控制电机与应用
电机控制系统的工作原理及应用

电机控制系统的工作原理及应用一、引言电机控制系统是现代工业中广泛应用的一种自动化系统。
它通过对电机的控制,实现对机械设备的精确控制和调节。
本文将介绍电机控制系统的工作原理及其在各个领域的应用。
二、电机控制系统的工作原理电机控制系统主要由以下几个组成部分组成:1.电机:电机是电机控制系统的核心部件,负责转换电能为机械能。
电机的类型可以是直流电机、交流电机或步进电机等。
2.电源:电源为电机提供所需的电能。
3.传感器:传感器用于感知电机的工作状态和环境参数,如转速、温度等。
4.控制器:控制器是电机控制系统的大脑,负责对电机进行控制和调节,根据传感器的反馈信号进行判断和决策。
5.执行器:执行器将控制器发出的控制信号转换为电机所需的驱动力,驱动电机正常工作。
电机控制系统的工作原理可以概括为以下几个步骤:1.接收信号:控制器接收传感器传来的电机状态信号和环境参数信号。
2.判断和决策:控制器根据接收到的信号进行判断和决策,确定电机应该采取的工作模式和参数。
3.发出控制信号:控制器根据决策结果发出相应的控制信号。
4.控制电机:执行器接收控制器发出的控制信号,将其转换为电机所需的驱动力,控制电机正常工作。
5.监测与反馈:控制器持续监测电机的工作状态,并根据传感器的反馈信号进行实时调节和控制。
三、电机控制系统的应用电机控制系统广泛应用于各种工业领域和生活场景。
以下列举了几个常见的应用领域:1.机械制造:电机控制系统在机械制造中起到关键作用。
它可以控制机床、输送设备、装配线等机械设备的运行,实现精确的加工和组装。
2.自动化生产线:电机控制系统被广泛应用于自动化生产线。
它可以实现对生产线上的各种机械设备的自动控制和调节,提高生产效率和产品质量。
3.物流仓储:电机控制系统在物流仓储领域也有重要应用。
它可以控制货物的输送、分拣和储存,实现高效的物流管理。
4.汽车制造:电机控制系统在汽车制造中扮演重要角色。
它可以控制汽车的发动机、制动系统、转向系统等关键部件,实现对汽车性能和安全的控制和调节。
电机控制技术的分析与应用

电机控制技术的分析与应用一、电机控制技术介绍电机控制技术是一种将现代控制技术与电机驱动技术结合起来的综合性技术。
电机控制技术将电子技术、计算机技术、通信技术、机械控制技术等多种技术应用于电机控制系统中,实现对电机的精确控制和高效运转。
二、电机控制技术的分类1、伺服控制:伺服控制是指利用反馈信息进行控制的一种系统。
通过将电机的位置、速度和加速度等参数与参考信号进行比较,控制电机的运动轨迹。
2、矢量控制:矢量控制是一种通过精确控制磁场的方向和大小来控制电机运转的技术。
它可以实现高精度的转速和扭矩控制。
3、直接转矩控制:直接转矩控制是通过控制直接输出电机转矩来控制电机的运转。
它可以实现快速的动态响应和高效的能量利用。
三、电机控制技术的应用1、电动汽车:电机控制技术在电动汽车中广泛应用,可以实现高效的能量利用和精确的控制。
目前,电动汽车已经成为了未来汽车的发展趋势。
2、机床控制:电机控制技术可以实现机床的高速、高精度和高效率加工,提高了机床的生产率和制造精度。
3、航空航天:电机控制技术在航空航天领域中也有广泛应用,可以实现高精度的控制和高可靠性的运行。
四、电机控制技术的发展趋势1、智能化:电机控制技术将会向智能化的方向发展,智能化的控制系统可以通过学习和反馈来自主地适应不同的环境和工况。
2、绿色化:电机控制技术在未来还将会趋向于绿色化,更加注重能源效率和环境友好型。
3、高可靠性:电机控制技术将会趋向于高可靠性,对于航空航天、医疗设备等领域来说,高可靠性是非常重要的。
综上所述,电机控制技术是一种综合性的技术,可以应用于电动汽车、机床控制、航空航天等多个领域。
