学案10分式单元复习题(附答案) 2
分式知识点总复习含答案

分式知识点总复习含答案一、选择题1.下列各式从左到右变形正确的是( )A .13(1)223x y x y ++=++ B .0.20.03230.40.0545a b a d c d c d --=++ C .a b b a b c c b--=-- D .22a b a b c d c d --=++ 【答案】C【解析】【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】 A 、该式子不是方程,不能去分母,故A 错误;B 、分式中的分子、分母的各项没有同时扩大相同的倍数,故B 错误;C 、a-b b-a =d-c c-d故C 正确; D 、分式中的分子、分母的各项没有同时除以2,故D 错误.故选C .【点睛】本题考查了分式的基本性质,解题的关键是熟练运用性质.2.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.3.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0【答案】B【解析】【分析】 根据分式的值为零的条件可以求出x 的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.5.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +-D .44m m -+ 【答案】B【解析】【分析】根据分式的加减运算法则计算,再化简为最简分式即可.【详解】21644m m m+-- =2164m m -- =(4)(4)4m m m +-- =m+4.故选B.【点睛】 本题考查分式的加减.同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.熟练掌握运算法则是解题关键.6.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×105【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m ,这个数据用科学记数法表示7×10﹣5.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d【答案】B【解析】【分析】根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a ,b ,c ,d 的值,再比较大小即可.【详解】∵a =-0.22=-0.04,b =-2-2=14-,c =(-12)-2=4,d =(-12)0=1, -0.25<-0.04<1<4∴b <a <d <c故选B.【点睛】此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.8.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.9.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.10.0000005=5×10-7故答案为:B.【点睛】本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.11.若115a b =,则a b a b -+的值是( ) A .25 B .38 C .35 D .115【答案】B【解析】【分析】直接根据已知用含x 的式子表示出两数,进而代入化简得出答案.【详解】 解:∵115a b = ∴设11a x =,5b x = ∴11531158a b x x a b x x --==++ 故选:B【点睛】 此类化简求值题目,涉及到的字母a 、b 利用第三个未知数x 设出,代入后得到关于x 的式子进行约分化简即可.将两个字母转化为一个字母是解题的关键.12.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a-•a=(a ﹣1)•()1a a --•a =﹣a 2,故选:A . 点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.13.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.14.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式;D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.15.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 【答案】B【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【详解】 原式()211a a a =-+- 22111a a a a -=--- 11a =-. 故选B .【点睛】 本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用及平方差公式的运用.16.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510⨯﹣B .5510⨯﹣C .4210⨯﹣D .5210⨯﹣【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】150000=0.00002=2×10﹣5. 故选D .