。
它是一种基于激光打激光扫描光束来扫描物体表面的成像技术。
和传统显微镜成像技术不同的是,LSCM的光源是激光器,通过激光束聚焦于少于1微米的空间范围内。
然后,激光束扫描样品表面,强制荧光物质发射荧光,荧光信号由探测器接收。
探测器会接收到被物体反射出的荧光,并产生电信号,将这些信号以频率多路复用形式送入相应通道中。
此后,扫描激光束移动至下一个位置,重复上述过程并记录。
整个过程可以将照片连续拍摄,创建三维图像。
二、 1. 细胞内环境成像激光扫描共聚焦显微镜技术在细胞内环境成像领域应用广泛。
激光扫描共聚焦显微镜技术可以穿透多个细胞层进行观察,而成像效果还能保持在细胞内的三维结构。
通过LSCM成像,可以查看细胞和细胞器的形态,了解细胞内部活动的触发机制,揭示细胞内部储量物质和分子的特征。
例如,LSCM被广泛应用于分子生物学和免疫学研究中,以观察分子间的交互以及细胞内蛋白质的定位。
2. 功能性神经元成像LSCM技术也被广泛应用于观察和研究神经元的活动。
通过LSCM技术可以实时地观察神经元的活动情况,并且能够在极短的时间范围内捕捉神经元间复杂的联系。
由于神经元在体内不断的活动,这需要实时的成像技术,LSCM正好能满足这样的需求。
3. 病原体与宿主细胞相互作用分析病原体与宿主细胞的相互作用是研究感染病患的关键问题。
通过LSCM技术,可以更深入的了解病原体与宿主细胞之间的相互作用过程,包括侵染、排异、生存和繁殖等方面。
激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用一、激光扫描共聚焦显微镜的原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。
分光器将荧光直接送到探测器。
光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。
照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。
原理图二、激光扫描共聚焦显微镜组成特点LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。
显微镜是LSCM的主要组件,它关系到系统的成像质量。
通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。
三、激光扫描共聚焦显微镜的应用(一)细胞的三维重建普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。
LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。
这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。
旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。
通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。
通过角度旋转和细胞位置变化可产生三维动画效果。
LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。
激光扫描共聚焦显微镜技术

多通道同时检测,可实时检测细胞的 生理活动和形态变化:
• 生理学研究:如细胞内各种离子浓度随时 间的变化情况.
• 活细胞多种标记物同时进行成像,动态观 察不同形态学事件的发生。如分泌颗粒的 分泌过程。Leabharlann 三、激光扫描共聚焦显微镜的应用
vestigial apterous CiD (cyanine 5).
透明质酸
• The role of hyaluronan in renal stone disease
• Hyaluronan is expressed by proliferating renal tubular cells in subconfluent cultures (2 days post-seeding). At cell-cell contact (4 days post-seeding) this staining starts to fade away to completely disappear when the tight junctions are assembled (5-6 days post-seeding). The hyaluronan receptor CD44 is also expressed at the luminal surface in subconfluent cultures (2 days post-seeding), at cell-cell contact CD44 is targeted to lateral spaces, whereas at confluence (6 days post-seeding), CD44 is exclusively expressed at basal domains of the plasma membrane.
激光扫描共聚焦荧光显微镜原理

激光扫描共聚焦荧光显微镜原理介绍激光扫描共聚焦荧光显微镜(Laser Scanning Confocal Fluorescence Microscopy,LS-CFM)是一种先进的显微镜技术,用于获取高分辨率的细胞和组织图像。
它基于激光光源和共聚焦原理,通过激发标记的荧光物质来提高显微镜的分辨率和对比度。
本文将详细介绍LS-CFM的原理和应用。
