详解锂离子电容器开发
锂离子电容器开发全解

锂离子电容器开发全解
(一)高电压、大容量、安全性高
FDK开发出了输出功率高、充放电循环特性出色的锂离子电容器。
现已开始用于高电压暂降补偿装置和太阳能发电的负荷平均化等领域,此外,其在混合动力车等需要高输出功率的汽车领域的应用也有进展。
本文将由FDK介绍锂离子电容器的特性以及面向混合动力车等采取的举措。
近年来,为应对化石燃料枯竭和防止地球变暖,人们采取了各种对策。
针对化石燃料问题,积极导入了太阳能发电和风力发电等自然能源。
在防止
地球变暖方面,开始针对CO2排量高的汽车实施电动化及马达辅助驾驶等减
排对策。
但这些对策导致电力系统不稳定和用电量增加等新课题浮出了水面。
要解决这些课题,蓄电元器件必不可少。
此前的蓄电元器件一直以锂离子充电电池(LIB)为中心推进开发,
但因用途的不同,LIB的输出特性和充放电循环寿命(以下简称寿命)存在
极限。
我们面向LIB难以支持的用途,开发出了高输出长寿命的锂离子电容。
小型锂离子可充电电池产品说明书

就会穿过该 4&* 膜并嵌入负极。 但是,因为锂离子穿过负极活性物质表面上的 4&*
膜时会产生高电阻,所以 4&* 膜越厚,电阻就越高。而 且形成 4&* 膜时也会消耗电解液中的锂离子。因此,为 了形成更薄的 4&* 膜,需要选择与电解液中的锂离子 之间的反应电势高于电解液的还原分解电势的负极材 料。
关于小型锂离子可充电电池
.关于小型锂离子可充电电池
小型锂离子可充电电池的结构 本产品的概况如下所示。
表 产品规格
电压 电流 温度
项目 产品编号 容量ˎ &43!L)[ ˎ
标称电压 最大充电电压 放电终止电压 最大充电电流 最大放电电流 工作温度范围 保存温度范围
性能 4-#-3
图 各种环境温度下进行完全放电至7 的循环试验时放电 容量的变化率
小型锂离子可充电电池技术说明$"5
小型锂离子可充电电池的使用方式
小型锂离子可充电电池的使用方式
小型锂离子可充电电池的充电方式 我们建议在达到7 的额定上限电压前采用恒流
充电方式,之后进行将恒定电压保持在7 的恒压充 电。图表示用$ 电流值(N")对Пʷ- 进行 充电时的电压和充电电流值的推移。用恒定电流充电至 7 的额定上限电压后,将恒定电压保持在7 的具 体条件是,用N" 充电至7 后保持恒定电压,当 电流值缩小到容量的ˋ电流值(N")后,即可 停止充电。
由此可得出结论,即使在无法维持正常充电电压的 情况下,本产品的特性也不会突然恶化。
˞下记数值并非保证值
图 充电电压达到7 时对Пʷ- 进行充放电循环的 循环次数与容量维持率的关系
˞下记数值并非保证值
图 各种环境温度下以完全放电状态保存时放电容量的变化率
超级电容器制作

超级电容器的制作方法超级电容器用活性炭的处理方法一种超级电容器用活性炭的处理方法,其特征是用金属离子Al3+、Li+、Zn2+、Cu2+、Tl+、Pb2+中的任何一种在活性炭表面进行欠电位沉积,为电化学双层电容器提供法拉第准电容。
可以将所述离子溶液的任一种加入超级电容器KoH电解液中,也可以用所述离子溶液的任一种修饰活性炭粉,使其微孔里沉积该种离子。
采用本发明制得的超级容器与蓄电池或其它电池配合组成复合电池,解决现有电池不能满足高功率、大容量、快充电要求的难题,广泛用于航天、军事、交通、电力、通信等重要部门,有重要现实意义和广阔的前景。
使用超级电容器的电子定时器及其方法一种使用超级电容器的电子定时器及其方法,其是由一个可变电阻器,一个超级电容器及一个电磁继电器组成。
当一主电源被关闭后,由超级电容器对电磁继电器供电,将可延长或促动一负载的运作,直到超级电容器停止放电。
结合可变电阻器与其它两个组件,则超级电容器的放电时间可被可变电阻器线性地改变,因此产生负载的迟滞调整及促动时间的线性配置。
此种简单、小型且便宜的定时器可用于室内与室外照明,安全侦测系统及激活系统。
超级电容器的可极化电极炭材料及制备方法本发明涉及超级电容器的可极化电极炭材料及其制备方法。
它包含这种材料的电极及该电极的超级电容器。
本发明的极化电极炭材料是采用市售活性炭经固/液异相化学反应制得的。
该化学改性的活性炭比表面积为600~1300m2g-1,氮元素含量0.1~5.0%,微孔容积与总孔容积之比≥0.8,粒度范围为1μm~30μm,在非水电解质溶液中,该活性炭极化电极比容量可达41Fg-1。
