隔震结构与减震结构与传统结构抗震设计(完全版)

合集下载

隔震结构设计方法.pptx

隔震结构设计方法.pptx
› 地震波对动力时程分析的结果影响很大。 › 地震波至少选择 地震波至少选择2条天然波,1
条人工波。 › 具体波形没有强制要求,但建议按通则的 具体波
形没有强制要求,但建议按通则的。 › 地震波的加速度峰值应按抗震设防烈度对应的峰
值调整。 › 当处于发震断层10km 以内时,输入地震波应考虑
近场影响系数,5km 以内取1.5,5km 以外取1.25。
基底隔震 首层隔震 层间隔震
6
1.3 隔震层方案
› 隔震层设置在有耐火要求的使用空间中时,隔震 支座和其他部件应根据使用空间的耐火等级采取 相应的防火措施。
› 隔震层所形成的缝隙可根据使用功能要求,采用 柔性材料封堵、填塞。
› 隔震层宜留有便于观测和更换隔震支座的空间。
7
第二步 动力分析及计算
8
› 隔震层位置:基础隔震,隔震层位于地下室顶部或单 独设置隔震层;柱顶隔震,隔震层布置在一层柱顶; 层间隔震
› 特殊结构如大底盘多塔结构,其柱距较大,为不影响 大底盘层的使用功能,可在上部结构与大底盘层之间, 专门设置层高 1.5m~2.0m 的隔震层。采用隔震技术, 上部结构剪重比依然要满足本地区设防烈度的最小剪 重比要求。
隔震结构设计方法
1
隔震结构设计流程
方案选定 动力分析计算 上部结构设计 隔震层设计 下部结构设计
从建筑功能、场地条件、经济性等方面,选择是 否采用隔震,并初步确定隔震结构的方案。 设定上部结构和隔震层参数,取计算模型,进行动力 分析,验证以上方案是否满足预期的设计要求,不满 足,则调整上部结构或隔震层参数,重新计算。
4
1.2 结构初步设计
› 上部结构设计根据降低后的水平地震影响系数计算
› 国外大量实践验证,隔震技术对与自振周期超过1s的高层结构同样适用,故 2010 版《抗规》取消了 2001 版结构周期小于 1s 的限制。隔震建筑结构体型宜规则、 对称。

8结构隔震减震与振动控制PPT课件

8结构隔震减震与振动控制PPT课件

隔震体系的基本特性 ① 承载特性:隔震装置具有较大的竖向承载能力 ② 隔震特性:隔震装置具有可变的水平刚度特性 ③ 复位特性:小震时,隔震装置具有水平弹性功能,地震后,上部
结构能恢复到初姑状态,满足正常使用要求 ④ 阻尼耗能特性:隔震装置具有足够的阻尼以耗散地震输入的能量
隔震装置 ➢ 上部结构与基础之间 ➢ 层间隔震(底部框架上部砖房结构顶部设置水箱,巨型框架中的子框
✓ 结构消能减震和阻尼减震——通过装设消能装置,使结构在轻微 地震或阵风脉动时,消能杆件或阻尼器处于弹性状态,结构物具 有一定抗侧刚度,可以满足正常使用要求。强震时消能杆件或阻 尼器进入非弹性状态,大量耗散地震能量。
✓ 结构被动控制——在建筑物特定部位附加子结构,改变结构的动 力特性,达到降低结构动力反应的目的。如调频质量阻尼器 (TMD),调频液体阻础抗震验算和地基处理仍应按原设防烈度进行。甲、乙类建筑的抗液 化措施可按提高一个液化等级确定,直到全部消除液化沉陷。 隔震结构的构造要求
(1)隔震层以上结构应采取不阻碍隔震层在罕遇地震下发生大变形的 措施,包括:上部结构的周边应设置防震缝,缝宽不宜小于各隔震支座 在罕遇地震下的最大水平位移值的1.2倍;上部结构(包括与其相连的任 何构件)与地面(包括地下室与其相连的构件)之间,宜设置明确的水平隔 震缝,确有困难时,应设置可靠的水平滑移垫层;在走廊、楼梯、电梯 等部位,应无任何障碍物。
✓ 结构主动控制——利用外部能源,在结构振动过程中瞬时改变结 构的动力特性,并施加控制力以衰减结构地震反应,如主动调频 质量阻尼器(AMD)、锚索控制等。
8.2 、隔震
隔震的本质与机理
隔震是通过某种装置,将上部结构与地震地面运动分离或切断, 削减地面运动向上部结构的传输。