未来电机控制技术将会向智能化、绿色化、高可靠性的方向发展,成为未来技术的发展趋势。
电机控制技术的研究与应用

电机控制技术的研究与应用电机控制技术作为现代工业的核心技术之一,在当今社会中极其重要。
它广泛应用于机械、电力、化工和自动化等领域,可谓是现代产业的基石之一。
在本文中,我们将深入探讨电机控制技术的研究和应用,特别是在工业自动化方面的应用。
一、电机控制技术的概述电机控制技术是指对电机运行状态进行调节和控制的技术。
电机控制技术通常包括三个主要方面:驱动技术、运动控制技术和力矩控制技术。
驱动技术是指通过电力驱动电机的技术,起始、制动、速度调整等方面的控制;运动控制技术是指对电机运动过程进行调节和控制的技术,如位置控制、速度控制等;力矩控制技术是指对电机输出电磁转矩进行调节和控制的技术,如负载变化、运动阻力等。
三者密不可分,在实际应用中经常需要综合运用。
电机控制技术通常分为传统控制和现代控制两种。
传统控制指的是PID控制和经验控制,而现代控制则包括模糊控制和神经网络控制等,随着计算机和信息技术的不断提升,现代控制逐渐成为了电机控制的主流。
二、电机控制技术在工业中的应用电机控制技术在工业自动化中有广泛应用,主要包括以下几个方面:1. 机床控制技术机床是工业自动化中的关键设备,电机控制技术对机床的性能和功能具有重要影响。
在机床控制技术中,电机控制技术应用广泛,除了驱动技术和运动控制技术外,还需要结合其他技术,如机械传动和精密测量等。
2. 车辆控制技术随着现代交通的不断发展,车辆控制技术已经成为工业自动化领域的重要内容。
在车辆控制技术中,电机控制技术主要应用于车辆发动机、变速箱、驱动电机等部分。
通过电机控制技术,可以实现发动机输出功率的调节,加速和减速控制,以及档位的切换等。
3. 工业机器人控制技术机器人是工业自动化中的重要部分,可以实现多种操作和生产过程。
电机控制技术在工业机器人控制技术中应用广泛。
通过对电机的速度和力矩进行控制,可以实现机器人的精密定位和高效操作,提高自动化水平和产品质量。
三、电机控制技术的研究方向随着工业自动化的快速发展和技术的不断提升,电机控制技术的研究方向正不断拓展。
控制电机的原理及应用

控制电机的原理及应用1. 电机基本原理电机是将电能转化为机械能的设备,广泛应用于工业、交通、家用等领域。
电机的基本原理是利用磁场力和电磁感应的作用,通过电流在导体中产生的电磁场与外部磁场相互作用,从而引起导体受力,实现电能到机械能的转换。
2. 电机控制方式控制电机的方式可以分为直接控制和间接控制两种方式。
2.1 直接控制直接控制指的是通过改变电机供电电压、电流和频率等参数,直接调节电机的运行状态和转速。
常见的直接控制方式主要有以下几种:•线性控制:通过改变电机的供电电压和电流,调节电机的转速和转矩。
线性控制适用于一些简单的应用场景,如家用电器中的风扇和洗衣机等。
•PWM控制:脉宽调制(PWM)是一种通过改变电源供应的脉冲宽度来控制电机速度和转矩的方式。
通过调节脉冲的高电平时间和周期,可以改变电机的平均电压和电流,从而控制电机的转速和转矩。
PWM控制常用于直流电机和无刷直流电机等。
•定子电流控制:通过改变电机定子绕组的电流大小和方向,控制电机的转矩和转速。
定子电流控制适用于交流电机和感应电机等。
2.2 间接控制间接控制指的是通过调节电机的控制器或驱动器,来控制电机的运行状态和转速。
间接控制常见的方式有以下几种:•位置控制:通过设置电机的目标位置和反馈位置信息,控制电机的转动角度。
位置控制常用于步进电机和伺服电机等。
•转速控制:通过设置电机的目标转速和反馈转速信息,控制电机的转速。
转速控制适用于直流电机、无刷直流电机和感应电机等。
3. 电机控制应用控制电机的应用非常广泛,在各个领域都有重要的地位。