激光扫描共聚焦显微镜的工作原理激光光源LS-CFM使用激光光源作为激发荧光物质的光源。
激光光源具有高强度、单色性和方向性,可以提高显微镜的灵敏度和分辨率。
扫描系统LS-CFM的扫描系统包括镜片、扫描镜和探测器。
激光光束经过镜片聚焦到样本上,扫描镜通过改变反射角度来扫描样本表面,探测器记录荧光信号。
共聚焦原理共聚焦原理是LS-CFM的核心原理,它通过控制扫描镜的运动和探测器的观察位置,只获取样本特定平面(焦平面)的荧光信号。
由于样品处于共焦面上时探测荧光的最大值,可以得到高分辨率图像。
荧光物质激发和发射过程在LS-CFM中,荧光物质被激光光源激发后会发射荧光。
荧光物质的发射波长通常比激发波长长。
激发光和发射光通过不同的光路,以避免激发光干扰荧光信号。
LS-CFM的优势1.高分辨率:共聚焦原理使LS-CFM能够获取超过传统荧光显微镜的分辨率,可以观察更细微的结构和细胞器。
2.高对比度:由于共焦面上只有样品发出的荧光被探测到,背景信号减少,对比度更高。
3.深度扫描能力:LS-CFM具有深度扫描能力,可以获取样本的三维图像。
这对于观察细胞内部结构和复杂的生物组织是非常重要的。
4.实时观察:LS-CFM可以实时地观察样本,能够捕捉到细胞和组织的动态变化。
5.多光标标记:通过使用不同的荧光标记剂,LS-CFM可以同时观察多个分子或细胞器的位置和相互作用。
LS-CFM的应用生物医学研究LS-CFM在生物医学研究中扮演着重要的角色。
它可以用于观测细胞分裂、细胞迁移、细胞凋亡以及细胞器的分布和运动。
共聚焦激光显微镜原理

共聚焦激光显微镜原理共聚焦激光显微镜是一种高分辨率的显微技术,它利用激光光束对样品进行扫描,通过聚焦和探测来获取高分辨率的图像。
下面将详细介绍共聚焦激光显微镜的原理。
1. 激光扫描共聚焦激光显微镜使用一个激光束对样品进行扫描。
这个激光束可以是单色或多色的,并且可以调节其波长和功率。
在扫描过程中,激光束会被反射、散射或吸收,从而产生不同的信号。
2. 共聚焦共聚焦是指将激光束聚焦到一个非常小的点上,通常在几百纳米以下。
这个点称为焦点,在这个点上产生了强烈的电磁场,可以使样品中的荧光物质发出荧光信号。
同时,在这个点周围也会有一定程度的荧光信号。
3. 探测探测是指检测样品中发出的荧光信号,并将其转换成电子信号。
探测器通常使用光电倍增管或者CCD相机,可以捕捉到非常微弱的荧光信号。
4. 三维成像共聚焦激光显微镜可以进行三维成像。
通过改变激光束的焦距,可以在样品中扫描不同深度的区域。
这样就可以获得样品的三维结构信息。
5. 高分辨率共聚焦激光显微镜具有非常高的分辨率。
由于激光束被聚焦到一个非常小的点上,因此可以获得非常高的空间分辨率。
同时,由于只有在焦点处才会产生荧光信号,因此也可以获得非常高的时间分辨率。
6. 应用共聚焦激光显微镜广泛应用于生物医学研究领域。
它可以用于观察细胞、组织和器官中的结构和功能,并且还可以用于研究生物大分子如蛋白质、核酸等的结构和功能。
总之,共聚焦激光显微镜是一种高分辨率、非侵入性、三维成像技术,在生物医学研究领域具有广泛的应用前景。
激光共聚焦扫描显微镜原理功能

激光共聚焦扫描显微镜原理功能激光共聚焦扫描显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种高分辨率的显微镜,通过激光光源和共聚焦扫描技术可以实现对样品的三维成像。
该显微镜原理独特,功能丰富,下面将详细介绍。
首先,让我们了解一下激光共聚焦扫描显微镜的工作原理。
激光共聚焦扫描显微镜的激光光源可以产生高能量、单色和高单频的激光束,然后通过一系列光学元件将激光聚焦到一个微细尖端,形成一个极小的焦点。
这个焦点可以对样品进行扫描,通过激光与样品之间的相互作用,得到一系列的反射或荧光信号。
这些信号经过光学系统的分光探测器进行收集与分析,可以获得高分辨率的图像。
1.高分辨率成像:激光共聚焦扫描显微镜的光学系统可以聚焦到亚米级尺寸的焦点,并收集样品表面或内部的成像信号。
相比传统的荧光显微镜具有更高的分辨率。
2.三维成像:激光共聚焦扫描显微镜可以通过扫描激光焦点在样品内部的位置,获取样品的三维信息。
可以使用自动扫描系统,将激光在X、Y、Z三个方向的位置进行扫描,实现高质量的三维成像。
3.荧光探测:激光共聚焦扫描显微镜常用于生物医学等领域的研究,可以通过荧光标记的样品来观察样品的分子组成和生物过程。
荧光探测技术可以提供对细胞和组织结构的高分辨率成像。
4.实时观察:由于激光共聚焦扫描显微镜可以实现高速扫描和数据采集,可以实时观察样品的动态变化。
这使得该技术在生物学和材料科学研究中非常有用。
5.光谱分析:激光共聚焦扫描显微镜可以使用多种光谱探测器来进行荧光信号的分析。
可以通过收集不同波长的荧光信号,获得样品中的各种分子或物质的信息。
6.激光刺激:激光共聚焦扫描显微镜也可以进行激光刺激实验。
通过选择合适的激光波长和功率,可以在细胞或样品的特定区域进行局部刺激。
这对于研究细胞生理和功能是非常重要的。
总之,激光共聚焦扫描显微镜具有高分辨率成像、三维成像、荧光探测、实时观察、光谱分析和激光刺激等功能。
激光扫描共聚焦显微镜(LSCM)技术简介

生物秀论坛-学术交流、资源共享与互助社区
生物秀-专心做生物
Introduction
ž LSCM 是一种高科技显微镜
ž
ž ž
荧计光像无细光算探。损胞显机针伤三,微进的维镜 行得“ 立成图到光体生像像细学机物w为处胞构切秀w基理或片w-础组,”.专b织,使b心i内加用o做o部装紫.生c微了 外o物m细激 或结光 可构扫 见的描 光荧装 激光置 发,图荧
在生命科学领域的分子水平,细胞
及组织水平的研究中得到广泛应 用.