【点睛】 本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.已知1112a b -=,则ab a b -的值是 A .12 B .-12 C .2 D .-2 【答案】D【解析】分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可. 解答:解:∵, ∴a ab -=, ∴=, ∴=-2.故选D .18.把分式a a b+中的,a b 的值同时扩大为原来的10倍,则分式的值( ) A .不变 B .缩小为原来的110C .扩大为原来的10倍D .扩大为原来的100倍【答案】A【解析】【分析】 根据分式的基本性质,把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++,即可得到答案. 【详解】把分式a a b+中的x 、y 的值同时扩大为原来的10倍得:1010=101010()a a a a b a b a b=+++, 即分式a a b+的值不变, 故选:A .【点睛】 本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键.19.已知23x y =,那么下列式子中一定成立的是 ( ) A .5x y +=B .23x y =C .32x y =D .23x y = 【答案】D【解析】【分析】 根据比例的性质对各个选项进行判断即可.【详解】A. ∵23x y =,∴3x =2y ,∴ 5x y += 不成立,故A 不正确; B. ∵23x y =,∴3x =2y ,∴ 23x y =不成立,故B 不正确; C. ∵23x y =,∴23x y =y ,∴ 32x y =不成立,故C 不正确; D. ∵23x y =,∴23x y =,∴ 23x y =成立,故D 正确; 故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键. 更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a ,b ,c ,d ,且有b ≠0,d ≠0,如果a c b d=,则有a b c d =.20.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D【解析】。
分式总复习学案

分式总复习学案一、分式的基本概念1、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子\(\frac{A}{B}\)就叫做分式。
需要注意的是:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。
例如:\(\frac{x}{y}\),\(\frac{2}{x 1}\)都是分式,而\(\frac{2}{3}\),\(\frac{x^2}{x}\)(当\(x =0\)时)不是分式。
2、分式有意义的条件分式有意义的条件是分母不为零。
即:对于分式\(\frac{A}{B}\),\(B ≠ 0\)时,分式有意义。
例如:对于分式\(\frac{x + 1}{x 2}\),当\(x 2 ≠ 0\),即\(x ≠ 2\)时,分式有意义。
3、分式的值为零的条件分式的值为零的条件是分子为零且分母不为零。
即:对于分式\(\frac{A}{B}\),当\(A = 0\)且\(B ≠ 0\)时,分式的值为零。
例如:若分式\(\frac{x^2 1}{x + 1}\)的值为零,则\(x^2 1 = 0\)且\(x +1 ≠ 0\),解得\(x = 1\)。
二、分式的基本性质1、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于零的整式,分式的值不变。
即:\(\frac{A}{B} =\frac{A×M}{B×M}\),\(\frac{A}{B} =\frac{A÷M}{B÷M}\)(\(M ≠ 0\))例如:\(\frac{x}{y} =\frac{x×2}{y×2} =\frac{2x}{2y}\)2、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
公因式的确定方法:(1)系数:取分子和分母系数的最大公约数;(2)字母:取分子和分母共有的字母;(3)指数:取相同字母的最低次幂。
八年级数学下册 10 分式复习学案2(新版)苏科版

八年级数学下册 10 分式复习学案2(新版)苏科版姓名一、学习目标:1、知道分式方程的概念并能说出它与整式方程的区别;2、理解分式方程为何要检验,并掌握检验的方法;3、掌握分式方程的解法并能用它解决实际问题、【知识回顾】1、解分式方程的基本思想是_______________________________,基本方法是__________、2、解分式方程时有可能产生_______,因此最后必须________、【巩固练习】XXXXX:1、分式方程去分母时,两边都乘以、2、若分式方程的一个解是,则、3、已知分式方程有增根,则、4、当时,关于的方程的根是2、5、一件工作,甲单独做小时完成,乙单独做小时完成,则甲、乙合作小时完成、6、某机床厂原计划生产套机床,在实际生产中通过改进技术,结果每天比原计划多生产套,并且提前天完成任务、设原计划每天生产套机床,根据题意,下列方程正确的是()A、B、C、D、7、解下列方程:8、若与互为倒数,求x的值、9、A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度、分式单元复习(2)课堂作业班级姓名1、方程的解是、2、已知x=1是方程的一个增根,则k