以下是一些常见的电机控制应用:•工业自动化:电机在工业生产中扮演着重要的角色,如控制生产线上的机械设备、机器人等。
•交通工具:电动车、电动汽车、电动船等交通工具都需要电机控制来实现驱动。
•家用电器:家用电器中的各种电机,如洗衣机、空调、冰箱等,都需要电机控制来实现运行。
•空调系统:空调系统中的风机、压缩机等都需要电机控制来实现送风和制冷。
控制电机的技术原理及应用

控制电机的技术原理及应用一、引言控制电机是现代工业中一项非常重要的技术。
通过对电机的控制,可以实现精确运动控制、速度调节、负载平衡等功能,广泛应用于工业生产、航空航天、汽车制造等领域。
本文将介绍控制电机的技术原理及其在各个领域中的应用。
二、电机控制的基本原理电机控制的基本原理是通过施加电流或电压来控制电机转速、方向或位置。
常见的电机控制方法主要有以下几种:1. 直流电机控制直流电机控制是最简单和常见的电机控制方法之一。
通过调节直流电源提供的电压来改变电机的转速。
一般情况下,直流电机转速与电压成正比。
2. 交流电机控制交流电机控制一般采用变频器来实现。
变频器可以改变电压、频率和相位,从而控制电机的转速和转向。
3. 步进电机控制步进电机控制通过对电机施加特定的脉冲信号来控制电机每一步的转动角度。
脉冲信号的频率和数量可以决定电机转速和位置。
4. 伺服电机控制伺服电机控制通过传感器感知电机的转动角度,并与设定值进行比较,然后通过控制器对电机施加电压或电流来调整电机的转动,实现精确的位置和速度控制。
三、控制电机的应用控制电机在现代工业中应用广泛,下面列举几个常见的应用场景:1. 生产线自动化在工业生产线上,控制电机广泛应用于自动化控制系统中,用于控制机械臂、输送带和其他设备的运动。
通过精确控制电机的转速和位置,可以实现高效生产和减少人力成本。
2. 机械设备控制电机在机械设备中的应用非常广泛,例如机床、印刷机、包装机等。
通过控制电机的转速和位置,可以实现精确的切削、印刷和包装等操作,提高生产效率和产品质量。
3. 航空航天在飞行器中,控制电机用于控制飞行器的各个部件,例如舵面、起落架、发动机等。
通过精确控制电机的转动,可以实现飞行器的平稳飞行和精确操控。
4. 汽车制造在汽车制造中,控制电机用于控制各种系统,例如发动机控制、刹车系统、座椅调节等。
通过控制电机的转速和位置,可以实现驾驶舒适性、安全性和燃油经济性的提升。
电机控制中的原理与应用

电机控制中的原理与应用电机控制是指对电机进行启动、停止和调速等操作的过程,它是实现各种电机应用的基础。
电机控制原理主要包括电机的工作原理、控制器的设计原理以及电机系统的闭环控制等内容。
本文将从原理和应用两个方面进行详细阐述。
电机控制的原理主要涉及到电机的工作原理和控制器的设计原理。
电机是一种将电能转换为机械能的装置,其工作原理根据法拉第定律,通过电流在磁场中产生力的作用来实现。
电机根据不同的工作原理可以分为直流电机和交流电机两大类。
直流电机通过直流电流在线圈中产生的磁场作用来实现转动,而交流电机则通过交流电流在定子和转子中产生的磁场作用来实现转动。
直流电机的控制原理主要包括启动、调速和制动。
直流电机一般采用分流和串联励磁两种方式,通过改变电源电压、电流或者改变线圈的连接方式来控制电机的转速和转矩。
控制器一般包括电机驱动电路和控制电路两部分,其中电机驱动电路用于控制电机的电源,而控制电路则负责控制电机的启动、停止和调速。
交流电机的控制原理主要包括启动、调速和制动。
交流电机一般采用定子绕组和转子绕组的磁场相互作用来实现转动,可分为感应电动机、同步电动机和变压器电动机等。
交流电机的控制主要通过改变电源的频率、电压或者改变绕组的接法来实现。
常见的控制方法有变频调速、电压调制和PWM调制等。
电机控制的应用非常广泛,涉及到各个领域。
