毛细管电泳技术及应用
毛细管等速电泳

将毛细管等速电泳应用于食品安全检测,如食品添加剂、农药残 留和毒素检测等的分离机制,以提高毛细管等速电泳的分离效果和效 率。
联用技术
将毛细管等速电泳与其他分析技术联用,如质谱、光谱等,以提高 检测灵敏度和准确性。
微型化与便携化
研究开发微型化和便携化的毛细管等速电泳设备,以满足现场快速检 测的需求。
毛细管等速电泳
目录 CONTENT
• 毛细管等速电泳简介 • 毛细管等速电泳实验技术 • 毛细管等速电泳在生物医学中的
应用 • 毛细管等速电泳的优缺点 • 毛细管等速电泳的未来发展
01
毛细管等速电泳简介
定义与原理
定义
毛细管等速电泳是一种利用电场 对带电粒子进行分离的电泳技术 。
原理
在毛细管中施加直流电场,带电 粒子在电场的作用下以不同的速 度进行迁移,通过不同时间到达 检测器,从而实现分离。
标准品
用于校准和验证实验结果。
实验步骤
准备毛细管和电解质溶液。
01
打开电泳仪电源,设置实验参数,如电压 、电流和温度等。
03
02
将毛细管连接到电泳仪上,并确保密封良好 。
04
注入电解质溶液和标准品,开始电泳分离 。
通过检测器检测带电分子,记录数据。
05
06
分析数据,得出结论。
03
毛细管等速电泳在生物医 学中的应用
高效进样技术
优化进样技术,减少样品在毛细管内的扩散和稀 释,提高检测灵敏度和准确性。
自动化与智能化
实现毛细管等速电泳的自动化和智能化,提高分 析速度和降低人工操作误差。
应用拓展
环境监测
将毛细管等速电泳应用于环境监测领域,如水质分析、土壤重金 属检测等。
毛细管电泳法

在毛细管中施加电场,带电粒子在电场的作用下产生迁移,由于迁移速度与粒 子所带电荷、半径、质量等因素有关,因此不同粒子在电场中产生不同的迁移 速度,从而实现分离。
发展历程
01
02
03
1980年代初期
毛细管电泳法由 Jorgenson和Lukacs首次 提出并实验验证。
1980年代中期
该技术逐渐成熟,被广泛 应用于生物、医药、环境 等领域。
饮用水安全
毛细管电泳法能够检测饮用水中 的消毒副产物、有机污染物等, 保障饮用水安全。
在食品检测领域的应用
食品添加剂分析
毛细管电泳法能够分离和检测食品中 的添加剂,如色素、防腐剂等,有助 于食品安全监管。
营养成分分析
毛细管电泳法能够快速分析食品中的 营养成分,如氨基酸、维生素等,有 助于食品质量控制和营养评价。
核酸分析
毛细管电泳法能够分离和检测核酸片段,用于基 因诊断、基因表达研究和法医学鉴定。
3
临床检验
毛细管电泳法可用于检测体液中的小分子代谢物, 如氨基酸、糖类等,辅助临床诊断。
在环境监测领域的应用
污染物分析
毛细管电泳法能够分离和检测水 体、土壤中的有害物质,如重金 属、农药残留等,有助于环境监 测和污染治理。
在化学分析领域的应用
有机物分析
毛细管电泳法能够分离和检测有机化合物,如药物、染料等 ,在药物研发、化工生产等领域有广泛应用。
金属离子分析
毛细管电泳法能够高灵敏度地检测金属离子,如铅、汞、镉 等,可用于地质、冶金和环境等领域的研究。
谢谢
THANKS
加样
将处理好的样品加入毛 细管中,注意控制加样
量。
施加电压
启动电源,施加适当的 电压,使带电粒子在电
药物分析中的毛细管电泳法测定药物含量

药物分析中的毛细管电泳法测定药物含量毛细管电泳法(Capillary Electrophoresis,CE)是一种常用于药物分析的高效分离技术。
它基于药物在电场中的电荷迁移速率不同,通过毛细管内的电场驱动,实现对药物的定量分析。
本文将详细介绍药物分析中的毛细管电泳法测定药物含量的原理、方法和应用,以及该技术在药物分析中的优势。
一、原理毛细管电泳法测定药物含量,是利用毛细管的微小通道对药物进行分离和测量的一种分析技术。
它利用药物分子在电场作用下受到电荷的影响,从而在毛细管内发生电泳迁移,实现对药物的分离和定量测定。