车用高比能量超级电容器一种具有大容量、高性能、长寿命及充放电速度快的车用超级电容器;包括第一电极、第二电极、电解液、集流体、隔膜和外壳,第一电极的绝对电容量大于第二电极的绝对电容量,且第二电极中电极材料是由通过双电层原理或准电容原理存储能量的材料制成,第一电极中电极材料是由通过法拉第过程或准电容原理存储能量的材料制成,所述的电解液为有机溶液。
锂离子混合电容器

金属-有机骨架派生的折皱薄板装配的长方体多孔碳可作为超高能量密度锂离子混合电化学电容器(Li-HECS)的正极活性材料Abhik Banerjee,ab Kush Kumar Upadhyay,ab Dhanya Puthusseri,ab VanchiappanAravindan,*c Srinivasan Madhavi*cd and Satishchandra Ogale*ab 锂离子混合电容器(锂离子电化学电容器)成功的吸引了密切关注下一代先进储能技术的人们,这种技术可以同时满足高功率密度和高能量密度的要求。
在这里,我们将演示合成的较高的表面积三维碳长方体是如何用于金属 - 有机骨架(MOF)作为阴极材料与钛酸锂作为负极的高性能锂离子电化学电容器中的。
电池的能量密度是65 瓦时每千克,这明显高于市场上销售的可使用的活性碳(这种活性碳的能量密度只有36瓦时每千克),也高于对称的超级电容器基于相同的金属-有机骨架派生的碳(金属-有机骨架派生碳的能量密度是20瓦时每千克)。
这种正极是金属-有机骨架派生的碳材料,负极是钛酸锂的锂离子电容器在1000恒电流的高循环率条件下,保留了初始值的80%(25瓦时每千克)的优良循环性能。
这个结果清晰的表明:在锂离子电化学电容器配置领域中,金属-有机骨架派生出的碳材料将成为未来混合式电动汽车配置中最有前途的材料。
1.前言近年来,金属 - 有机骨架材料(即MOFs)凭借其独特的形式和性质在材料科学领域已成为最有前途的结构材料之一。
基本上,金属-有机骨架是金属和配位体的晶体组件。
其中,金属离子和配位体相互协调形成一个高度开放的三维框架。
简易的合成程序和其本身固有的多孔性使得金属-有机骨架成为了最有吸引力的候选材料,其用于各种领域包括催化,传感器,药物递送,气体吸附法,气体分离等等。
【1-6】事实上,金属-有机骨架材料合成了多种功能性强的无机材料和以碳为基础的材料的,其可用于不同的应用中,在这种情况下,金属-有机骨架材料也是一种有前途的先驱材料。
高效能能源储存材料的研究与开发

高效能能源储存材料的研究与开发第一章:引言随着能源需求的不断增长和现有能源资源的有限性,提高能源储存效率和开发新型高效能源储存材料已成为当今研究的热点。
高效能源储存材料的研究与开发对于实现可持续能源的利用和环境保护具有重要意义。
本文将从材料的分类、储能机制以及相关研发进展等方面进行阐述。
第二章:高效能源储存材料的分类与特性2.1 电化学储能材料电化学储能材料主要指电池和超级电容器所使用的电极材料和电解质。
电化学储能材料应具备高能量密度、高电导率、较低的内阻、良好的循环稳定性等特点。
常用的电化学储能材料包括锂离子电池的正负极材料、锂硫电池的正极材料、超级电容器的电极材料以及电解质。
2.2 热化学储能材料热化学储能材料主要指通过物质的吸热和放热来进行热能储存和释放的材料。
常见的热化学储能材料包括水热相变材料、金属氢化物、化学吸附剂等。
这些材料能够在热能输入时吸热转化为高温物质,并在需要时通过放热释放储存的热能。
2.3 光化学储能材料光化学储能材料指的是通过光能的转化和捕获来进行能量储存的材料。
光化学储能材料广泛应用于太阳能电池、光催化反应等领域。
这些材料需要具备良好的光吸收和电子传输性能,能够将光能高效转化为电能或化学能。
第三章:高效能源储存材料的储能机制3.1 电化学储能机制电化学储能材料的储能机制主要包括离子迁移、电荷转移和电解质界面反应等过程。
以锂离子电池为例,正负极材料在充放电过程中通过离子迁移和电荷转移实现能量的储存和释放。
3.2 热化学储能机制热化学储能材料通过吸热和放热反应实现能量的储存和释放。
以水热相变材料为例,它通过水在相变过程中吸热和放热来进行能量储存和释放。