在工业领域,电机控制广泛应用于机床、自动化生产线、输送设备、冶金设备等。
在家电领域,电机控制在洗衣机、冰箱、空调、电视等家电中都有应用。
在交通运输领域,电机控制应用于汽车、飞机、电动车等交通工具。
在医疗领域,电机控制应用于医疗设备、手术器械等。
在航天领域,电机控制应用于航天器的姿态控制、推进系统等。
电机控制的应用也在不断发展创新。
随着智能化的发展,电机控制与传感器、通信技术、计算机技术等相结合,形成了智能电机系统。
这种系统可以实现远程监控、远程故障诊断、自动调节等功能,提高了电机的控制精度和效率。
电机控制技术的原理及应用
电机控制技术的原理及应用1. 概述在工业生产中,电机控制技术扮演着重要的角色。
它是将电能转化为机械能的关键技术,广泛应用于各种设备和系统。
本文将介绍电机控制技术的原理及其在实际应用中的相关方面。
2. 电机控制技术的原理电机控制技术的原理是基于电磁学和电气工程的理论。
电机的基本原理是利用磁场和电流之间的相互作用来实现能量转换。
以下是电机控制技术的一些原理:•电机定律:包括安培定律、法拉第电磁感应定律和左手定则等,这些定律描述了电流和磁场之间的关系,为理解电机控制提供了基础。
•控制方式:电机控制可以通过改变电流、电压、频率和相位差等来实现。
常见的控制方式包括直流电机的电压控制、交流电机的频率控制和步进电机的相序控制等。
•反馈控制:为了实现精确控制,反馈控制是必不可少的。
通过传感器获取电机或系统的状态反馈,将反馈信号与期望信号进行比较,并根据比较结果对电机进行控制。
•控制算法:控制算法是实现电机控制的关键。
常见的算法包括比例-积分-微分(PID)控制算法、模糊控制和最优控制等。
这些算法根据系统需求选择合适的控制策略。
3. 电机控制技术的应用电机控制技术在各个领域都有广泛的应用,下面列举一些典型的应用场景:•工业自动化:电机控制技术在工业自动化中发挥着重要的作用。
通过电机控制,可以实现各种设备的自动化操作,提高生产效率和质量。
常见应用包括机械臂、流水线和自动装配设备等。
•交通运输:交通运输领域也广泛应用电机控制技术。
例如,电动汽车和混合动力汽车利用电机控制技术实现驱动系统的高效控制和能量回收。
同时,电机控制技术还可应用于电动自行车、电动摩托车和电动滑板车等。
•家用电器:家用电器是电机控制技术的典型应用领域。
从洗衣机到冰箱,从空调到风扇,各种家电都离不开电机控制。
通过精确的控制,可以实现高效、智能和安全的家电操作。
•医疗设备:医疗设备中也大量应用了电机控制技术。
例如,手术机器人和医疗器械中的驱动系统使用电机控制技术来实现精确的操作。
交流电机的控制技术与应用
交流电机的控制技术与应用电机是现代工业中最为常见的动力装置之一,广泛应用于各个领域,如制造业、交通运输、能源等。
而交流电机作为电机的一种,具有结构简单、运行可靠、效率高等优点,因此在工业生产中得到了广泛应用。
本文将重点探讨交流电机的控制技术与应用。
1. 交流电机的基本原理交流电机是利用交流电流产生的旋转磁场与电机中的磁场相互作用,从而产生转矩,驱动电机旋转。
交流电机的基本原理可以归纳为两个方面:电磁感应原理和洛伦兹力原理。
电磁感应原理指的是当交流电通过电机绕组时,产生的磁场与电机中的磁场相互作用,产生转矩。
洛伦兹力原理指的是当电机绕组中的电流与磁场相互作用时,会产生力矩,使电机旋转。
2. 交流电机的控制技术交流电机的控制技术主要包括转速控制、转矩控制和位置控制三个方面。
2.1 转速控制转速控制是指通过改变电机输入电压的频率和幅值,来控制电机的转速。
常用的转速控制方法有电压调制控制、频率调制控制和矢量控制等。
其中,电压调制控制是最为常用的方法,通过改变电压的幅值来控制电机的转速。
频率调制控制则是通过改变电压的频率来控制电机的转速。