其原理主要包括三个方面:1. 药物分子的电荷特性:药物分子可以分为带正电荷、带负电荷和无电荷的三类。
根据药物的电荷特性,调整毛细管内的电荷环境,使药物分子在电场中按照不同的电荷迁移速率进行分离。
2. 毛细管的表面电荷:毛细管内壁会带有一定的电荷,称为表面电荷。
表面电荷与药物分子的电荷有相互作用,影响药物在毛细管内的迁移速率。
3. 毛细管内的电场:在毛细管内施加电场,通过电泳迁移,使药物分子按照不同速率进行分离。
二、方法毛细管电泳测定药物含量的方法主要包括前处理、样品准备、色谱条件设置、电泳分离和定量测定等步骤。
下面将简要介绍这些步骤的具体操作:1. 前处理:对于复杂的样品,如血液、尿液等,需要进行前处理。
常用的前处理方法包括样品提取、样品净化等。
2. 样品准备:将提取的药物样品溶解于适宜的溶剂中,得到适宜的药物浓度。
3. 色谱条件设置:选择合适的色谱柱、毛细管和分离液,调整电泳分析的条件,如缓冲液的浓度、pH值等。
4. 电泳分离:将样品注入毛细管中,施加电场,使药物分子在毛细管内发生电泳迁移,实现对药物的分离。
5. 定量测定:通过荧光检测、紫外吸收等方法,测定药物的峰面积或峰高,从而确定药物的含量。
三、应用毛细管电泳法作为一种高效的药物分析技术,广泛应用于药物研发、生产和质量控制等领域。
说明毛细管电泳特点及应用

说明毛细管电泳特点及应用
毛细管电泳是一种高效液相色谱技术,其基本原理是利用电场将带电粒子在毛细管中的移动速率和荷电量的差异进行分离和富集。
毛细管电泳具有高分离效率、快速分离、小量样品、自动化程度高等特点,已经成为了化学、生物、环境学等领域的一个重要分析工具。
其主要应用领域和特点如下:
1.分离生化分子
毛细管电泳可以用于分离和富集DNA、RNA、蛋白质、糖类和小分子有机物等生物分子。
这些生物分子在酸碱性、水解、氧化还原等条件下有不同的化学性质和电荷性质,可以被毛细管电泳技术精确分离和定量。
例如在DNA分离和定量方面,毛细管电泳已经成为PCR扩增产物检测、基因测序、DNA指纹鉴定等分子生物学技术中的重要手段。
2.分析环境污染物
毛细管电泳可以用于环境监测和食品安全检测等领域,可以对水、空气、土壤和食品中的有机和无机污染物进行快速准确定量分析。
例如利用毛细管电泳技术可以分析环境中的氨、硝酸盐、荧光增白剂、PESTICIDE 等有害物质含量,以及酒类中的苯甲酸、乙酸等有害物质。
3.分析药品和代谢产物
毛细管电泳可以快速、灵敏地分离和鉴定药品和代谢产物,具有药动学和毒理学研究的重要意义。
毛细管电泳技术节省反应时间,减少实验操作时间,可对液-液、液-固、固-液等反应进行分离和分析,得到精确的数据和结果。
如利用毛细管电泳技术,可以分析身体内的有机酸、氨基酸、代谢产物等物质。
总之,毛细管电泳技术在化学分析和生物分析中均有广泛应用,且已成为学术研究和工业生产的一种重要分离分析手段。
毛细管电泳技术在化学分析中的应用

毛细管电泳技术在化学分析中的应用随着科学技术的不断进步,越来越多的新技术应用于化学分析领域。
其中,毛细管电泳技术是一种非常有潜力的技术,其应用广泛,可以应用于食品、医药、环境等多个领域,极大地提高了化学分析的效率和准确性。
下面,本文将从毛细管电泳技术的原理、优点、应用以及发展前景等方面,分析其在化学分析中的应用。
一、毛细管电泳技术的原理毛细管电泳技术是基于毛细管内样品分子的电荷和尺寸的差异进行分离的一种方法,其分离原理是利用电场力、液相流动力和溶剂静电引力等相互作用力,将带电分子分离开来的过程。
其中,毛细管电泳分离过程是在毛细管内部一个微小的空间内进行的,这个微小的空间称为分离柱。
分离柱中填充有分离介质,通常使用胶体硅、聚丙烯酰胺凝胶、聚合物微球等。
当外加高压电场作用于分离柱时,其他因素不影响下,分别具有不同电荷的分子将因其电荷大小而在分离柱内发生移动,这样就完成了样品分析。