=_______、3、已知,其中A、B为常数,则4A-B的值为_______、4、解分式方程时,两边应同时乘以_________________、5、当m=______时,方程会产生增根、6、若-2与互为相反数,则x的值为_________、7、解分式方程时,若设x2+3x=y,则原方程可化为关于y的整式方程为:_____________________________、8、已知的值为()A、B、2C、-2D、9、关于的方程的解是负数,则的取值范围是()A、B、且C、D、或10、解方程:(1)(2)(3)(4)11、关于x的方程,当m为何值时,会产生增根?12、已知关于的方程有一个正数解,求的取值范围、13、某货车在发生交通事故后,沿一条小路向高速公路逃离,交警巡逻车立即沿另一公路向高速追击,在货车刚进入高速公路路口时,将它截住、•已知警车的速度比货车快40千米/时,警车驶到高速公路行驶的路程是货车的2倍,求警车的速度、14、在新华南北路改造过程中,某路段工程招标时,工程指挥部接到甲、乙两个工程队的投标书、根据甲、乙两队的投标测算:若让甲队单独完成这项工程需要天;若由乙队先做10天,剩下的工程由甲、乙两队合作20天可完成、(1)若安排乙队单独完成这项工程需要多少天?(2)为了缩短工期方便行人,若安排甲、乙两队共同完成这项工程需要多少天?二、学习过程:解方程:2、相关概念:拓展提高:1、2、3、A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度、4、南京大桥维修工程中,拟由甲、乙两个工程队共同完成某项目,从两个工程队的资料可以知道,若两个工程队合做24天恰好完成,若两个工程队合做18天后,甲工程队单独做10天,也恰好完成、请问:(1)甲、乙两个工程队单独完成该项目各需多少天?(2)又已知甲工程队每天的施工费为0、6万元,乙工程队每天的施工费为0、35万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?。
最新分式与分式方程复习学案

精品文档分式与分式方程复习学案(一)分式定义及有关题型题型一:考查分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA 叫做分式,A 为分子,B 为分母。
【例1】下列代数式中:x 2、x xy 2、5y x +、a -51、1-πx 、122-+a b a ,是分式的有: 题型二:考查分式有意义的条件分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =)【例1】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(2)使分式 53-+x x ÷79-+x x 有意义的x 应满足 . (3)若分式321+-x x 无意义,则x= .题型三:考查分式的值为0的条件分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )【例1】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x精品文档(2)【例2】当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x(二)分式的基本性质及有关题型1.分式的基本性质:分式的分子与分母同乘以(或除以)分式的值 用式子表示: M B M A M B M A B A ÷÷=⨯⨯=(其中M 为 的整式)2.分式的变号法则:b a b a b a b a =--=+--=-- ba b a b a b a ---=-=-=- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x y x 41313221+- (2)ba b a +-04.003.02.0精品文档题型二:分数的系数变号【例1】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x y x --+- (2)b a a --- (3)b a ---题型三:化简求值题【例1】已知:511=+y x ,求yxy x y xy x +++-2232的值【例2】已知:21=-x x ,求221x x +的值.【例3】若0)32(|1|2=-++-x y x ,求y x 241-的值.精品文档【例4】若0106222=+-++b b a a ,求ba b a 532+-的值.【例5】已知求代数式的值题型四:若分式b a b a 3232-+分子、分母中的a 、b 同时扩大三倍,则分式的值 。
分式练习题(附答案)

分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式测试题及答案

分式测试题及答案一、选择题1. 已知分式\( \frac{a}{b} \),若\( a \)和\( b \)同号,则该分式的值为()A. 正数B. 负数C. 0D. 无法确定2. 下列分式中,哪个分式的值是负数?A. \( \frac{-3}{4} \)B. \( \frac{-3}{-4} \)C. \( \frac{3}{-4} \)D. \( \frac{3}{4} \)3. 如果\( \frac{x}{y} = 2 \),当\( y \)增加时,分式的值会()A. 变大B. 变小C. 不变D. 无法确定二、填空题4. 将分式\( \frac{2x^2}{3x} \)化简为\( \frac{x}{\_\_\_} \)。
5. 若\( \frac{a}{b} = \frac{c}{d} \),且\( b \)和\( d \)不为0,则\( a \)和\( c \)成______比例。