而矢量控制则是综合了电压调制和频率调制的优点,可以实现更精确的转速控制。
2.2 转矩控制转矩控制是指通过改变电机输入电压和电流的幅值和相位,来控制电机的输出转矩。
常用的转矩控制方法有直接转矩控制和感应电机转矩控制等。
直接转矩控制是一种基于电流反馈的控制方法,通过测量电机电流来实现对转矩的控制。
感应电机转矩控制则是一种基于转子电流的控制方法,通过测量电机转子电流来实现对转矩的控制。
2.3 位置控制位置控制是指通过改变电机输入信号的频率和幅值,来控制电机的位置。
常用的位置控制方法有开环控制和闭环控制等。
开环控制是一种基于输入信号的预设值来控制电机位置的方法,但由于外界干扰和内部参数变化等因素的影响,其控制精度较低。
闭环控制则是一种基于位置反馈的控制方法,通过测量电机位置来实现对位置的控制,具有较高的控制精度。
控制电机及应用
直流伺服电动机机械特性曲线
14
第五章 控制电机及应用
直流伺服电动机
2020/9/19
15
第五章 控制电机及应用
5.3 力矩电动机——一种能和负载直接连接,能够长
期处于启动(堵转)状态下工作的低转速、大转矩的执行 电机。它可分为交流和直流。
永磁式直流力矩电动机的结构特点:扁平 状;主要采用永磁式电枢控制方式。
第五章 控制电机及应用
5.1 交流伺服电动机
5.1.1 两相交流伺服电动机的结构
交流伺服电动机实质上是一个两相异步电动机。 定子:
定子上装有两个在空间相差90度的绕 组:励磁绕组WF和控制绕组WC。 这两套绕组分别由两个不同的交流电 源供电。
运行时,励磁绕组始终加上一 定的交流励磁电压Uf,控制绕组则 加上控制信号电压Uc。
交流伺服电动机的接线图
2020/9/19
3
第五章 控制电机及应用
5.1.1 两相交流伺服电动机的结构
转子:分为鼠笼型和杯型两种。
(1)鼠笼型转子交流伺服电 动机的结构与普通笼型异步 电动机相同;多应用于小功 率自动控制系统中。
(2)空心杯型转子交流伺服 电动机的结构如右图所示。 多用于要求低速运行平滑的 系统中。
交流测速发电机主要是异步测速发电机,它的结构与交流伺服 电动机基本相同,区别仅在于定子上有一个绕组是作为感应电 势的输出绕组; 直流测速发电机结构和工作原理则与普通直流发电机基本相同。
应用场合——在自动控制系统和计算装置中应用甚广。
2020/9/19
19
第五章 控制电机及应用
5.6 直线电动机
直线电动机是一种能直接将电能转换为直线运动的伺服 驱动部件。
电机控制技术及应用
电机控制技术及应用电机作为现代工业和生活中不可或缺的动力源,其控制技术的发展对于提高电机的性能、效率和可靠性具有重要意义。
电机控制技术涵盖了从简单的开环控制到复杂的闭环控制,以及先进的智能控制等多个方面,并且在众多领域得到了广泛的应用。
一、电机控制技术概述电机控制技术的核心目标是实现对电机转速、转矩、位置等参数的精确控制,以满足不同应用场景的需求。
常见的电机控制方法包括以下几种:1、开环控制开环控制是最简单的控制方式,它根据给定的输入信号直接控制电机的驱动电路,而不考虑电机的实际运行状态。
这种控制方式结构简单、成本低,但控制精度较差,容易受到电机参数变化和外部干扰的影响。
2、闭环控制闭环控制则通过反馈环节实时监测电机的运行参数,并与给定值进行比较,然后根据偏差来调整控制信号。
常见的闭环控制有速度闭环控制、转矩闭环控制和位置闭环控制。
闭环控制能够有效地提高控制精度和稳定性,但系统结构相对复杂,成本较高。
3、矢量控制矢量控制是一种先进的电机控制技术,它通过将交流电机的定子电流分解为励磁分量和转矩分量,并分别进行控制,实现了对电机磁通和转矩的解耦控制,从而获得了与直流电机相似的控制性能。
矢量控制具有良好的动态性能和调速范围,广泛应用于高性能的交流调速系统中。
