湖北省黄石市2020年中考数学试题(解析版)

合集下载

2020年湖北省黄石市中考数学试卷-普通用卷

2020年湖北省黄石市中考数学试卷-普通用卷

2020年湖北省黄石市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. 3B. −3C. 13D. −132.下列图形中,既是中心对称又是轴对称图形的是()A. B. C. D.3.如图所示,该几何体的俯视图是()A. B. C.D.4.下列运算正确的是()A. 8a−3b=5abB. (a2)3=a5C. a9÷a3=a3D. a2⋅a=a35.函数y=1x−3+√x−2的自变量x的取值范围是()A. x≥2,且x≠3B. x≥2C. x≠3D. x>2,且x≠36.不等式组{x−1<−32x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−37.在平面直角坐标系中,点G的坐标是(−2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG′,则点G′的坐标为()A. (2,−1)B. (2,1)C. (1,−2)D. (−2,−1)8.如图,在Rt△ABC中,∠ACB=90°,点H、E、F分别是边AB、BC、CA的中点,若EF+CH=8,则CH的值为()A. 3B. 4C. 5D. 69.如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为()A. 140°B. 70°C. 110°D. 80°10.若二次函数y=a2x2−bx−c的图象,过不同的六点A(−1,n)、B(5,n−1)、C(6,n+1)、D(√2,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y2<y1<y3二、填空题(本大题共6小题,共18.0分))−1−|1−√2|=______.11.计算:(1312.因式分解:m3n−mn3=______.13.据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元.用科学记数法表示137.6亿元,可写为______元.14.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是______分.15.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则BC⏜的长等于______.16.匈牙利著名数学家爱尔特希(P.Erdos,1913−1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是______.三、解答题(本大题共9小题,共72.0分)17.先化简,再求值:x2+2x+1x2−1−xx−1,其中x=5.18.如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房AB的楼顶,测量对面的乙栋楼房CD的高度.已知甲栋楼房AB与乙栋楼房CD的水平距离AC=18√3米,小丽在甲栋楼房顶部B点,测得乙栋楼房顶部D点的仰角是30°,底部C点的俯角是45°,求乙栋楼房CD的高度(结果保留根号).19.如图,AB=AE,AB//DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、20.如图,反比例函数y=kxB两点,点C在第四象限,BC//x轴.(1)求k的值;(2)以AB、BC为边作菱形ABCD,求D点坐标.21.已知:关于x的一元二次方程x2+√mx−2=0有两个实数根.(1)求m的取值范围;(2)设方程的两根为x1、x2,且满足(x1−x2)2−17=0,求m的值.22.我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.23.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.24.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A、D的⊙O分别交AB、AC于点E、F.(1)求证:BC是⊙O的切线;(2)若BE=8,sinB=5,求⊙O的半径;13(3)求证:AD2=AB⋅AF.25.在平面直角坐标系中,抛物线y=−x2+kx−2k的顶点为N.(1)若此抛物线过点A(−3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C坐标;(3)已知点M(2−4√3,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°3时,求抛物线的解析式.答案和解析1.【答案】B【解析】【分析】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是−3.故选:B.2.