建筑结构隔震与减震设计问题及对策分析

建筑结构隔震与减震设计问题及对策分析

建筑结构隔震与减震设计问题及对策分析地震是极为严重的一种地质灾害,具有极强的破坏力,会严重威胁人民的生命和财产安全。

近些年来随着经济水平的不断提高发展,建筑物的规模不断增大就导致建筑物在设计过程中越来越重视防震效果。

地震来临时,大地的震动会沿着楼层高度自上而下递增,会对建筑物的主体结构造成损害,进而对人民的生命财产安全造成损害,建筑物的减震和抗震设计对建筑物的主体结构具有重要意义。

本文就针对建筑物结构抗震和减震中的一些问题和解决对策进行一定的分析。

标签:建筑结构;隔震与减震设计问题;对策引言:随着目前建筑物高度的不断增加,对于高层建筑物的抗震技术的研究越来越重要。

在高层建筑物的设计过程中充分考虑所设计建筑本身的隔震与减震功能。

采取有效措施抵抗低强度地震也是目前建筑物设计过程中的重点问题,这对建筑物的安全性和稳定性具有重要影响。

目前建筑物的设计过程中仍然存在着很多问题,所以建筑物设计师在设计过程中要对现存问题进行解决,并且提出有效地解决对策。

基于此,笔者提出了以下见解。

1、建筑结构隔震与减震设计问题(1)目前所使用的隔震与减震设计稳定性差根据对我国建筑物目前所使用的抗震设计进行调查显示,我国国内目前所主要使用的为传统土木、混凝土机构的抗震设计。

这样抗震设计的原理就是利用建筑物结构之间的各个构件的承载力和变形能力抵御地震,吸收地震的能量。

这样的抗震结构在短期来看是没有问题的,但是这种抗震结构无法长期运行。

地震所带来的过大的加速度和空间范围的不断变形就容易使建筑物内部发生破坏,混凝土出现裂缝,使得建筑物原有减震抗震的效果受到影响,并且后期维修费用也很巨大。

并且对于这种建筑设计中的隔震效果也甚微,地震对建筑物带来的巨大冲击力使得建筑物上层建筑受到的水平力小于一般建筑,所以隔震层上部的建筑结构不会受到很大影响。

传统的隔震与减震设计的稳定性和安全性较差,难以适应现今发展的需要。

(2)建筑物后期维护工作不足任何事物在建造结束后都需要进行定期的维护工作才能保证各项功能的正常平稳运行。

第8章 建筑结构减震、隔震设计讲解

第8章 建筑结构减震、隔震设计讲解

8.3 消能减震设计原理及方法
8.3.1 消能减震原理 结构消能减震技术的实质是在结构的某些部位设置消 能装置(或构件),通过消能装置(或构件)来大量消散 或吸收地震输入结构中的能量,有效减小主体结构的地震 反应。装有消能装置的结构称为消能减震结构。
传统抗震结构 消能减震结构
Ein ER ED ES
③质量调谐减震技术;
②消能减震技术; ④主动控制技术;
⑤混合控制技术
隔震技术
消能减震技术
工程结构减震控制
被动调谐减震技术
主动控制技术
①调谐质量阻尼器” TMD
(Tuned Mass Damper)
混合控制技术
②调谐液体阻尼器”TLD
(Tuned Liquid Damper)
作动器拖动附加质量阻 尼器AMD (Active Mass Damper)
P
粘弹性阻尼器
钢板2 钢板1
Δ
滞回曲线
1
2 3
4
5
6
7
F
F
1 油缸 2 活塞 3 阻尼孔 4 导杆 5 液压油 6 油缸盖 7 副缸
P
粘滞阻尼器
Δ
滞回曲线
2.消能部件 消能部件是由消能装置及结构中的支撑、墙体、梁或 节点等构件组成的消能减震系统。在设计中可采用如下方 式构成消能部件。
(a)
(b)
直径D
翼缘
橡胶板
铅芯 钢板
增大阻尼
2.滑移隔震 这种隔震方法是在房屋基础顶面设置滑移层。风载或 小地震时,静摩擦力使结构固结于基础之上,大震时,静 摩擦力被克服,结构水平滑动,地震作用减小,滑移层间 摩擦阻尼同时消耗地震能量。为控制滑移层间的摩擦力以 满足隔震要求,通常采用的滑移层材料为钢摩擦滑板、石 墨、砂料、涂层垫层及聚四氟乙烯等