生物秀论坛-学术交流、资源共享与互助社区
生物秀-专心做生物
ž 在细胞原位用特异探针标
ž 记激并 镜子出素用成的核,激像定磷酸光,位脂从,扫,蛋,而定多描白实性糖共质现及生,受聚,上定物多体w焦述量肽秀等w显大 检,w酶分-微分 测.专,子bb心io做o.生co物m
集(左图) ,这样的装置完全与传统的荧光显微镜一样使用激发波长滤片和吸收波长滤片来完成对不同的
荧光标记进行选择性的成像。
ž 最新一代激光扫描共聚焦显微镜可以用棱镜狭缝分光的新技术(右图),配上合适的激光源后,能够摆脱 传统的波长滤片组的限制,连续和自由地选择最佳波长) ,这一特点对于现在和未来开发出的各种新的荧 光标记物(特别是各种荧光蛋白和荧光染料) 和研究动植物的自发荧光物质有很高的价值,从某种意义上,
②用荧光标记细胞内的离子,可以单标记一种离子也可以多标记几种离子,检测细胞内如pH 和钠、 钙、镁等离子浓度的比率及动态变化。
③用荧光标记探头标记的活细胞或切片标本的活细胞生物物质,通过对膜上、胞浆内多种免疫物质 的标记, 可以实现在同一张样品上同时进行多重物质标记,同时观察这些物质;
④对细胞检测无损伤、精确、准确、可靠、重复性优良; 数据图像可及时输出或长期储存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A focus motor can move the stage in precise increments so that multiple images from consecutive planes can be individually scanned and saved.
步进电机 0.1μm
激光扫描共聚焦显微镜成像的基本原理 激光扫描共聚焦显微镜的基本结构 激光扫描共聚焦显微镜的应用 量子点技术及其在生命科学研究中的应用
• 激光扫描共聚焦显微镜技术(Laser scanning Confocal Microscopy,简称LSCM)是近代生物医学图象仪器的最重 要发展之一,它是在荧光显微镜成象的基础上加装激光扫 描装置,使用紫外光或可见光激发荧光探针,利用计算机 进行图象处理,从而得到细胞或组织内部微细结构的荧光 图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位 等生理信号及细胞形态的变化。
Calcium Green
Fura Red
10 s
腹足纲一种淡 水螺 Biomphalaria glabrata 血细 胞的钙离子动 态变化 探针: Calcium Green Fura Red
Hertel L.A., Stricker S.A. and Loker E.S. 2000. Calcium dynamics of hemocytes of the gastropod Biomphalaria glabrata: effects of digenetic trematodes and selected bioactive compounds. Invertebrate Biology, v. 119(#1): 27-37.
2 细胞显像
• 可用于活细胞或固定细胞的观察、分析
Criteria Limits of illumination Antifade reagent Mountant Highest NA lens Time per image Signal averaging Resolution Fixed Cells Fading of fluorophore Phenylenediamine, etc. Glycerol (n = 1.51) 1.4 Unlimited Yes Wave optics Living Cells Phototoxicity and fading of dye NONE! Water (n = 1.33) 1.2 Limited by speed of phenomenon; light sensitivity of specimen No Photon statistics
Lodgepole pine (黑松)
Nature Cell Biology 5, 15 (2003)
Yellow and red fluorescence represents acridine orange-stained secondary cell walls and chloroplastic autofluorescence, respectively. The 3D image was reconstructed from optical sections obtained on a confocal microscope (FV500, Olympus). Scale bar represents 20 μm.