3.3 光化学储能机制光化学储能材料的储能机制主要依赖于光能的转换和储存。
以太阳能电池为例,它通过光能转化为电能进行能量的储存。
第四章:高效能源储存材料的研发进展4.1 电化学储能材料的研发进展近年来,锂离子电池、锂硫电池以及超级电容器等电化学储能材料得到了广泛关注。
锂离子电池国内外研发现状

纯电动车及锂离子电池国内外研发现状一、纯电动车相关技术发展趋势(一)纯电动汽车的发展历程及地区简况纯电动汽车以车载电源(充电蓄电池)作为储能方式、用电动机为动力来驱动车轮行驶,不仅具有节能、环保的特性,还有动能来源广泛的优点,可以利用水力、风力、核能等发电或利用电力系统低谷期给蓄电池充电,从而提高电网效能。
1、历史沿革纯电动汽车在电动汽车中发展时间最长。
自19世纪90年代美国人制造出世界上第一辆纯电动汽车以来,20世纪初第一次达到生产高峰,占领了40%的汽车市场。
后来由于电子启动器的发明以及纯电动汽车动力性差的原因,在30年代中期结束了早期的纯电动汽车生产而进入燃油汽车的黄金时期;1974年-1975年和1979年-1982年欧美两次能源危机推动纯电动汽车的研制重新进入高峰。
这一阶段汽车电力电子学尚未建立,既没有完善的科学理论做指导,更缺乏高科技含量的汽车电力电子装置可供采用。
特别是,当时仅有铅酸蓄电池可供使用,而铅酸蓄电池体积大、质量重,能量密度小、功率密度低,充电时间长,每次充足电后续驶里程较短,再加上电力传动系统的制造成本过高等因素困扰,1997年以后绝大多数公司对纯电动汽车的研发基本处于停滞状态。
第二代纯电动汽车的出现,是以汽车电力电子学的最新发展为基础的,其技术亮点包括高能量密度锂离子蓄电池、锂离子电容器等的发明,以及乘用车电动轮技术的开发和实用化等。
虽然,纯电动汽车离真正商业化还有一定的距离,但与第一代纯电动汽车相比,它已经在充电时间、续驶里程、动力性、快速充放电能力等方面取得了可喜的进展。
与传统内燃机汽车及混合动力汽车、氢燃料汽车相比,第二代纯电动汽车也显示出了一定的“比较优势”:控制精确度高于混合动力车,风阻系数可降至0.19,整车质量大大低于燃料电池车,CO2排放量低于同级别汽油车,使用过程的能耗费用低于汽油车。
当然还存在技术瓶颈和若干问题。
2、地区发展在新能源汽车的发展战略中,各个国家、地区和世界各大汽车公司都依据自己的评估作了不同的选择,对纯电动汽车的研究采用了不同的策略。
2025-2031年中国超级电容器产业发展现状与前景趋势报告

2025-2031年中国超级电容器产业发展现状与前景趋势报告中企顾问网发布的《2025-2031年中国超级电容器产业发展现状与前景趋势报告》报告中的资料和数据来源于对行业公开信息的分析、对业内资深人士和相关企业高管的深度访谈,以及共研分析师综合以上内容作出的专业性判断和评价。
分析内容中运用共研自主建立的产业分析模型,并结合市场分析、行业分析和厂商分析,能够反映当前市场现状,趋势和规律,是企业布局煤炭综采设备后市场服务行业的重要决策参考依据。
报告目录:第1章:中国超级电容器行业发展环境分析1.1超级电容器概述1.1.1超级电容器定义1.1.2超级电容器分类1.1.3超级电容器的原理分析1.2超级电容器性能分析1.2.1超级电容器性能指标1.2.2超级电容器性能特点1.2.3超级电容器性能优势1.2.4超级电容器定位:与锂电池互补1.3超级电容器所归属的国民经济分类1.4超级电容器行业专业术语介绍1.5本报告研究范围界定1.6本报告数据来源及统计说明第2章:中国超级电容器行业PEST分析2.1超级电容器行业政策(Politics)环境2.1.1行业监管体系及机构介绍2.1.2行业相关执行规范标准(1)已实施的行业标准(2)即将实施的行业标准(3)正在起草的行业标准2.1.3行业发展相关政策规划汇总及解读2.1.4政策环境对超级电容器行业发展的影响分析2.2超级电容器行业经济(Economy)环境2.2.1宏观经济发展现状(1)国内生产总值(2)工业生产总值(3)制造业固定资产投资额增速分析2.2.2宏观经济发展展望2.2.3超级电容器行业发展与宏观经济发展相关性分析2.3超级电容器行业社会(Society)环境2.3.1相关社会环境分析(1)中国人口规模(2)居民收入水平(3)可持续发展(4)居民动力汽车使用意识(5)轨