二、毛细管电泳技术的优点毛细管电泳技术在化学分析中的应用范围非常广泛,具有以下优点:1.分离效率高:毛细管电泳技术分离效果很好,可以分离出电泳物质的同分异构体和混杂物,从而使分析的结果更加准确可靠。
2.快速分析:毛细管电泳技术可以在短时间内完成分析,不仅提高了分析效率,而且缩短了分析时间。
3.高选择性:毛细管电泳技术在分离和检测过程中,只会对一些特定的物质进行分离,因此,在检测过程中可以不用去关注所有的物质,从而可以降低实验成本和实验时间。
4.成本低:毛细管电泳技术不需要使用昂贵的设备,其使用成本比较低,适合化学实验室使用。
三、毛细管电泳技术在化学分析中的应用非常广泛,主要包括以下几个方面:1.食品领域:毛细管电泳技术可以用于饮料、果汁、啤酒等中硫酸盐和氰化物的检测和分析。
2.环境领域:毛细管电泳技术可以用于环境污染物的检测和分析,如有机污染物、金属离子等。
3.医药领域:毛细管电泳技术可以用于药物的研究和分析,包括药物分子的结构、成分、质量等。
毛细管电泳技术及应用

毛细管电泳技术能够高效分离蛋白质 ,包括白蛋白、球蛋白、酶等,为生 物制药、蛋白质组学等领域提供有力 支持。
DNA和RNA分析
毛细管电泳可用于分析DNA和RNA片 段,在基因诊断、基因工程和生物信 息学等领域有广泛应用。
药物分析
药物成分分离
毛细管电泳能够分离和检测药物中的有效成分和杂质,有助于药物质量控制和研发。
仪器设备与操作
仪器设备
包括高压电源、进样系统、毛细管、检测器和数据采集系统等部分。
操作步骤
首先将样品注入毛细管一端,然后施加电压使带电粒子在电场中移动,同时通 过检测器对分离出的粒子进行检测,最后通过数据采集系统记录数据并进行分 析。
02
毛细管电泳的分离模式
区带电泳
总结词
区带电泳是毛细管电泳中最简单的一种形式,其原理是将样 品加在毛细管的一端,然后施加电压,使样品在电场的作用 下进行分离。
详细描述
在区带电泳中,样品在毛细管中形成一色带,由于不同组分 在电场中的迁移率不同,因此会以不同的速度向另一端移动 ,从而实现分离。这种分离模式适用于简单样品,如氨基酸 、肽和蛋白质等。
胶束电动色谱
总结词
胶束电动色谱是在毛细管电泳中加入一种称为表面活性剂的物质,使溶液的离子 强度和粘度发生变化,从而影响离子的迁移率。
要点二
血液中成分分析
通过毛细管电泳技术,可以分析血液中的离子、小分子和 蛋白质等成分,为临床诊断和治疗提供依据。
04
毛细管电泳技术的优缺点
优点
高分离效率
毛细管电泳技术利用电场对带电粒子的作用力,使其在毛 细管中分离,具有极高的分离效率,特别适合于复杂样品 的分离。
高灵敏度
毛细管电泳技术结合了多种检测手段,如紫外-可见光谱 、荧光光谱等,可以实现高灵敏度的检测,有利于痕量物 质的检测。
毛细管电泳分析检测氨基酸

灵敏度高
毛细管电泳结合紫外或荧光检 测器,可实现高灵敏度的氨基 酸检测。
操作简便
毛细管电泳设备简单,操作方 便,适合于实验室和现场分析
。
未来研究方向与展望
新型分离模式开发
研究开发新型的毛细管电泳分离模式, 以提高氨基酸的分离效果和检测灵敏 度。
联用技术
将毛细管电泳与其他检测技术联用, 如质谱、核磁共振等,实现氨基酸的 高精度和高灵敏度分析。
毛细管电泳能够区分氨基酸的异构体,如D型和L型氨基酸。
未知物筛查
通过与标准品比对和数据库比对,可筛查未知氨基酸及其相关化 合物。
04 毛细管电泳技术的前景与挑战
CHAPTER
技术发展与改进
高效分离
微型化与便携化
通过优化毛细管电泳的条件,如电解 质浓度、pH值和分离电压等,提高氨 基酸的分离效率,缩短分析时间。
电化学检测器
开发新型电化学检测器,如安培检测器和电导检测器等,利 用电化学反应将氨基酸转化为可测信号,实现直接、快速的 氨基酸检测。
提高检测灵敏度的方法
优化进样技术