建筑结构抗震设计第六章隔震与消能减震设计简介大学课件

建筑结构抗震设计第六章隔震与消能减震设计简介大学课件


15、我就像一个厨师,喜欢品尝食物。如果不好吃,我就不要它。2021年8月下午8时8分21.8.1620:08August 16, 2021

16、我总是站在顾客的角度看待即将推出的产品或服务,因为我就是顾客。2021年8月16日星期一8时8分22秒20:08:2216 August 2021

17、利人为利已的根基,市场营销上老是为自己着想,而不顾及到他人,他人也不会顾及你。下午8时8分22秒下午8时8分20:08:2221.8.16
液压质量控制装置—由液压缸、活塞、管路和质量块构成,当结 构由地面运动产生振动时,油缸的活塞推动管路中的液体,使液体和 质量随之振动。结构的一部分振动能量传递给了该系统。
粘弹性耗能装置—由粘弹性材料和约束钢板构成,通过夹在钢板 之间的粘弹性材料发生剪切变形而耗散能量。
粘滞耗能装置—由缸体、活塞、和液体构成,活塞在缸体内往复 运动,粘滞液体从一端流向另一端产生阻尼力,阻碍结构的振动。
提出的隔震结构(Base-isolated building )方案。这种隔震结构在建筑
物结构与基础之间用滑石层隔开,地震 时建筑物可以滑动。
中村太郎的隔震结构 右图是中村太郎于1927年提出的隔震结
构方案。在这种隔震系统中已使用阻尼泵来 耗散地震动的能量,并且在该建筑地下层柱 的上下端采用铰接构造,建筑物可以水平自 由移动。
中南加州大学医院(隔震结构) 橄榄景医院(抗震结构)
中南加州大学医院
地下一层,地上7层,建筑面积:33000平方米;占地:4100平米; 最高高度:36。0m;铅芯多层橡胶隔震器68个,多层橡胶隔震器81个。
中南加州大学医院在这次地震及其其后的余震中,6-8英尺高的花瓶 等没有一个掉下来,建筑物内的各种机器等均未损坏,医院功能得到维 持,成为防灾中心,起到十分重要的作用。

隔震结构与减震结构与传统结构抗震设计(完全版)ppt课件

隔震结构与减震结构与传统结构抗震设计(完全版)ppt课件
Vc s1( )G 9601 .49kN
,隔震层的总刚度为53504KN/m。每个GZY400隔震支座受到水平剪力为218.22KN。
10
最大加速度
m10/ .s62.8 隔震结构时程分析验算
1.分析模型
上 部 结 构
隔 震 层
地震波 ART EL CENTRO ART HACHINOHE
ART KOBE
力。根据抗震规范相应要求,丙类建筑隔震支座平均应力限制不应大于15MPa,由此 确定每个支座的直径(隔震装置平面布置图如图10.10所示,即各柱底部分别安置橡胶 支座)。
图10.10 隔震支座布置图
5
1.确定轴向力 竖向地震作用
Fevk vG
柱底轴力设计值
N 1.2 (恒载 0.5 活载)1.3 竖向地震作用 53608 .25kN
图10.11 隔震结构时程分析模型 2.输入地震波
本工程8度(0.15g)设防,时程分析所用地震加速度时程曲线的最大值取为:
多遇地震1.10 m / s2
罕遇地震5.10m / s2
输入地震波如表10.7: 表10.7时程分析地震波参数
相位特性
时间间隔 (s)
EL CENTRO 1940 NS HACHINOHE 1969 EW JMA KOBE 1995 NS
Kh K j 2.092 44 92.048kN/ mm
由式(10.3)
eg
K j j 44 2.092 0.292 0.292
Kh
92.048
6

由式(10.1)
T1 2
G Khg
1.27S
5Tg
5 0.4 2.0s

2
1
0.05 eg 0.06 1.7eg

浅析建筑结构隔震和减震措施

浅析建筑结构隔震和减震措施

浅析建筑结构隔震和减震措施摘要:在社会发展的过程当中,建筑整体的结构设计越来越重视抗震,其中抗震又分为隔震和减震。

有效的抗震结构设计,可以保障建筑在遇到地震的过程当中,保持良好的稳定性,进而也就可以保障人们的安全。

目前在隔震和减震结构设计当中,有较多的方法和技术可以选择。

实际根据不同的建筑施工需求来合理选择和使用相应的结构设计方案。

这样可以有效保障建筑整体的结构稳定性。

关键词:建筑结构;隔震和减震;技术应用引言地震对建筑物的破坏,多数是由于地面的振动频率与建筑物主要结构构件的自然频率相偶合所致,在现代建筑设计中会考虑到抗震设计,来保证建筑结构安全。