道交通发展2.3.2社会环境变化趋势及其对行业发展的影响分析2.4超级电容器行业技术(Technology)环境2.4.1超级电容器生产工艺流程2.4.2超级电容器技术存在的问题(1)电极材料的创新(2)匹配组合问题(3)慢放电控制问题(4)内阻较高的问题(5)减小体积的问题2.4.3超级电容器关键技术分析2.4.4超级电容器行业相关专利的申请及公开情况(1)超级电容器专利申请(2)超级电容器授权占比(3)超级电容器热门申请人(4)超级电容器热门技术2.4.5技术环境变化对行业发展带来的深刻影响分析2.5疫情对超级电容器行业发展影响分析2.5.1企业成本压力增大2.5.2供应链短期中断第3章:全球超级电容器行业发展现状与趋势3.1全球超级电容器行业发展历程3.2全球超级电容器行业宏观环境背景3.2.1全球超级电容器行业经济环境概况(1)国际宏观经济现状(2)主要地区宏观经济走势分析(3)国际宏观经济预测3.2.2全球超级电容器行业政法环境概况(1)美国超级电容器相关政策(2)欧盟超级电容器相关政策(3)日本超级电容器相关政策3.2.3全球超级电容器行业技术环境概况(1)超级电容器专利申请及授权情况(2)超级电容器热门申请人(3)超级电容器热门技术3.3全球超级电容器行业发展现状3.3.1全球超级电容器行业发展现状3.3.2全球超级电容器行业市场规模3.3.3全球超级电容器行业竞争格局(1)企业竞争格局(2)区域竞争格局3.4全球超级电容器领先企业分析3.4.1美国MaxwellTechnologies(1)企业发展简介(2)公司经营情况(3)公司超级电容器发展情况(4)公司在华布局情况3.4.2日本Nec-Tokin(1)公司发展简介(2)公司产品结构与特征(3)公司超级电容器发展情况3.4.3澳大利亚CAP-XX(1)企业发展介绍(2)公司经营情况(3)公司超级电容器发展情况(4)公司在华布局情况3.5全球超级电容器行业前景预测及发展趋势3.5.1全球超级电容器行业发展前景预测3.5.2全球超级电容器行业发展趋势第4章:中国超级电容器行业发展状况分析4.1中国超级电容器行业发展现状分析4.1.1中国超级电容器行业发展特点(1)行业起步较晚(2)行业下游应用范围广且契合国家战略(3)行业市场参与者较少(4)行业政策规范不完善4.1.2中国超级电容器行业市场需求规模分析4.1.3中国超级电容器行业市场竞争分析4.2中国超级电容器行业投资分析4.2.1行业主要投资主体与方式分析4.2.2行业主要投资动因分析4.3中国超级电容器细分产品分析4.3.1超级电容器行业产品结构特征4.3.2纽扣型超级电容器市场分析(1)纽扣型超级电容器主要特征(2)纽扣型超级电容器应用需求(3)纽扣型超级电容器竞争格局(4)纽扣型超级电容器前景趋势分析4.3.3卷绕型超级电容器市场分析(1)卷绕型超级电容器主要特征(2)卷绕型超级电容器应用需求(3)卷绕型超级电容器竞争格局4.3.4大型超级电容器市场分析(1)大型超级电容器主要特征(2)大型超级电容器应用领域(3)大型超级电容器前景预测4.4中国新型超级电容器产品分析4.4.1锂离子超级电容器产品分析(1)锂离子超级电容器主要特征(2)锂离子超级电容器原理(3)锂离子超级电容器应用需求(4)锂离子超级电容器产品竞争格局(5)锂离子超级电容器前景分析(6)锂离子超级电容器最新动向4.4.2其他新型超级电容器产品分析(1)碳基超级电容器(2)柔性超级电容器第5章:中国超级电容器行业原材料市场分析5.1超级电容器行业产业链分析5.1.1超级电容器行业产业链构成5.1.2超级电容器行业成本结构特征5.2超级电容器行业原材料市场分析5.2.1超级电容器行业上游市场概述5.2.2超级电容器用电极材料市场分析(1)超级电容器用电极材料市场现状(2)碳基材料市场分析(3)金属氧化物或氢氧化物市场分析(4)导电聚合物市场分析5.2.3超级电容器电极材料研究进展(1)碳材料(2)金属氧化物或氢氧化物(3)导电聚合物电极材料5.2.4超级电容器用电解液市场分析(1)超级电容器用电解液市场现状(2)电解液市场分析5.2.5超级电容器电解液研究进展5.2.6超级电容器用隔膜市场分析(1)超级电容器用隔膜市场现状(2)隔膜市场分析第6章:中国超级电容器行业下游应用需求预测6.1超级电