通过改进进样方式和优化进样参数,减少进样误差和背景干扰, 提高检测灵敏度。
信号放大技术
利用化学或生物放大技术,如酶放大、抗体放大等,将氨基酸信号 放大,提高检测灵敏度。
预富集技术
利用毛细管电泳的预富集技术,对氨基酸进行富集和浓缩,提高其 浓度水平,进而提高检测灵敏度。
05 结论
CHAPTER
毛细管电泳在氨基酸分析中的优势
高分离效率
毛细管电泳采用微米级别的分 离通道,能够实现高效率的分
离,缩短分析时间。
样品需求量少
毛细管电泳技术需要的样品量 较少,适用于珍贵样品的分析 。
毛细管电泳法

毛细管电泳法简介毛细管电泳法是一种常用于分离和检测化学物质的分析技术。
它基于样品在电场作用下在毛细管中的迁移速度的差异,利用电泳现象进行分离。
该方法具有分离效果好、分析速度快、样品消耗少等优点,被广泛应用于生物、环境、食品等领域的分析研究。
原理毛细管电泳法的基本原理是利用电场作用下带电粒子在毛细管中的迁移速度差异分离物质。
当样品通过直径较小的毛细管时,由于电场的作用,带电物质会在毛细管中产生电泳迁移。
迁移速度快的物质会较早到达检测器位置,而迁移速度慢的物质则会滞留在毛细管中,从而实现了物质的分离。
毛细管电泳法主要利用了物质在电场、毛细管中的迁移速度与其电荷、粒径、溶剂性质等因素之间的关系。
其中,电荷是最重要的因素之一。
毛细管电泳法可分为两种类型:正交电泳和非正交电泳。
正交电泳主要用于带电物质的分离,而非正交电泳则用于非带电物质的分离。
操作步骤1. 准备工作在进行毛细管电泳实验之前,需要准备好以下实验器材和试剂:•毛细管电泳仪•毛细管•电解质缓冲液•样品溶液2. 设置电泳条件根据实验需要,设置好合适的电场强度、电解液pH值和缓冲液浓度等参数。
这些参数的选择对于实验结果的准确性和分离效果的好坏至关重要。
3. 毛细管填充将毛细管浸入缓冲液中,通过电力作用使缓冲液进入毛细管,直至毛细管完全填充。
4. 样品进样通过微量注射器将样品溶液缓慢注入毛细管,注意避免气泡的产生。
5. 开始电泳将毛细管两端插入正、负电极中,开启电源,开始电泳过程。
6. 结果分析根据实验需要,可以选择不同的检测方法进行结果分析,如紫外检测、荧光检测等。
应用领域毛细管电泳法广泛应用于生物、环境、食品等领域的分析研究。
具体的应用包括:1.蛋白质分析:毛细管电泳法可用于蛋白质的分离和定量分析,对于药物研发、生物学研究等具有重要意义。
2.DNA分析:毛细管电泳法可以用于DNA序列分析、基因突变检测、DNA测序等领域,对于遗传学研究、法医学等具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毛细管电泳(Capillary Electrophoresis, CE)
高效毛细管电泳在技术上采取了两项重要改进: 1. 采用了25-100μm内径的毛细管; 2. 采用了高达数千伏的电压。 • 毛细管的采用使产生的热量能够较快散发,大大减小了
4.应用范围极广
有机物、无机物、生物、中性分子;生物大分子等; 分子生物学、医学、药学、化学、环境保护、材料等;
毛细管电泳理论基础
一、CE基本原理 二、电渗现象与电渗流electroosmotic flow 三、影响电渗流的因素 四、淌度mobility 五、CE中的参数与关系式 六、影响分离效率的因素
ν电渗流 = μ E
电渗淌度取决于电泳介质及双电层的Zeta电势,即
μ = ε0εξ
ε0—真空介电常数;ε—介电常数;ξ—毛细管壁的Zeta电势。
ν电渗流 = ε0εξ E
实际电泳分析,可在实验测定相应参数后,按下式计算
ν电渗流 = Lef/teo
Lef —毛细管有效长度; teo—电渗流标记物(中性物质)的迁移时间。
Winj= (24D t )1/2 实际操作时进样塞长度小于或等于毛细管总长度的1%~2%。
3.焦耳热与温度梯度的影响
电泳过程产生的焦耳热可由下式计算:
Q