【答案】D【解析】解:A、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;B、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、既是中心对称图形,又是轴对称图形,故本选项符合题意;故选:D.根据中心对称图形和轴对称图形的定义逐个判断即可.本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义的内容是解此题的关键.3.【答案】B【解析】解:该几何体的俯视图是故选:B.根据俯视图的概念求解可得.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.【答案】D【解析】解:A.不是同类项不能合并,选项错误;B.原式=a2×3=a6,选项错误;C.a9÷a3=a9−3=a6,选项错误;D.a2⋅a=a2+1=a3,选项正确.故选:D.根据合并同类项法则和幂的运算法则进行解答便可.本题主要考查了合并同类项法则和幂的运算法则,熟记法则是解题的关键.5.【答案】A【解析】解:根据题意得:x−2≥0,且x−3≠0,解得x≥2,且x≠3.故选:A.根据二次根式的被开方数是非负数,以及分母不等于0,就可以求出x的范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【答案】C【解析】解:不等式组{x−1<−3 ①2x+9≥3 ②,由①得:x<−2,由②得:x≥−3,则不等式组的解集为−3≤x<−2,故选:C.分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】A【解析】解:由题意G与G′关于原点对称,∵G(−2,1),∴G′(2,−1),故选:A.根据中心对称的性质解决问题即可.本题考查旋转变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.【答案】B【解析】解:∵在Rt△ABC中,∠ACB=90°,点H,E,F分别是边AB,BC,CA的中点,∴EF=12AB,CH=12AB,∵EF+CH=8,∴CH=EF=12×8=4,故选:B.根据三角形的中位线定理和直角三角形斜边上的中线等于斜边的一半求得即可.本题考查了直角三角形的性质以及三角形的中位线定理,熟练掌握各定理是解题的关键.9.【答案】C【解析】解:如图,在优弧AB上取一点P,连接AP,BP,∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90°,∵∠DCE=40°,∴∠AOB=360°−90°−90°−40°=140°,∴∠P=12∠AOB=70°,∵A、C、B、P四点共圆,∴∠P+∠ACB=180°,∴∠ACB=180°−70°=110°,故选:C.先根据四边形的内角和为360°求∠AOB=360°−90°−90°−40°=140°,再由同弧所对的圆周角是圆心角的一半可得∠P的度数,最后由四点共圆的性质得结论.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.【答案】D【解析】解:∵二次函数y=a2x2−bx−c的图象过点A(−1,n)、B(5,n−1)、C(6,n+1),∴抛物线的对称轴直线x满足2<x<2.5,抛物线的开口向上,∴抛物线上离对称轴水平距离越大的点,对应函数值越大,∵D(√2,y1)、E(2,y2)、F(4,y3),则y2<y1<y3,故选:D.由解析式可知抛物线开口向上,点A(−1,n)、B(5,n−1)、C(6,n+1)求得抛物线对称轴所处的范围,然后根据二次函数的性质判断可得.本题主要考查二次函数图象上点的坐标特征,根据题意得到抛物线的对称轴和开口方向是解题的关键.11.【答案】4−√2【解析】解:原式=3−(√2−1)=3−√2+1=4−√2.故答案为:4−√2.原式利用负整数指数幂法则,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.12.【答案】mn(m+n)(m−n)【解析】解:原式=mn(m2−n2)=mn(m+n)(m−n).故答案为:mn(m+n)(m−n).原式提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【答案】1.376×1010【解析】解:137.6亿元=137********元=1.376×1010元,故答案为:1.376×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】85【解析】解:90×22+3+5+90×32+3+5+80×52+3+5=85(分),故答案为:85.根据加权平均数的计算方法进行计算即可.本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.15.【答案】√52π【解析】解:∵每个小方格都是边长为1的正方形,∴AB=2√5,AC=√10,BC=√10,∴AC2+BC2=AB2,∴△ACB为等腰直角三角形,∴∠A=∠B=45°,∴连接OC,则∠COB=90°,∵OB=√5,∴BC⏜的长为:90⋅π×√5180=√52π,故答案为:√52π.