容器创新应用案例汇总分析6.2超级电容器行业下游应用需求场景分布6.3新能源汽车行业超级电容器需求潜力分析6.3.1新能源汽车市场市场发展现状6.3.2新能源汽车用超级电容器现状6.3.3新能源汽车用超级电容器发展趋势6.4城市轨道交通装备行业超级电容器潜力分析6.4.1城市轨道交通装备行业市场市场发展现状6.4.2城市轨道交通装备行业用超级电容器现状6.4.3城市轨道交通装备行业用超级电容器发展趋势6.5新能源行业超级电容器需求潜力分析6.5.1新能源行业市场发展现状(1)光伏行业市场发展现状(2)风电行业市场发展现状6.5.2新能源行业用超级电容器现状6.5.3新能源行业用超级电容器发展趋势6.6其它领域超级电容器市场需求潜力分析6.6.1航空航天领域超级电容器市场需求分析(1)航空航天发展现状(2)航空航天用超级电容器现状分析6.6.2工业领域超级电容器市场需求分析(1)起重机(2)油井设备(3)不间断电源(4)电梯6.6.3电子产品领域超级电容器市场需求分析6.6.4其他领域超级电容器市场发展趋势第7章:中国超级电容器行业主要企业生产经营分析7.1超级电容器行业企业代表发展情况7.2超级电容器制造行业领先企业个案分析7.2.1上海奥威科技开发有限公司(1)企业发展简况分析(2)企业产品结构与特点(3)企业产品应用领域(4)企业经营情况分析(5)企业技术研发情况(6)企业销售渠道与网络(7)企业经营优劣势分析(8)企业最新发展动向分析7.2.2哈尔滨巨容新能源有限公司(1)企业发展简况分析(2)企业产品结构与特点(3)企业产品应用领域与案例(4)企业经营情况分析(5)企业技术研发情况(6)企业销售渠道与网络(7)企业经营优劣势分析7.2.3宁波中车新能源科技有限公司(1)企业发展简况分析(3)企业产品应用领域(4)企业经营情况分析(5)企业技术研发情况(6)企业经营优劣势分析7.2.4辽宁百纳电气有限公司(1)企业发展简况分析(2)企业产品结构与特点(3)企业产品应用领域与案例(4)企业经营情况分析(5)企业技术研发情况(6)企业经营优劣势分析7.2.5北京合众汇能科技有限公司(1)企业发展简况分析(2)企业产品结构与特点(3)企业产品应用领域(4)企业经营情况分析(5)企业技术研发情况(6)企业经营优劣势分析7.2.6锦州凯美能源有限公司(1)企业发展简况分析(2)企业产品结构与特点(3)企业产品应用领域与案例(4)企业经营情况分析(5)企业技术研发情况(6)企业销售渠道与网络(7)企业经营优劣势分析7.2.7南通江海电容器股份有限公司(1)企业发展简况分析(2)企业产品结构与特点(3)企业产品应用领域(4)企业经营情况分析(5)企业技术研发情况(6)企业销售渠道与网络(7)企业经营优劣势分析7.2.8力容新能源技术(天津)有限公司(1)企业发展简况分析(2)企业产品结构与特点(3)企业产品应用领域(4)企业经营情况分析(5)企业技术研发情况(6)企业经营优劣势分析7.3超级电容器上游原材料领先企业个案分析7.3.1深圳新宙邦科技股份有限公司(2)企业经营状况分析企业产品结构与特点(3)企业产品结构与特点(4)企业技术研发状况(5)企业经营优劣势分析7.3.2江苏国泰超威新材料有限公司(1)企业发展简况分析(2)企业经营状况分析(3)企业产品结构与特点(4)企业技术研发状况(5)企业经营优劣势分析第8章:中国超级电容器行业发展趋势与投融资分析8.1中国超级电容器行业市场发展趋势分析8.1.1中国超级电容器行业发展趋势(1)行业整体发展趋势(2)行业技术发展趋势8.1.2中国超级电容器行业发展前景分析(1)中国超级电容器市场影响因素(2)中国超级电容器市场前景预测8.2中国超级电容器行业投资分析8.2.1超级电容器行业进入和退出壁垒8.2.2超级电容器行业投资风险(1)行业政策风险(2)核心技术风险(3)市场竞争风险(4)行业面临的其它风险(5)替代风险8.3中国超级电容器行业投资建议图表目录图表1:超级电容器分类图表2:超级电容结构框图图表3:超级电容器性能指标图表4:超级电容器性能特点图表5:三种储能器件的参数对比图表6:超级电容器对锂电池优势图表7:超级电容器和锂电池的比较图表8:超级电容器行业所属的国民经济分类图表9:超级电容器行业专业术语介绍图表10:本报告研究范围界定图表11:报告的研究方法及数据来源说明。