VI π r2L
Λm cb
E
2
m—电解质溶液的摩尔电导;I—工作电流:cm—电解质浓度;
散热过程中,在毛细管内形成温度梯度(中心温度高), 破坏了塞流,导致区带展宽。
在CE中,控制电渗流非常重要。
CE中影响电渗流的因素
1.电场强度的影响
电渗流速度和电场强度成正比,当毛细管长度一定时, 电渗流速度正比于工作电压。
2.毛细管材料的影响
不同材料毛细管的表面电 荷特性不同,产生的电渗流大 小不同;
3. 电解质溶液性质的影响
(1)溶液pH的影响
对于石英毛细管,溶液pH增高时,表面电离多,电荷密 度增加,管壁zeta电势增大,电渗流增大,pH=7,达到最大; pH<3,完全被氢离子中和,表面电中性,电渗流为零。分析 时,采用缓冲溶液来保持pH稳定。
(2)阴离子的影响
在其他条件相同,浓度相同而阴离子不同时,毛细管中 的电流有较大差别,产生的焦耳热不同。
缓冲溶液离子强度,影响双电层的厚度、溶液黏度和工 作电流,明显影响电渗流大小。缓冲溶液离子强度增加,电 渗流下降。
4. 温度的影响
毛细管内温度的升高,使溶液的黏度下降,电渗流增大。 温度变化来自于“焦耳热”;
ai —溶质i 的解离度;μi —溶i 在解离状态下的绝对淌度
CE中的参数与关系式
1.迁移时间(保留时间)
CE兼具有电化学的特性和色谱分析的特性。有关色谱理论也
适用。
t Lef Lef Lef L
ap ap E ap V
V—外加电压;L—毛细管总长度;
2.分离效率(塔板数)
在CE中,仅存在纵向扩散,σ2=2Dt
离子在负极最后流出
除中性粒子外,同种类离子由于受到的电场力大小不一样也
同时被相互分离。
毛细管电泳的特点
1.仪器简单、易自动化
电源、毛细管、检测器、溶液瓶
2.分析速度快、分离效率高
在3.1min内分离36种无机及有机阴离子,4.1min内分 离了24种阳离子;
3.操作方便、消耗少
进样量极少,水介质中进行;
焦耳热:毛细管溶液中有电流通过时,产生的热量; CE中的焦耳热与背景电解质的摩尔电导、浓度及电场强 度成正比。温度每变化1,将引起背景电解质溶液黏度变化 2%~3%;
5. 添加剂的影响
(1)加入浓度较大的中性盐,如K2SO4,溶液离子强度增大, 使溶液的黏度增大,电渗流减小。
(2)加入有机溶剂如甲醇、乙腈, 使电渗流增大。
2.HPCE中的电渗现象与电渗流
石英毛细管柱,内充液pH>3时,表面电离成-SiO-,管 内壁带负电荷,形成双电层。
在高电场的作用下,带正电荷的溶液表面及扩散层向阴 极移动,由于这些阳离子实际上是溶剂化的,故将引起柱中
的溶液整体向负极移动,速度ν电渗流。
3. CE中电渗流的大小与方向
电渗流的大小用电渗流速度ν电渗流表示,取决于电渗淌 度μ和电场强度E。即
R 2(t2 t1) W2 W1
影响分离效率的因素—区带展宽
1.纵向扩散的影响
在HPCE中,纵向扩散引起的峰展宽:σ2=2Dt
由扩散系数和迁移时间决定。大分子的扩散系数小,可 获得更高的分离效率,大分子生物试样分离的依据。
2.进样的影响
当进样塞长度太大时,引起的峰展宽大于纵向扩散。分 离效率明显下降;理想情况下,进样塞长度:
温度效应,使电场电压可以很高。 • 电压升高,电场推动力大,又可进一步使柱径变小,柱
长增加, • 毛细管电泳的柱效远高于HPLC,理论塔板数高达几十万
块/米,特殊柱子可以达到数百万。
分离过程
电场作用下,毛细
管柱中出现:电泳现 象和电渗流现象。
带电粒子的迁移速度=电泳+电渗流;两种速度的矢量和。 阳离子:两种效应的运动方向一致,在负极最先流出; 中性粒子无电泳现象,受电渗流影响,在阳离子后流出; 阴离子:两种效应的运动方向相反。ν电渗流 >ν电泳时,阴
n apVLef apELef ;
2DL
2D
n
5.54
tR Y1/ 2
2
扩散系数小的溶质比扩散系数大的分离效率高,分离生
物大分子的依据。