4、直接转矩控制直接转矩控制直接对电机的转矩和磁链进行控制,不需要复杂的坐标变换,具有响应速度快、结构简单等优点。
但在低速运行时,转矩脉动较大,限制了其在某些高精度应用中的使用。
二、电机控制技术的关键要素1、传感器传感器在电机控制系统中起着至关重要的作用,用于检测电机的转速、位置、电流、电压等参数。
常用的传感器有编码器、霍尔传感器、电流互感器等。
高精度、高可靠性的传感器能够为控制系统提供准确的反馈信息,从而提高控制性能。
2、控制器控制器是电机控制系统的核心,负责处理传感器反馈信号,并生成控制指令。
常见的控制器有微控制器(MCU)、数字信号处理器(DSP)和可编程逻辑控制器(PLC)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制电机的原理旋转变压器旋转变压器一般有两极绕组和四极绕组结构形式。
两极绕组旋转编码器的定子和转子各有一对磁极,四极绕组则各有两对磁极,主要用于高精度的检测系统。
初次之外,还有多极式旋转变压器,用于高精度绝对式检测系统。
旋转变压器是一种电磁式传感器,又称同步分解器。
它是一种测量角度用的小型交流电动机,用来测量旋转物体的转轴角位移和角速度,由定子和转子组成。
其中定子绕组作为变压器的原边,接受励磁电压,励磁频率通常用400、3000、及5000HZ等。
转子绕组作为变压器的副边,通过电磁耦合得到感应电压。
旋转变压器的工作原理和普通变压器基本相似,区别在于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比是常数,而旋转变压器的原边、副边绕组则随转子的角位移发生相对位置的改变,因而其输出电压的大小随转子角位移而发生变化,输出绕组的电影幅值与转子转角成线性关系。
旋转变压器是一种精密角度、位置、速度检测装置,适用于所有实用旋转编码器的场合,特别是高温、严寒、潮湿、高速、高震动等信号编码器无法正常工作的场合。
自整角机自整角机主要包括力矩式自整角机、控制式自整角机、数字式自整角机。
自整角机是利用自整步特性将角变为交流电机或由转变为转角的感应式微型电机,在伺服系统中被用作测量角度的位移传感器。
自整角机还可用以实现角度信号的远距离传输、变换、接收和指示。
两台或多台电机通过电路的联系,使机械上互不相连的两根或多根转轴自动地保持相同的转角变化,或同步旋转。
电机的这种性能称为自整步特性。
在伺服系统中,产生信号一方所用的自整角机称为发送机,接收信号一方所用的自整角机称为接收机。
自整角机广泛应用于冶金、航海等位置和方位同步指示系统和火炮、雷达等伺服系统中。
测速发电机测速发电机主要包括直流测速发电机、交流测速发电机、特种测速发电机。
测速发电机的工作原理是将转速变为电压信号,它运行可靠,但体积大,精度低,且由于测量值是模拟量,必须经过A/D转换后读入计算机。
脉冲发生器的工作原理是按发电机的转速高低,每转发出相应数目的脉冲信号。
按要求选择或设计脉冲发生器,能够实现高性能检测。
伺服电动机伺服电动机分交、直流两类。
交流伺服电动机的工作原理与交流感应电动机相同。
在定子上有两个相空间位移90度电角度的励磁绕组和控制绕组接一恒定交流电压,通过交流电压或相位的变化,从而达到控制电动机运行的目的。
伺服电动机的特点及应用范围交流伺服电动机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格等特点,应用于各种包装机、焊接机、贴片机。
微特同步电机微特同步电机包括永磁同步电动机、磁阻同步电动机、磁滞同步电动机、低速同步电动机。
微特同步电机的特点:转速不随负载和电压而变化,只与频率有关;运行稳定性好,具有较强的过载能力;运行效率高,在低速时,同步电动机这一点尤为突出;能以超前功率因数运行,有利于改善电网功率因数。