锂离子电池开发制造方案(一)

锂离子电池开发制造方案一、实施背景随着全球能源结构的转变,锂电池作为新能源存储介质,需求量正快速增长。
据统计,2022年全球锂离子电池市场规模已达到约500亿美元,预计到2030年将增长至约1500亿美元。
然而,当前锂离子电池市场主要被日韩企业所占据,中国企业在全球市场中的份额较小。
为满足国内不断增长的需求,并扩大在全球市场中的份额,我国必须加大锂离子电池的开发制造力度。
二、工作原理锂离子电池工作原理主要包括充电和放电两个过程。
充电时,锂离子从正极通过电解质流向负极,同时电子通过外部电路流向负极,形成电流。
放电时,锂离子从负极通过电解质流向正极,同时电子通过外部电路流向正极,形成电流。
在此过程中,锂离子在正负极之间迁移,实现电能和化学能的相互转换。
三、实施计划步骤1.研发阶段:投入必要的人力、物力资源进行技术研发,包括新材料、新工艺、新技术的探索和研究,以提高电池性能和降低成本。
2.试制阶段:根据研发成果,进行小规模试制,验证产品的可靠性和稳定性。
3.扩大生产阶段:在试制阶段验证成功后,逐步扩大生产规模,以满足市场需求。
4.市场推广阶段:积极开展市场推广活动,提高产品知名度和市场占有率。
四、适用范围本方案适用于新能源车辆、电子产品、航空航天、军事等领域。
特别是在新能源车辆领域,锂离子电池已成为主流选择,可大幅提高车辆行驶里程并降低维护成本。
五、创新要点1.材料创新:研究新型正负极材料,提高能量密度和循环寿命。
2.工艺创新:优化生产工艺,降低制造成本和提高生产效率。
3.技术创新:引入新型电池管理系统,提高电池安全性和性能。
4.模式创新:开展多元化合作模式,如产学研合作、产业链协同等,加速技术研发和市场推广。
六、预期效果预计通过本方案的实施,我国锂离子电池产业将实现以下预期效果:1.提高市场占有率:预计到2025年,我国锂离子电池在全球市场的份额将提高至30%。
2.增强技术实力:通过技术创新和技术积累,我国在锂离子电池领域的专利数量和质量将大幅提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详解锂离子电容器开发(一)高电压、大容量、安全性高FDK开发出了输出功率高、充放电循环特性出色的锂离子电容器。
现已开始用于高电压暂降补偿装置和太阳能发电的负荷平均化等领域,此外,其在混合动力车等需要高输出功率的汽车领域的应用也有进展。
本文将由FDK介绍锂离子电容器的特性以及面向混合动力车等采取的举措。
近年来,为应对化石燃料枯竭和防止地球变暖,人们采取了各种对策。
针对化石燃料问题,积极导入了太阳能发电和风力发电等自然能源。
在防止地球变暖方面,开始针对CO2排量高的汽车实施电动化及马达辅助驾驶等减排对策。
但这些对策导致电力系统不稳定和用电量增加等新课题浮出了水面。
要解决这些课题,蓄电元器件必不可少。
此前的蓄电元器件一直以锂离子充电电池(LIB)为中心推进开发,但因用途的不同,LIB的输出特性和充放电循环寿命(以下简称寿命)存在极限。
我们面向LIB难以支持的用途,开发出了高输出长寿命的锂离子电容器(LIC)“EneCapTen”。
本文将介绍LIC面向今后有望增长的市场——混合动力车市场的应用方案。
高电压大容量LICLIC是正极采用活性炭、负极采用碳材料、电解液采用锂离子有机物(盐:LiPF6,溶剂:PCEC)的电容器。
正极通过双电层的效果蓄电。
负极与LIB一样,由锂离子的氧化还原反应而蓄电。
通过添加锂离子,LIC不但电压升高至约4V,还提高了负极存储的静电容量,单元整体的静电容量可增至原双电层电容器(EDLC)的2倍左右。
因此,LIC与EDLC相比具有高电压大容量的优点例如,单位体积的能量密度为10~50Wh/L,较EDLC的2~8Wh/L的容量要大得多。
虽然比LIB能量密度较低,但LIC的输出密度高、寿命长。
此外,还具有高温特性出色以及自放电比EDLC小的两大特点。
正极不同,安全性较高目前,蓄电用途主要的要求有三点:①安全性、②长寿命、③低价位。
其中①的安全性是最重要的要素。
蓄电元器件是用来储存能源的,如果不能稳定储存,则随着能量密度的升高,元器件会变得非常危险。