Basics of conventional fluorescence microscope
1 水银弧光灯 2 中密度滤片 3 光镧 4 场镧 5 激发滤片 6 分光镜(BSP) 7 物镜 8 样品 9,10 发射滤片 11 目镜
Arc Lamp
Fluorescent Microscope
Excitation Diaphragm Excitation Filter
By collecting a series of images of the specimen at different distances from the lens (focal planes) a through-focus series or “Zseries” can be created.
光点共聚焦
光源和探测器前方都各有一个针孔(照明 针孔和探测针孔)。直径约100-200nm;相对于焦平面上的 光点,两者是共轭的,即光点通过一系列的透镜,最终同时 聚焦于照明针孔和探测针孔。这样,来自焦平面的光,可以 会聚在探测孔范围之内,而来自焦平面上方或下方的散射光 都被挡在探测孔之外而不能成像。
Confocal Principle
探测针孔
激光光源
二色镜或分光镜
照明针孔
激光光源
扫描模块(包括共聚焦光路通道和针孔、
扫描镜、检测器)
自动显微镜
控制系统(数字信号处理器、计算机)
图象输出设备(显示器、打印机、存储器)
LSCM的基本特点
观察方式
以荧光为主 光源 激光(紫外、 可见光、近 红外) 照明方式 点照明、逐 点扫描 成像方式 共聚焦、逐 点成像 输出 实时观测,数 字化图像, 可以进行图 像处理和定 量分析
共聚焦扫描显微镜的成像原理
激光作为光源
采用点光源照射标本,在焦平面上形成 一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜 收集,并沿原照射光路回送到由双向色镜构成的分光器。分 光器将荧光直接送到探测器。
扫描方式成像
激光逐点扫描样品,探测针孔后的光电 倍增管也逐点获得对应光点的共聚焦图像,转为数字信号传 输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚 焦图像。
多重染色样品的观察
共聚焦显微镜的主要优点
• 高分辨率:图像与 对比度增强,使用 短波长的紫外光, 大大提高了分辩率。 • 是普通荧光显微镜 分辨率的1.4倍 (0.51/0.37)
普通荧光显微镜分辨率
共聚焦显微镜分辨率
共聚焦显微镜应用常见错误认识
• 在实际应用中尽管几乎所有标本都采用的 是荧光标记, 但决不能将LSCM认为就是一 种“高质量图像的荧光显微镜”. 共聚焦 显微镜并不总是荧光检测的最好工具。 • 共聚焦显微镜能同时或序贯检测多种荧光 通道,但不能将共聚焦显微镜简单地作为 一种共存研究的工具。
Hela 细胞 内化 碳纳 米管 过程
Peroxisomes Microtubules DAPI
Peroxisomal aggregation in onion may be involved in membrane production and / or metabolism during cell division
1
1
2
2
观察的荧光标本稍厚时,普通荧光显微镜不仅接收焦平面上的光量,而且来自焦平 面上方或下方的散射荧光也被物镜接收,这些来自焦平面以外的荧光使观察到的图 像反差和分辨率大大降低(即焦平面以外的荧光结构模糊、发虚,原因是大多数生 物学标本是层次区别的重叠结构)。
共聚焦显微镜一次只有样品的小部分区域 被照明,而普通荧光显微镜则有更宽的区 域被照明。
透明质酸
• The role of hyaluronan in renal stone disease http://www.glycoforum.gr.jp/science/hyaluronan/HA29/HA29E.html
•
Hyaluronan is expressed by proliferating renal tubular cells in subconfluent cultures (2 days post-seeding). At cell-cell contact (4 days post-seeding) this staining starts to fade away to completely disappear when the tight junctions are assembled (5-6 days post-seeding). The hyaluronan receptor CD44 is also expressed at the luminal surface in subconfluent cultures (2 days post-seeding), at cell-cell contact CD44 is targeted to lateral spaces, whereas at confluence (6 days post-seeding), CD44 is exclusively expressed at basal domains of the plasma membrane.
Medicago(苜蓿) cross section of a stem showing lignin(木质素) autofluorescence in blue and chloroplast autofluorescence in red. This image was taken with the Leica AOBS confocal microscope
Ocular
Objective Emission Filter
Confocal Principle
Laser Excitation Pinhole
Excitation Filter
PMT
Objective Emission Pinhole
Emission Filter
Differences between conventional and confocal microscope
肾上皮细胞有 丝分裂共聚焦 显微镜观察
mCherryH2B _mEmEB3
骨肉瘤细 胞内的内 质网 mEmerald _ER
负鼠肾上皮 细胞内体 EGFP_Endo somes
负鼠肾上皮 细胞内溶酶 体