缺点啥不恒连续启动。
微特同步电机的应用范围:微特同步电机的额定功率从零点几瓦到数百瓦,由于同步电动机的转速在一定的输出功率范围内伤不随负载变化的这种恒速特性使得微型同步电机在诸如电报传真机、磁带录音机和各种精美的几时或是记录装置中得到了广发的应用。
无刷直流电动机无刷直流电动机按照工作特性可以分为两大类:1.具有直流电机特性的无刷直流电机。
2.具有交流电机特性的无刷直流电机。
无刷直流电动机的工作原理及应用范围:与普通结果的永磁直流电动机不同,在无刷直流电动机中,电枢绕组放置在定子上,永磁体则放置在转子上。
定子各相电枢绕组相对于转子永磁体的位置,有转子位置传感器通过电子方式或电磁方式感知,并利用其输出信号,通过电子开关吸纳路,按照一定的逻辑程序去驱动与电视绕组相连接的电力电子开关器件,把电流导通到相应的电枢绕组。
随着转子的连续旋转,位置传感器不断地发送转子位置信号,使电枢绕组不断地依次通电,不断改变通电状态,从而使得转子各磁极下电枢导体中流过电流的方向始终不变。
这就是无刷直流电动机电子转向的实质。
应用于绕线机、跑步机、医用离心机、纺织机械等。
步进电动机步进电动机的工作原理及应用范围:步进电机是一种将电脉冲转换为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机可以作为一种控制用的特种电机,利用其没有积累误差的特点,广泛应用于各种开环控制。
直线电机是一种将电能直接转化成直线运动机械能,而不需要任何中间转换机构的传动装置。
它可以看成是一台旋转电机按径向剖开,并展成平面而成。
在初级绕组中通多相交流电,便产生一个平移交变磁场称为行波磁场。
在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。
主要应用在激光切割、SMT贴片机、切割机床、物流设备、立体仓库、油田抽油机、PCB钻孔机,太阳能晶片印刷和切割、半导体生产制造设备等。
个系列直线电动机的分类及其特点:1.无铁芯直线电动机特点:无齿槽效应,容易实现更安定的运动,实现更高的精度体积小重量轻,易实现高加速度运行。
2.有铁芯直线电动机特点:推力密度高,在同等尺寸下提供更高的推力,可提供最大上万牛顿推力磁性吸引力,动子定子间会产生较大的磁性吸引力。
超声波电动机压电表面形成上正、下负的电场时,压电体在长度方向便会伸张;反之,若在压电体上、下表面施加反向电场。
则压电体在长度方向就会收缩。
当对压电体施加交变电场时,在压电体中就会激发出某种模态的弹性振动。
当外电场的交变频率与压电体的机械谐振频率一致时,压电体就进入机械谐振状态。
成为压电振子。
当振动频率在20KHZ以上时,就属于超声振动。
超声波电动机的特点:1.一般传统电磁马达在高转速工作时具有较高的效率,但在低转速时则较低,和传统电磁电机相比,超声波电机在低转速时能够表现出较高的转换效率。
2.不需要经过齿轮的转换,便可产生高扭力,所以可以直接驱动。
3.具有振动模式可选择,故可以有各种不同之形状,在设计上极具弹性。
4.不会产生电磁干扰。
5.安静、噪音低。
6.结构简单。
步进电机是一种完成增量运动的电磁机械。
它能将输入电脉冲信号转换成机械的运动量加以输出。
每一个主令脉冲都可以使步进电机的转轴前进一个步距角,并依靠它特有的定位转矩将转轴准确地锁定在空间位置上。
步进电机是离散型自动化执行元件,是自动控制系统中的重要执行部件,它在系统中可实现变换脉冲数为转轴的角位移,起电磁制动器、电磁差分器、电磁减速器和角位移发生器等。
步进电机是一种将电脉冲信号转换成角位移或线位移的元件,其转轴输出的角位移量与输入的脉冲个数有关,通过控制输入脉冲个数来控制步进电机的角位移量,而通过控制脉冲频率可实现调速。