目前为提高安全性,对LIB采取为隔膜涂布绝缘物等种种措施,但从本质上来说,蓄电原理本身安全是最理想的。
LIB与LIC的不同点在于正极。
LIB的正极采用锂氧化物,而LIC采用活性炭。
锂氧化物不但含有大量的锂,还含有可起火的重要因素——氧。
因此,如果单元内部因某种原因发生短路,短路导致的发热会使锂氧化物分解,并可进一步发展为单元整体的热分解,从而导致严重发热。
而LIC的正极采用活性炭,虽然发生内部短路时会与负极发生反应,但那之后正极与电解液不会发生反应,从原理上可以说是安全的。
LIC即使发生内部短路,正极与电解液也不会发生反应。
而LIB的正极会与电解液发生反应,导致构成材料发生热分解,从而出现严重的发热现象。
高温耐久性出色关于②长寿命,蓄电元器件由于价格比较高,使用时间越长,越能降低产品生命周期成本。
而且,如果寿命长,还能降低更换频率,减少废弃物等,对环境的负荷较小。
LIB为减轻劣化以实现长寿命,缩窄了充放电范围(充放电深度),但这样实质上可利用的容量就减少了。
而原本是希望扩大充放电深度也能实现长寿命的。
EDLC的充放电原理,是单纯以吸附或脱却电解液中的离子而具有长寿命的,但仅凭这一点很难在实际使用条件下延长寿命。
蓄电元器件存在的弱点是温度会上升。
反复充放电时,内部电阻会导致温度上升,这会大大影响其寿命。
因此,高温耐久性是其必要条件。
高温导致的劣化主要是由正极电解液的氧化分解造成的。
正极的电位越高,或者环境温度越高,越容易发生氧化分解。
因此,在环境温度较高的场所使用时,需要降低正极的电位。
但EDLC如果降低正极电位,单元的电压也会随之下降,因而无法确保容量。
而LIC即使降低正极电位,单元自身的电压也不会大幅下降,因此可确保容量。
而且,因可在正极电位远离氧化分解区域的位置使用,高温耐久性非常出色。
(二)制成模块和铅蓄电池组合使用通过制成模块来削减成本③的低价位对扩大市场很重要。
不过,不仅要求降低蓄电元器件的价格,还应该综合考虑蓄电系统的设置环境和寿命等因素,以降低系统整体的成本。
大型蓄电元器件并不是只要便宜就好的产品,其长期可靠性非常重要,一旦发生问题就会失去市场的信赖,最终会造成巨大损失。
在实际使用条件下,不是单元单体使用,而是需要制成模块,以确保既定的电压或输出功率,因此必须实现模块的低成本化。
LIC可由以下3点来削减模块成本:①单元单体的电压较高,可减少单元数量;②高温耐久性出色,设置条件比较宽松;③可削减管理成本。
关于①,制成既定电压的模块时,单元电压越高,使用的单元数量越少。
例如,电压为300V时,需要120个EDLC的2.5V单元,而使用LIC的3.8V单元只需80个即可。
由于②的特性,可在比较广泛的温度条件下使用。
像LIB那样,需要进行非常严密的温度管理时,则设置场所会受限。
但如果高温耐久性出色,可放宽对温度环境的限制,因此设置场所的自由度较高,能为削减成本做出贡献。
③的管理成本,是指蓄电元器件的管理系统“Battery Management System(BMS)”相关的成本。
LIB等充电电池的充放电曲线会随着电流值和温度环境发生巨大变化,因此为管理充电状态,BMS会花费成本。
LIC如图3所示,充放电曲线的斜率不会随着电流值发生大幅变化。
这种趋势也不会随温度而变化,只需管理电压就能掌握充电状态,因此可降低BMS的成本。
LIC即使输入输出时的电流值发生大幅变化,其斜率也不会改变,因此可轻松管理单元的充电状态。
电力再生市场占LIC的一大半市场以上介绍了LIC的一般特征,下面将介绍我们开发的LIC——EneCapTen的特征(图4)。
EneCapTen的单元采用重视散热性的层压构造,可进行大电力的充放电。
寿命极长,达到10万次以上。
另外,考虑到环境负荷,没有使用铅等重金属。
单元采用层压构造(a)。
45V模块由12个单元构成(b)。
模块将根据用户的性能参数设计。
此外,表2所示的通用模块现已上市,用于混合动力车的4000F单元现正在开发中。
目前,LIC的主要用途有以下四方面:①瞬低补偿装置和UPS(不间断电源)等备用(Backup)市场;②混合动力车、起重机及建筑机械等电力再生市场;③太阳能发电和风力发电等负荷平均化市场;④混合动力车和复印机等电力辅助市场。
其中,市场规模最大的是电力再生市场,估计将占一半以上。