由AB、BC、AC长可推导出△ACB为等腰直角三角形,连接OC,得出∠BOC=90°,计算出OB的长就能利用弧长公式求出BC⏜的长了.本题考查了三角形的外接圆与外心,弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出△ACB为等腰直角三角形.16.【答案】18°【解析】解:∵这个五边形由正五边形的任意四个顶点及正五边形的中心构成,∴根据正五边形的性质可得OA=OB=OC=OD,AB=BC=CD,∴△AOB≌△BOC≌△COD(SSS),∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,∵正五边形每个角的度数为:(5−2)×180°5=108°,∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∴∠AOB=∠BOC=∠COD=(180°−2×54°)=72°,∴∠AOD=360°−3×72°=144°,∵OA=OD,∴∠ADO=(180°−144°)=18°,故答案为:18°.先证明△AOB≌△BOC≌△COD,得出∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,然后求出正五边形每个角的度数为108°,从而可得∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∠AOB=∠BOC=∠COD= 72°,可计算出∠AOD=144°,根据OA=OD,即可求出∠ADO.本题考查了正多边形的内角,正多边形的性质,等腰三角形的性质,全等三角形的判定和性质,求出∠AOB=∠BOC=∠COD=72°是解题关键.17.【答案】解:原式=(x+1)2(x+1)(x−1)−xx−1=x+1x−1−xx−1=1x−1,当x=5时,原式=14.【解析】原式第一项约分后,两项利用同分母分式的减法法则计算得到最简结果,把x 的值代入计算即可求出值.本题考查分式的化简求值,掌握分式的运算法则是解题的关键.18.【答案】解:如图所示:由题意得:BE=AC=18√3,CE=AB,∠DBE=30°,∠CBE=45°,在Rt△EDB中,∠DBE=30°,DEBE=tan30°,∴DE=BE×tan30°=18√3×√33=18,在Rt△ABC中,∠ABC=90°−45°=45°,∴△ABC是等腰直角三角形,∴CE=AB=AC=18√3,∴CD=DE+CE=18+18√3(米);答:乙栋楼房CD的高度为(18+18√3)米.【解析】由三角函数定义求出DE=BE×tan30°=18,证出△ABC是等腰直角三角形,得出CE=AB=AC=18√3,进而得出答案.本题考查解直角三角形的应用−仰角俯角问题以及等腰直角三角形的判定与性质等知识;解题的关键是借助仰角构造直角三角形,利用三角函数定义解直角三角形.19.【答案】解(1)∵AB//DE,∠E=40°,∴∠EAB=40°,∵∠DAB=70°,∴∠DAE=30°;(2)证明:在△ADE与△BCA中,{∠B=∠DAE AB=AE∠BAC=∠E,∴△ADE≌△BCA(ASA),∴AD=BC.【解析】(1)根据平行线的性质可得∠EAB,再根据角的和差关系即可求解;(2)根据ASA可证△ADE≌△BCA,再根据全等三角形的性质即可求解.本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应角相等.20.【答案】解:(1)∵点A(1,a)在直线y=2x上,∴a=2×1=2,即点A的坐标为(1,2),∵点A(1,2)是反比例函数y=kx(k≠0)的图象与正比例函数y=2x图象的交点,∴k=1×2=2,即k的值是2;=2x,(2)由题意得:2x解得:x=1或−1,经检验x=1或−1是原方程的解,∴B(−1,−2),∵点A(1,2),∴AB=√(1+1)2+(2+2)2=2√5,∵菱形ABCD是以AB、BC为边,且BC//x轴,∴AD=AB=2√5,∴D(1+2√5,2).【解析】(1)根据点A(1,a)在y=2x上,可以求得点A的坐标,再根据反比例函数y=k(k≠0)的图象与反比例函数y=2x的图象相交于A(1,a),即可求得k的值;x(2)因为B是反比例函数y=2和正比例函数y=2x的交点,列方程可得B的坐标,根据x菱形的性质可确定点D的坐标.本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)∵关于x的一元二次方程x2+√mx−2=0有两个实数根,∴△=[√m]2−4×1×(−2)=m+8≥0,且m≥0,解得:m≥0.(2)∵关于x的一元二次方程x2+√mx−2=0有两个实数根x1、x2,∴x1+x2=−√m,x1⋅x2=−2,∴(x1−x2)2−17=(x1+x2)2−4x1⋅x2−17=0,即m+8−17=0,解得:m=9.【解析】(1)根据方程的系数结合根的判别式,即可得出△=m+8≥0,根据二次根式的意义即可得出m≥0,从而得出m的取值范围;(2)根据根与系数的关系可得x1+x2=−√m,x1⋅x2=−2,结合(x1−x2)2−17=0即可得出关于m的一元一次方程,解之即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元一次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合(x1−x2)2−17=0找出关于m 的一元一次方程.22.