步进电机由定子和转子组成。
定子的主要结构是绕组,两相电机即有两个绕组,其它以此类推。
绕组按一定的通电顺序工作,这个通电顺序称为步进电机“相序”。
转子的主要结构是磁性转轴,当定子中的绕组在相序信号作用下有规律的通电,断电工作时,转子周围就会有一个按规律变化的电磁场,因此一个按规律变化的电磁力就会作用在转子上,转子总是力图转动到磁阻最小的位置,正是这样,让转子按一定的步距角转动,使转子发生转动。
步进电机步距角θ的计算公式:θ=360°/NZ,其中N 为步进电机中一个通电循环的拍数,Z 为转子齿数。
其中常见的反应式步进电机分为转子和定子两部分。
定子是由硅钢片叠成的。
定子上有6 个磁极(大极),每2 个相对的磁极(N、S 极)组成1 对,共有3 对。
每对磁极都缠有同一绕组,也即形成一相,这样3 对磁极有3 个绕组,形成三相。
可以得出,四相步进电机有4 对磁极、四相绕组,五相步进电机有5 对磁极、5 相绕组……依此类推。
每个磁极得内表面都分布着多个小齿,它们大小相同,间距相同。
电机一旦通电,在定转子间将产生磁场(磁通量中)当转子与定子错开一定角度产生力,力矩与电机有效体积正比,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。
步进电机驱动系统中,控制器与驱动器之间的连接分为串行和并行控制两种。
串行控制时,控制器输出时钟脉冲串和方向电平,靠驱动器中的脉冲分配器转换并行驱动信号,去控制各相绕组的导通或截止。
这里时钟脉冲的有无决定了步进电机的运行或停止,脉冲频率决定步进电机运行的速度,方向电平决定运转的方向。
并行控制时,控制器直接输出各相绕组导通或截止的并行信号,此时,脉冲分配器设在控制器中,除了由软件来代替脉冲分配器的功能外,不论是串行控制还是并行控制,整个系统中都必须有脉冲分配器这个环节。
大部分PLC 调速器采用与该PLC 能够配套的驱动器和对应的步进电机。
步进电机可直接用数字信号控制,无需反馈可开环工作,无累积定位误差,控制精度高,因此被广泛用于数字控制和计算机控制等精密定位的控制系统中。
可编程序控制器PLC 是一种适于工业现场控制的技术平台。
PLC 综合了计算机技术、自动控制技术和通信技术,使用面向过程、面向用户的简单编程语言,用户可通过软件设计,实现各种复杂的逻辑控制。
从应用的角度来看,制约步进电机的两个问题是失步和振荡,由于步进电机在大多数情况下采用开环运行的方式,它的主要运行性能完全依赖于驱动器、负载和电机本身。
在多种情况下会产生失步,比如启动或停止频率超过突跳,电机高速运行的脉冲频率超过了最大运行频率,所带负载转矩超过了启动转矩,共振等。
通过改善驱动器的性能,可以减小运行中失步的可能。
步进电机低频振荡是另一个需要解决的问题。
步进电机在极限频率下做连续步进运行,即改变一次通电状态,转子转过一个步距角。
如果阻尼较小,这种运动是一个衰减的振荡过程,转子是按自由振荡频率振荡几次才衰减到新的平衡位置而停止下来。
每来一个脉冲,转子都从新的转矩曲线的跃变中获得一次能量的补充,这种能量越大,振荡越厉害。
当脉冲频率等于或者接近于电机的自由振荡频率时电机会出现严重的低频振荡,甚至失步导致无法工作,一般不允许在共振频率下运行。
[5.4~6]随着新材料、新技术的发展及电子技术和计算机的应用, 步进电动机及驱动器的研制和发展进入了新阶段。
过去, 人们认为伺服系统一定优于步进系统的观念也发生着很大的变化, 现代的步进系统已完全不是过去的步进系统。
定位驱动装置已经过“步进—直流伺服—交流伺服”, 再度回到步进系统。
步进系统的回归源自于其无需反馈就形成了开环控制系统, 使系统结构大大简化、使用维护更加方便、工作可靠, 在一般使用场合具有足够高的精度等特点。