不过,预计今后随着智能电网领域的扩大,太阳能发电和风力发电等负荷平均化用途也将形成一个巨大的市场。
作为瞬低补偿装置我们开发的LIC已经在瞬低补偿装置和太阳能发电负荷平均化等领域得到了采用。
例如,瞬低补偿装置不同于可供应5分钟以上电力的UPS,可针对在1分钟以内的短时间内发生的电力下降供给电力。
EDLC由于容量较小,最多只能补偿雷电造成的数ms左右的瞬时电压下降。
而LIC的容量比较大,可用于电力公司自动供电导致的停电以及从常用线路切换为备用线路时的停电等数秒左右的电压下降。
瞬低补偿装置并非设置在每台设备上,而是通过统一补偿整个工厂,从而可降低管理成本。
瞬低补偿装置目前仍以铅蓄电池为主流,但铅蓄电池的漏电流大,需要花费成为来维持电压,因此今后有望被LIC取代。
正在海岛上做验证试验作为太阳能发电负荷平均化的应用事例,在日本经济产业省的“平成21年度海岛独立型系统新能源导入验证事业”中,冲绳县的与那国岛(150kW)、北大东岛(90kW)和多良间岛(230kW)采用了我们的LIC。
冲绳电力在多良间岛设置了230kW的太阳能发电设备,在实施使用LIC的负荷平均化验证试验。
海岛上存在的问题有用柴油发动机发电的发电成本高和需要为减轻环境负荷而削减CO2排放量等。
作为对策,通过导入太阳能发电和风力发电,在减少柴油发动机发电用燃料的运输量的同时,还可削减CO2排放量。
另外,由于海岛上使用的是独立的小规模系统,可作为微型智能电网验证,因此已经开始了验证试验。
与铅蓄电池组合使用我们认为,包括怠速停止系统(ISS)在内的混合动力车市场今后非常有潜力。
电动汽车和插电式混合动力车等需要一定能量容量的汽车无疑最适合使用LIB。
然而,对混合动力车而言,输出功率、再生效率和寿命比能量容量更为重要,与LIB和镍氢充电电池等充电电池相比,LIC更合适。
具体地,我们打算在配备ISS的车辆上将其与铅蓄电池组合使用。
ISS可发挥两个作用:①在发动机启动时向启动器供电;②在发动机停止时及发电停止时供电。
关于①向启动器供电,采用LIC可代替铅蓄电池供给大电力。
铅蓄电池如果反复以大电力放电,会加速劣化。
因此,通过将LIC与铅蓄电池并联,从低电阻LIC中释放大电力,可防止铅蓄电池因发生大的输出变动而劣化。
在铅蓄电池上并联我们的LIC时的电流和电压变化如图6所示。
试验条件参考了混合动力车的实车行驶模拟模式。
从结果可知,较大电流的变动LIC会予应对,铅蓄电池不会发生大变动。
通过并联铅蓄电池和低电阻LIC,铅蓄电池不会发生较大输出变动,因而可防止劣化。
另外,②的发动机停止时和发电停止时向车载电装品供电很重要。
汽车一般以发动机的皮带驱动发电机转动获得能量,因此发电机直接与燃效相关。
所以,采用使发电机脱离动力源的构造,可实现具有出色燃效的车辆。
不过,即使发电机脱离动力源,助力方向盘等电装品也需要较大的电力。
因此认为,不仅是铅蓄电池,还要追加LIC,方可实现大电力的供给。
最适合用于混合动力车我们还进一步将LIC用于混合动力车作为了目标。
此前由于EDLC容量不足,混合动力车主要采用镍氢充电电池,但LIC的能量密度是EDLC的4倍,因此认为可以用于混合动力车。
LIC的优点如上文所述,是可大幅扩大充放电深度。
镍氢充电电池和LIB如果扩大充放电深度会导致劣化,因此其充放电深度一直在40%左右。
也就是说,容量实际上只利用了40%。
如此看来,用容量虽然小,但能以100%的深度充放电的LIC构成模块,也可实现不逊于充电电池的外形尺寸和重量。
在很多方面具有优势的LIC图7是面向混合动力车试制的模块。
模块的外形尺寸为400mm×400mm×90mm。
容量为240Wh,工作电压为144~72V。
该模块可设置在车辆前座下方,用一个模块能满足辅助发动机驱动的弱混合动力车,用两个模块可支持仅靠马达行驶的强混合动力车。
面向混合动力车开发的模块,容量为240Wh,其外形可供设置在前座下方。
表5是实际使用的混合动力车模块与用我们的LIC构成的模块的比较。
若A~C公司的混合动力车的充放电深度为40%左右,则利用我们开发的模块就能充分确保相同的性能。
而且,如果实际容量相同,LIC在寿命、充电状态管理、安全性、设置自由度以及系统小型化等上具有优势。
寿命、充电状态管理和安全性优势基于前述的LIC特征。