三、解答题6. 已知\( \frac{2}{x+1} = \frac{3}{y+1} \),求\( \frac{x}{y} \)的值。
7. 计算下列分式的和:\( \frac{1}{2x+1} + \frac{2}{3x-1} \)。
四、应用题8. 一个水池的容积是\( 2000 \)升,水管A每秒可以注入\( 5 \)升水,水管B每秒可以排出\( 3 \)升水。
如果同时打开水管A和B,求水池注满需要的时间。
答案:一、选择题1. A2. C3. B二、填空题4. 35. 正三、解答题6. 由题意可得\( 2y+2 = 3x+3 \),化简得\( 2y = 3x+1 \),所以\( \frac{x}{y} = \frac{2}{3} \)。
7. 通分后计算得:\( \frac{1}{2x+1} + \frac{2}{3x-1} = \frac{3x-1}{(2x+1)(3x-1)} + \frac{4(2x+1)}{(2x+1)(3x-1)} = \frac{3x-1+8x+4}{(2x+1)(3x-1)} = \frac{11x+3}{(2x+1)(3x-1)} \)。
八下期末复习第10章《分式》知识点及题型总结与巩固训练(有答案)

八下第10章《分式》知识点与拓展训练一、分式的定义:一般地, 。
二、与分式有关的条件:①分式有意义: ;②分式无意义: ;③分式值为0: ;④分式值为正或大于0: ;⑤分式值为负或小于0: ;⑥分式值为1: ; ⑦分式值为-1: ;三、分式的基本性质:分式的 分式的值不变。
字母表示: 其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=AA A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分:1.定义: 叫做分式的约分。
2.步骤:把分式分子分母 ,然后约去分子与分母的 。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义: ,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的 公约数作为公因式的系数. 2)取各个公因式的 次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母 因式,然后判断公因式.五、分式的通分:1.定义: 叫做分式的通分。
(依据:分式的基本性质!)2.最简公分母:取各分母所有因式的 次幂的积作公分母,这样的公分母叫做最简公分母。
◆通分时,最简公分母的确定方法:1.系数取各个分母系数的 公倍数作为最简公分母的系数. 2.取各个公因式的 次幂作为最简公分母的因式.3.如果分母是多项式,则应先把每个分母 因式,然后判断最简公分母.六、分式的四则运算与分式的乘方:① 分式的乘除法法则:分式乘分式,用分子的积作为积的 , 的积作为积的分母。
式子表示为:db ca d cb a ••=• 分式除以分式:把除式的 、 颠倒位置后,与被除式相乘。
式子表示为:cc ••=•=÷b da db a dc b a ② 分式的乘方:把 、 分别乘方。
分式复习(附答案)详解

姓名 学生姓名 填写时间 2016-12-29 学科数学年级初二教材版本人教版阶段 第( 31 )周 观察期:□ 维护期:□ 课题名称分式章节复习 课时计划第( )课时 共( )课时上课时间2016-12-31教学目标 1.切实掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分通分.2.能准确、顺畅地进行分式的乘除、加减以及混合运算.3.会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算.4.明确解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单的实际问题. 教学重点 1、 熟练进行分式的混合运算2、 明确解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单的实际问题 教学难点 1、 熟练进行分式的混合运算2、明确解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单的实际问题教学过程分式是初中数学的重要内容之一,复习时不但要熟练掌握基本知识,更要把握好本章的考点. 现以中考题为例,归类说明.考点1:分式的概念和性质【知识要点】1.在分式中,如果_____则分式无意义;如果___ ___且____不为零时,则分式的值为零. 2.分式的基本性质用字母表示为____ ____. 3.分式的分子、分母和分式本身的符号改变其中任何________个,分式的值不变.【典题解析】第一部分:知识网络第二部分:考点例析例1 (1)已知分式11x x -+的值是零,那么x 的值是( ) A .-1 B .0 C .1 D .±1 (2)当x ________时,分式11x -没有意义. 析解:(1)由题意知,当x -1=0,且x +1≠0时,分式的值等于0,所以x =1.故应选C .. (2)当x -1=0,即x =1时,分式11x -没有意义. 例2 下列各式从左到右的变形正确的是( )A .122122x yx y x y x y --=++ B .0.220.22a b a ba b a b ++=++C .11x x x y x y+--=-- D .a b a ba b a b+-=-+ 析解:由分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变. 