建筑整体安全、抗震性能是设计过程中的重中之重,就目前来说隔震减震是减轻地震对建筑结构造成危害的最有效的手段。

隔震减震技术正在被广泛用以提升抗震能力,减少强震作用造成的地震反应,增加建筑结构的使用寿命。

1.建筑结构的隔震技术以及减震技术1.1建筑结构的减震技术通常情况下,建筑减震可以通过巧妙利用地震能量和建筑阻尼之间的内在联系实现。

如果增加建筑阻尼,可以在很大程度上消耗地震能量,基本上减震措施的基本出发点是使建筑阻尼增加,从而达到消耗地震能量的目的,减轻甚至避免地震对于建筑主体结构的破坏。

针对一些相关的布置问题,比如设置消能部件的个数、设置消能部件的位置等,都应该进行仔细的分析以及计算。

一般情况下,消能构件都是设置在结构的2个主轴方向上,这样可以使两个方向的刚度以及阻尼增加。

也可以将消能结构放置在变形较大的结构位置上,这样可以均衡整个建筑结构的阻尼分布,更容易分散地震能量,使整个建筑物的抗震性能大大提高,确保整个建筑物的安全性。

1.2建筑结构的隔震技术隔震措施往往会有一定的时间限制,因此建筑的隔震设计应该抢在建筑工程正式开工前,最晚也不能拖到建筑工程施工的时候再针对一些关键的部位设计隔震措施。

隔震措施设计时应该选择恰当的部位,一般都是选择建筑的关键部位以及基础部位。

隔震减震

隔震减震
体系组成:上部结构、隔震装置和下部结构三部分
• 隔震房屋和抗震房屋设计理念对比
抗震房屋 结构体系 科学思想 方法措施 上部结构和基础牢牢连接 隔震房屋 消弱上部结构与基础的有关 连接
提高结构自身的抗震能力 隔离地震能量向结构的输入 强化结构刚度和延性 滤波
隔震(2)
• 结构隔震体系的基本特征
a、足够的竖向承载力 b、隔震特性(一般可使结构水平地震作用降低至60%左右) c、复位特性 d、阻尼消能特性 e、隔震结构体系能有效保护上部结构,因此在各种生命线工 程、商场、精密仪器室等重要建筑中得到了广泛的应用。
• 混合控制从其组合方式来分:
主从组合方式、并列组合方式 典型的混合控制装置有: AMD与TMD相结合、AMD 与TLD相结合、 主动控制与基础隔震相结合、主动控制与耗能减震相结合、液压-质 量振动控制系统(HMS)与AMD相结合 back
隔震(1)
• 概念
即“隔离地震”,在建筑物基础上与上部结构之间以及 上部建筑层间设置由隔震器、阻尼器等组成的隔震层, 隔离地震能量向上部传递,减少输入到上部结构的地震 能量,降低上部结构的地震反应,达到预期的防震要求。 分类:基础隔震和层间隔震
• 按是否需要外部能量分为:
主动控制(AMD)、被动控制(PMD)、半主动控制、混合控制
(主动控制效果明显,但控制机构复杂,需要外加能源,控制系统的可靠性低; 而被动控制技术是较早得到发展和应用的工程减震技术,构造简单,不需要外 界能源输入能量,由控制机构隔离地震作用和消耗能量,达到减小结构地震反 应的目的,如隔震、耗能减震和吸振减震等。混合控制是将主动控制与被动控 制同时施加在同一结构上的结构振动控制形式)
• 减震效果 40%~60%,可同时减少结构水平和竖向地震反应 • 经济性:节约造价3%~10% • 分类:阻尼减震、吸能减震、冲击减震
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图10.10 隔震支座布置图
1.确定轴向力 竖向地震作用
Fevk vG
柱底轴力设计值
N 1.2 (恒载 0.5 活载)1.3 竖向地震作用 53608 .25kN
中柱柱底轴力
N中 1546 .39kN
边柱柱底轴力
N边 1134 .02kN
2.确定隔震支座类型及数目 中柱支座:GZY400型,竖向承载力1884KN,共22个。 边柱支座:GZY400型,竖向承载力1884KN,共22个。 其支座型号及参数如表10.4。
597
0.64
4
781.10
597
1.31
3
1195.20
597
2.00
2
1609.30
597
2.70
1
2023.40
597
3.00
由表10.6可知,上部结构满足抗震设计要求。
层高 (mm) 3600 3600 3600 3600 3600
Fi /kN
Vi /kN
380.45
380.45
400.65
10.6.4 水平向减震系数