3.分离度
R 0.177 apVLef 平均 DL
平均
ap1
ap2
2
影响分离度的主要因素;工作电压V;毛细管有效长度
与总长度比;有效淌度差。分离度可按谱图直接由下式计算:
2. 毛细管柱
(1)材料:石英:各项 性能好;玻璃:光学、机 械性能差;
(2)规格:内径20~ 75μm,外径350~400μm; 长度<=1m
3.缓冲液池
化学惰性,机械稳定性好;
4. 检测器
要求:具有极高灵敏度,可柱端检测; 检测器、数据采集与计算机数据处理一体化;
类型 紫外-可见 荧光 激光诱导荧光 电导
1.电渗流现象
当固体与液体接触时,固体表面由于某种原因带一种电 荷,则因静电引力使其周围液体带有相反电荷,在液-固界 面形成双电层,二者之间存在电位差。
当液体两端施加电压时, 就会发生液体相对于固体表面 的移动,这种液体相对于固体 表面的移动的现象叫电渗现象。
电渗现象中整体移动着的 液体叫电渗流(electroosmotic flow ,简称EOF)。
CE中电渗流的方向
电渗流的方向取决于毛细管内表面电荷的性质: 内表面带负电荷,溶液带正电荷,电渗流流向负极; 内表面带正负电荷,溶液带负电荷,电渗流流向正极; 石英毛细管;带负电荷,电渗流流向阴极; 改变电渗流方向的方法: (1)毛细管改性 表面键合阳离子基团; (2)加电渗流反转剂 内充液中加入大量的阳离子表面活性剂,将使石英毛细 管壁带正电荷,溶液表面带负电荷。电渗流流向正极。
ν+ =ν电渗流 + ν+ef 阳离子运动方向与电渗流一致;
ν- =ν电渗流 - ν-ef 阴离子运动方向与电渗流相反;
ν0 =ν电渗流
中性粒子运动方向与电渗流一致;
(1)可一次完成阳离子、阴离子、中性粒子的分离;
(2)改变电渗流的大小和方向可改变分离效率和选择性,如 同改变LC中的流速;
(3)电渗流的微小变化影响结果的重现性;
毛细管电泳(CE)基本原理
电泳是指带电离子在电场中的定向移动,不同离子具有 不同的迁移速度,迁移速度与哪些因素有关?
当带电离子以速度ν 在电场中移动时,受到大小相等、
方向相反的电场推动力和平动摩擦阻力的作用。 电场力:FE = qE
阻 力:F = fν 故: qE = fν
q—离子所带的有效电荷; E —电场强度; ν—离子在电场中的迁移速度; f —平动摩擦系数 ( 对于球形离子: f =6πηγ;γ —离子的表观液态动力 学半径;η —介质的粘度; )
毛细管电泳技术及应用
电泳
在电解质溶液中,位于电场中的带电离子在电场力的作 用下,以不同的速度向其所带电荷相反的电极方向迁移的现 象,称之为电泳。由于不同离子所带电荷及性质的不同,迁 移速率不同,可实现分离。
1808年,Reuss(俄国)首次发现电泳现象。 1937年,Tiselius(瑞典)用于人血清蛋白质混合液的 分离: 发现样品的迁移速度和方向由其电荷和淌度决定;
第一次的自由溶液电泳;第一台电泳仪; 1948年,获诺贝尔化学奖;
经典电泳
利用电泳现象对某些化学或生物物质进行分离分析的方 法和技术叫电泳法或电泳技术。
按形状分类:U型管电泳、柱状电泳、板电泳;
按载体分类:滤纸电泳、琼脂电泳、聚丙烯酰胺电泳、 自由电泳;
传统电泳分析:操作烦琐,分离效率低,定量困难,无 法与其他分析相比。
5.其他影响因素
(1)电分散作用对谱带展宽的影响 当溶质区带与缓冲溶液区带的电导不同时,也造成谱带
展宽;尽量选择与试样淌度相匹配的背景电解质溶液。 (2)“层流”现象对谱带展宽的影响
一般情况下,CE中不存在层流,但当毛细管两端存在压 力差时,出现抛物线形的层流;
产生的原因:毛细管两端液面高度不同。 实际操作时,保持毛细管两端缓冲溶液平面高度相同。
(3)加入表面活性剂,可改变电 渗流的大小和方向;
加入阴离子表面活性剂,如十 二烷基硫酸钠(SDS),可以使壁 表面负电荷增加,zeta电势增大, 电渗流增大;