【答案】解:(1)用列表法表示所有可能出现的结果情况如下:(2)共有12种可能出现的结果,其中“一男一女”的有8种,∴P (一男一女)=812=23.【解析】(1)用列表法表示所有可能出现的结果;(2)从所有可能出现的结果中,找出“一男一女”的结果,进而求出相应的概率. 本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的前提. 23.【答案】解:(1)设每头牛值x 两银子,每只羊值y 两银子,根据题意得:{5x +2y =192x +5y =16, 解得:{x =3y =2. 答:每头牛值3两银子,每只羊值2两银子.(2)设购买a 头牛,b 只羊,依题意有3a +2b =19,b =19−3a 2,∵a ,b 都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.【解析】(1)设每头牛值x 两银子,每只羊值y 两银子,根据“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.(2)可设购买a 头牛,b 只羊,根据用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),列出方程,再根据整数的性质即可求解.本题考查了二元一次方程(组)的应用,找准等量关系,正确列出二元一次方程(组)是解题的关键.24.【答案】解:(1)如图,连接OD,EF,则OA=OD,∴∠ODA=∠OAD,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD//AC,∴∠ODB=∠C=90°,∵点D在⊙O上,∴BC是⊙O的切线;(2)∵∠BDO=90°,∴sinB=ODBO =ODBE+OD=513,∴OD=5,∴⊙O的半径为5;(3)连接EF,∵AE是直径,∴∠AFE=90°=∠ACB,∴EF//BC ,∴∠AEF =∠B ,又∵∠AEF =∠ADF ,∴∠B =∠ADF ,又∵∠OAD =∠CAD ,∴△DAB∽△FAD , ∴AD AB =AF AD , ∴AD 2=AB ⋅AF .【解析】(1)先判断出OD//AC ,得出∠ODB =90°,即可得出结论;(2)由锐角三角函数可得sinB =OD BO =OD BE+OD =513,即可求解;(3)通过证明△DAB∽△FAD ,可得AD AB =AF AD ,可得结论.本题是圆的综合题,考查了圆的有关知识,锐角三角函数,相似三角形的判定和性质,熟练运用这些性质进行推理是本题的关键. 25.【答案】解:(1)把A(−3.1)代入y =−x 2+kx −2k ,得−9−3k −2k =1.解得k =2,∴抛物线的解析式为y =−x 2−2x +4;(2)设C(t,−t 2−2t +4),则E(t,−t 22−t +2),设直线AB 的解析式为y =kx +b ,把A(−3,1),(0,4)代入得到,{−3k +b =1b =4, 解得{k =1b =4, ∴直线AB 的解析式为y =x +4,∵E(t,−t 22−t +2)在直线AB 上, ∴−t 22−t +2=t +4,解得t =−2,∴C(−2,4).(3)由y=−x2+kx−2k=k(x−2)−x2,当x−2=0时,x=2,y=−4,∴无论k取何值,抛物线都经过定点H(2,−4),二次函数的顶点N(k2,k24−2k),①如图1中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若k2>2时,则k>4,∵M(2−4√33,0),H(2,−4),∴MI=4√33,HI=4,∴tan∠MHI=4√334=√33,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH=GHGN =k2−2k24−2k+4=√33,解得k=4+2√3或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若k2<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,即k24−2k═−4,解得k=4(不符合题意舍弃).=2,则N,H重合,不符合题意舍弃,③若k2综上所述,抛物线的解析式为y=−x2+(4+2√3)x−(8+4√3).【解析】(1)把A(−3.1)代入y=−x2+kx−2k即可求解.(2)根据题意作图,求出直线AB的解折式,再表示出E点坐标,代入直线可求解.(3)先求出定点H,过H点做HI⊥x轴,根据题意求出∠MHI=30°,再根据题意分情况即可求解.本题考查二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2020年湖北省黄石市中考数学仿真试卷及答案解析

2020年湖北省黄石市中考数学仿真试卷及答案解析