的计算 多遇地震时,采用隔震支座剪切变形为50%的水平刚度和等效粘滞阻尼比。 由式(10.2)
Kh K j 2.092 44 92.048kN/ mm
由式(10.3)
eg
K j j 44 2.092 0.292 0.292
Kh
92.048
1.计算隔震层偏心距e
本结构和隔震装置对称布置,偏心距e =0。
2.隔震层质心处的水平位移计算 根据场地条件,特征周期为
Tg 0.4s
。 由式(10.2)
Kh K j 1.216 44 53.504kN / mm 由式(10.3)
eg
K j j 441.216 0.131 0.131
据竖向承载力、侧向刚度和阻尼的要求通过计算确定。隔震层在罕遇地震下应保持稳 定,不宜出现不可恢复的变形。隔震层橡胶支座在罕遇地震作用下,不宜出现拉应力。 • 3.隔震层上部重力设计 • 上部总重力为如表10.3所示。 • 10.6.3 隔震支座的选型和布置 • 确定目标水平向减震系数为0.50,进行上部结构的设计,并计算出每个支座上的轴向 力。根据抗震规范相应要求,丙类建筑隔震支座平均应力限制不应大于15MPa,由此 确定每个支座的直径(隔震装置平面布置图如图10.10所示,即各柱底部分别安置橡胶 支座)。
Kh
53.504
由式(10.1)
2
T1 1
2 G 1.66s
0.05
Kh
g
eg
1
0.05 0.131
0.06 1.7eg
0.06 1.7 0.131

0.71
0.9 0.05 eg 0.9 0.05 0.131 0.83
0.5 5 设防烈度8度(0.15g)罕遇地震e下g

由式(10.1)
T1 2
G Khg
1.27S
5Tg
5 0.4 2.0s

2
1
0.05 eg 0.06 1.7eg
0.57
0.9 0.05 eg 0.78 0.5 5eg
由式(10.6)

22(Tg /T1) (T0 /Tg )0.9 0.37 0.5
0.5 5 0.131
计算层间剪力标准值,其结果见表10.5。 表10.5 上部结构层间剪力标准值
层数
Gi / kN
Gi /kN
Fek /kN
5
5600.45
4
5897.86
3
6095.78
29785.65
2023.40
2
6095.78
1
6095.78
层数
Vi /KN
侧移刚度 (KN/mm)
层间位移 (mm)
5
380.45
隔震结构与减震结构与传统结构抗 震设计
• 隔震案例 • 减震案例 • 隔震结构与减震结构的特点及与传统结构
抗震设计的区别
隔震结构的案例
• 10.6 隔震结构工程设计实例
• 10.6.1工程概况
• 某中学教学楼,地上5层,每层高度皆为3.6m,总高18m, 隔震支座设置于基础顶部。上部结构为全现浇钢筋混凝土 框架结构,楼盖为普通梁板体系,基础采用肋梁式筏板基 础。丙类建筑,设防烈度8度,设计基本加速度0.15g,场 地类别Ⅱ类,地震分组第一组,不考虑近场影响。
781.10
414.10
1195.20
414.10
1609.30
414.10
2023.40
3.上部结构层间位移角 表10.6 上部结构层间位移角
层间位移角
限值
1/5650 1/2752 1/1799 1/1336 1/1207
1/550
10.6.6 隔震层水平位移验算 罕遇地震时,采用隔震支座剪切变形不小于250%时的剪切刚度和等效粘滞阻尼比。
• 根据现行《中小学建筑设计规范》、《混凝土结构设计规 范》、《建筑结构荷载规范》、《建筑抗震设计规范》相 关规定对上部结构进行设计,其结构柱网布置如图10.9所 示,各层的重量及侧移刚度如表10.3所示。
图10.9 框架平面柱网布置图 表10.3 上部结构重量及侧移刚度
层号
重力荷载代表值(KN)
即水平向减震系数满足预期效果。 10.6.5 上部结构计算 1.水平地震作用标准值
非隔震结构水平地震影响系数
0


Tg T1

2max


0.40 0.45
0.9

1.0
0.24

0.216
由式(10.8)
Fek 0Geq 0.37 0.216 25317 .8 2023 .4kN
侧移刚度(KN/mm)
1
6095.78
678
2
6095.78
597
3
6095.78
597
4
5897.86
597

5
5600.45
597
• 10.6.2 初步设计 • 1.是否采用隔震方案 • (1)不隔震时,该建筑物的基本周期为0.45s,小于1.0s。 • (2)该建筑物总高度为18m,层数5层,符合《建筑抗震设计规范》的有关规定。 • (3)建筑场地为Ⅱ类场地,无液化。 • (4)风荷载和其他非地震作用的水平荷载未超过结构总重力的10%。 • 以上几条均满足规范中关于建筑物采用隔震方案的规定。 • 2.确定隔震层的位置 • 隔震层设在基础顶部,橡胶隔震支座设置在受力较大的位置,其规格、数量和分布根
相关文档
最新文档