因B、C 、D 都违背了其性质,只有A .符合. 故应选A . 考点2:分式的化简与计算 【知识要点】1.分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的公因式. 2.最简公分母的确定:一是取各分母所有系数的 ;二是取各分母所有字母因式的 的积.3.分式的加减法法则表示为:a b c c ±=______;a cb d ±=________. 4.分式的乘除法法则表示为:ac bd ⨯=_______;a cb d÷=________.【典题解析】 例3 计算24111a aa a++--的结果是________. 解:原式222222414(1)4(21)11111a a a a a a a a a a a a ++-++=-=-=----- 2222421(1)1111a a a a a a a a -----==-=---+. 例4 计算2224222a a a aa a ⎛⎫- ⎪+--⎝⎭.解:原式22224(2)(2)22(2)2a a a a a a a a a a a a -+-===+-+-.例5 化简11x x x x -⎛⎫÷- ⎪⎝⎭. 解:原式21111(1)(1)1x x x x x x x x x x ---=÷=⨯=+-+. 考点3:分式条件求值【知识要点】根据考点2的知识要点,先将分式进行化简,然后代入求值,这是最基本的解题方法. 但是具体问题要具体分析,许多题目若能采取解题技巧,如,整体代入法等,解法会更简明,且不容易出错. 【典题解析】例6 先化简下列代数式,再求值:22333x x xx x x ⎛⎫-÷ ⎪---⎝⎭,其中71x =+ 解:原式223(2)3233x x x x x x x x x x x----=⨯=⨯=---. 当71x =+时,原式71271 1.65=+-=-≈. 例7 先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的 x 的值代入求值.解:原式2222222(1)211(1)1111x x x x x x x x -++=÷=-=+---. 当x =2时,原式221215x =+=+=. 说明:只要选择的数不等于±1即可. 考点4:可化为一元一次方程的分式方程 【知识要点】解分式方程的一般步骤是:①在方程的两边都乘___ ____,约去分母,化成___ ___;②解这个__ _____;③把解得的根代入__ _____,看结果是不是零,使________为零的根是原方的___ _____,必须舍去.【典题解析】例8 解方程21133x x x-=---. 解:原方程变形21133x x x -=+--. 方程两边都乘以x -3,得 2-x =(x -3)+1. 解这个方程,得x =2.检验:当x =2时,x -3=-1.所以x =2是原方程的解.例9 某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6立方米,求该市今年居民用水的价格. 分析:利用=总费用用水量用水价格,抓住“今年5月份的用水量比去年12月份多6立方米”便可建立方程求解.解:设该市去年居民用水的价格为x 元/立方米,则今年用水价格为(1+25%)x 元/立方米.根据题意,得36186(125)x x-=+%.解这个方程,得x =1.8.经检验,x =1.8是原方程的解,则(1+25%)x =2.25(元/立方米).答:该市今年居民用水的价格为2.25元/立方米.一、精心选一选1.计算223)3(a a ÷-的结果是( )(A )49a - (B )46a (C )39a (D )49a 2.下列算式结果是-3的是( )(A )1)3(-- (B )0)3(- (C ))3(-- (D )|3|--3.如果x=300,则x x x x x x 13632+-+--的值为( ) A .0 B .990101 C .110111 D .100101第三部分:自主练习4.下列算式中,你认为正确的是( ) A .1-=---a b a b a b B. 11=⨯÷baa b C .3131aa -= D .b a b a b a b a +=--∙+1)(12225.如果x >y >0,那么xyx y -++11的值是( ) (A )0 (B )正数 (C )负数 (D )不能确定 二、细心填一填1.计算:-16-= .2.用科学记数法表示:-0.00002004= .3.如果32=b a ,那么=+b a a ____ .4.已知31=-a a ,那么221a a += . 5.若54145=----xx x 有增根,则增根为___________. 6.若20)63(2)3(----x x 有意义,那么x 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式巩固练习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a ba ba bA B a b a b a b a ba ba ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式巩固练习答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y --的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----.当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。