2020年湖北省黄石市中考数学仿真试卷一、单选题1.无论a 取何值时,下列分式一定有意义的是( )A .221a a +B .21a a +C .211a a -+D .211a a -+ 2.如图几何体的主视图是( )A .B .C .D .3.下列图形是中心对称图形而不是轴对称图形的是( )A .B .C .D .4.-︱-5︱的相反数是( )A .5B .--5C .±5D .155.如图所示,在四边形ABCD 中,AD AB ⊥,110C ︒∠=,它的一个外角60ADE ︒∠=,则B 的大小是( )A .70°B .60°C .40°D .30°6.已知抛物线2(2)4y x h =++-的顶点A 在直线21y x =-上,则抛物线的函数解析式是( ) A .247y x x =-+ B .2 41y x x =+- C .2 49y x x =-+ D .2 43y x x =+-7.已知A =3a 2+b 2-c 2,B =-2a 2-b 2+3c 2,且A +B +C =0,则C =( )A .a 2+2c 2B .-a 2-2c 2C .5a 2+2b -4c 2D .-5a 2-2b 2+4c 28.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( ) A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形9.在平面直角坐标系中,点P (2x+4,x ﹣3)在第四象限,则x 的取值范围表示在数轴上,正确的是( )A .B .C .D .10.如图,点B 在x 轴上,ABO 90∠=,A 30∠=,OA 4=,将OAB 绕点O 按顺时针方向旋转120得到OA'B',则点A'的坐标是( )A .(2, )B .(2, C ., 2)D ., 2)二、填空题11.计算:3•tan30°﹣(﹣1)﹣2+|2=____.12.分解因式:29ab a -=______.13.在一次数学测试中,八(2)班第1组(有8人)的平均分为84分,第2组(有7人)的平均分为85分,则这两个组15人的平均分为________分.14.据报道,重庆市2018年上半年实现GDP 约为9821亿元,将数9821用科学记数法表示为______. 15.已知扇形的半径为3 cm ,圆心角为1200,则此扇形的的弧长是 ▲ cm ,扇形的面积是 ▲ cm 2(结果保留π).16.如图,AB =AC ,BD =CD ,AD =AE ,∠EDC =16°,则∠BAD =_____度.三、解答题17.为了有效保护环境,某景区要求游客将垃圾按可回收垃圾,不可回收垃圾,有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用列树状图的方法求三袋垃圾都投对的概率.18.甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.19.化简:(222222121x x x x x x x +----+)÷1x x +,并解答:当x ,求原代数式的值. 20.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语).21.如图,AB 是O 的直径,AC 是O 的切线,切点为A ,BC 交O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与O 的位置关系,并说明理由; (2)若O 的半径为2,50B ∠=,5AC =,求图中阴影部分的周长.22.如图,在△ABC 中,AB =AC =5,BC =6,在△ABC 中截出一个矩形DEFG ,使得点D 在AB 边上,EF 在BC 边上,点G 在AC 边上,设EF =x ,矩形DEFG 的面积为y .(1)求出y 与x 之间的函数关系式;(2)直接写出自变量x 的取值范围_______;(3)若DG =2DE ,则矩形DEFG 的面积为_______.23.如图,在△ABC 中,CD 是边AB 上的中线,∠B 是锐角,sinB=2,tanA=12, (1)求∠B 的度数和 AB 的长.(2)求 tan∠CDB 的值.24.如图,直线l 1:y =x +3与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.25.如图,点B ,F ,C ,E 在一条直线上,∠A=∠D ,BF=CE ,且AC ∥DF ,你发现AB 与DE 有什么关系?请说明理由.【答案与解析】1.D试题解析:当a=0时,a 2=0,故A 、B 中分式无意义;当a=-1时,a+1=0,故C 中分式无意义;无论a 取何值时,a 2+1≠0,故选D .考点:分式有意义的条件.2.C找到从正面看所得到的图形即可.找到从正面看所得到的图形即可:从正面看易得共两层,上层左边有1个正方形,下层有3个正方形.故选C .3.A【分析】考察对中心对称图形概念的理解.【详解】解:选项B 、C 、D 都是轴对称图形,而题目要求选择中心对称图形而不是轴对称图形,故选:A .【点睛】本题是对中心对称图形以及轴对称图形概念的考查,熟练掌握两个概念是解决本题的关键,难度较小.4.A先把袁术化简,再根据相反数的定义解答即可.∵-︱-5︱=-5,∴-︱-5︱的相反数是5.故选A.本题考查了绝对值和相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.5.C根据外角和垂直得到∠ADC 和∠A 的度数,再利用四边形的内角和是360°即可解题.解:∵∠ADE=60°,∴∠ADC=120°, ∵AD AB ⊥,∴∠A=90°, ∵110C ︒∠=∴∠B=360°-∠C-∠ADC-∠A=40°.故选C.本题考查了四边形的内角和,属于简单题,利用垂直和外角求出∠ADC和∠A的度数是解题关键. 6.B利用顶点式可得A的坐标为(-2,h-4),然后把A(-2,h-4)代入y=2x-1可求出h的值,从而可确定抛物线解析式.抛物线y=(x+2)2+h-4的顶点A的坐标为(-2,h-4),把A(-2,h-4)代入y=2x-1得h-4=-4-1,解得h=-1,所以抛物线的解析式为y=(x+2)2-5,即y=x2+4x-1.故选:B.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.7.B由A+B+C=0知,C=-(A+B),然后把A,B的值代入即可.解:∵A+B+C=0,∴C=-(A+B)=-(3a2+b2-c2-2a2-b2+3c2)=-(a2+2c2)=-a2-2c2,故选:B.本题考查了整式的加减,主要是去括号法则的运用.注意表示整式加减时,整式上应先添加括号.8.B此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.9.A根据题意,得:24030xx+>⎧⎨-<⎩①②,解不等式①,得:x>−2,解不等式②,得:x<3,则不等式组的解集为−2<x<3,故选A.10.B在直角△OAB中利用直角三角形的性质求得∠AOB的度数,作A'C⊥OB于点C,在直角△OA'C中利用三角函数求得A'C和OC的长,则C'的坐标即可求得.在直角△OAB中,∠AOB=90°-∠A=90°-30°=60°,∠AOA'=120°,则∠BOA'=∠AOA'-∠AOB=120°-60°=60°,作A'C⊥OB于点C.在直角△OA'C 中,OA'=OA=4,则A'C=OA'•sin ∠BOA'=4sin60°,OC=OA'•cos ∠BOA'=4cos60°=4×12=2,则A'的坐标是(2,-2故选B .本题考查了坐标与图形的变化,求坐标的问题常用的思路是转化为求线段的长的问题. 11.1.原式利用负指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.解:原式=312121=-+=+=,故答案为1. 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.a (b +3)(b ﹣3).先提公因式a ,然后再利用平方差公式进行分解即可.29ab a -=2(9)a b -=(3)(3)a b b +-.故答案为(3)(3)a b b +-.本题考查了提公因式法与公式法的综合运用,把握因式分解的原则“一提(公因式),二套(公式),三彻底”是解题的关键.13.126715根据加权平均数公式计算即可.8847851267=1515⨯+⨯. 故答案为:126715. 本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.数据x 1、x 2、……、x n 的加权平均数:112212............n n nw x w x w x x w w w +++=+++(其中w 1、w 2、……、w n 分别为x 1、x 2、……、x n 的权数).14.39.82110⨯科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.将数9821用科学记数法表示为39.82110⨯.故答案为:39.82110⨯.此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.2π,3π直接根据扇形的的弧长和面积公式计算即可: 扇形的的弧长=1203=2180ππ⋅⋅(cm ),扇形的面积=21203=3360ππ⋅⋅(cm 2) 16.32证明△ABD ≌△ACD (SSS ),得出∠BAD =∠CAD ,∠ADB =∠ADC =90°,求出∠ADE =90°﹣∠EDC =74°,由等腰三角形的性质得出∠AED =∠ADE =74°,由三角形内角和定理即可得出答案.解:在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴∠BAD =∠CAD ,∠ADB =∠ADC =90°,∴∠ADE =90°﹣∠EDC =90°﹣16°=74°,∵AD =AE ,∴∠AED =∠ADE =74°,∴∠BAD =∠CAD =180°﹣2×74°=32°;故答案为:32.本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.17.16通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法.解:三类垃圾随机投入三类垃圾箱的树状图如下:由树状图可知随机投入三类垃圾桶共有6种等可能结果,其中三袋垃圾都投对的只有1种结果, ∴三袋垃圾都投对的概率为.本题考查树状图法求解概率.18.2550x x -+=解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程。

湖北省黄石市2020版中考数学试卷(II)卷

湖北省黄石市2020版中考数学试卷(II)卷

湖北省黄石市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2020七上·武昌期末) 一个数和它的相反数相等,则这个数是()A . 0B . 1C . -1D .2. (2分) (2017七上·宁波期中) 在解方程时,去分母,得()A . 2(x﹣1)﹣1=3(2x+3)B . 2(x﹣1)+1=3(2x+3)C . 2(x﹣1)+6=3(2x+3)D . 2(x﹣1)﹣6=3(2x+3)3. (2分) (2015七上·宜昌期中) 2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A . 0.13397×1010B . 1.3397×109C . 13.397×108D . 13397×1054. (2分) (2019九下·润州期中) 在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A . 4.65、4.70B . 4.65、4.75C . 4.70、4.75D . 4.70、4.705. (2分)(2017·益阳) 如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A . cm2B . cm2C . 30cm2D . 7.5cm26. (2分) (2017七上·官渡期末) 已知一个角的余角比它的补角的还少10°,则这个角的度数是()A . 120°B . 90°C . 60°D . 30°7. (2分)(2016·娄底) 下列命题中,错误的是()A . 两组对边分别平行的四边形是平行四边形B . 有一个角是直角的平行四边形是矩形C . 有一组邻边相等的平行四边形是菱形D . 内错角相等8. (2分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A . -5B . 5C . -D .9. (2分)下列各式中,从左到右的变形是因式分解的是()A . 3x+3y﹣5=3(x+y)﹣5B . (x+1)(x﹣1)=x2﹣1C . x2+2x+1=(x+1)2D . x(x﹣y)=x2﹣xy10. (2分)长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2 ,则这样的长方形中y与x 的关系可以写为()A . y=x2B . y=12﹣x2C . y=(12﹣x)•xD . y=2(12﹣x)11. (2分)已知扇形的圆心角为90°,半径长为12,则该扇形的弧长为()A . 6πB . 8πC . 10πD . 12π12. (2分)一个不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同,从袋子中随机地摸出2个球,这2个球都是白球的概率为()A .B .C .D .13. (2分)(2018·义乌) 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A .B .C .D .14. (2分) (2018九上·内蒙古期末) 如果矩形的面积为6,那么它的长与宽的函数关系用图象表示为()A .B .C .D .二、填空题 (共4题;共4分)15. (1分) (2020七上·苍南期末) 如图,大正方形内有两个大小一样的长方形ABCD和长方形EFGH,且AB,AD,EF,EH分别在大正方形的四条边上,大正方形内有个小正方形与两长方形有重叠(图中两个长方形形状的阴影部分),若B两正方形的周长分别为44与30,且AB=EH=6,AD=EF=3,则两阴影部分的周长和为________。

2020年湖北省黄石市中考数学试卷及答案解析.pdf

2020年湖北省黄石市中考数学试卷及答案解析.pdf
湖北省黄石市 2020 年中考数学试题
学校:___________姓名:___________班级:___________考号:___________
1.3 的相反数是( ).
A. 3
B.3
C. 1 3
2.下列图形中,既是中心对称又是轴对称图形的是( )
1
D.
3
A.
B.
C.
D.
3.如图所示,该几何体的俯视图是( )
试卷第 3 页,总 6 页
19.如图, AB AE, AB / /DE,DAB 70,E 40 .
(1)求 DAE 的度数; (2)若 B 30 ,求证: AD BC .
20.如图,反比例函数 y k (k 0) 的图象与正比例函数 y 2x 的图象相交于 A1, a 、
x
B 两点,点 C 在第四象限,BC∥x 轴.
x 1 3 6.不等式组 2x 9 3 的解集是( )
A. 3 x 3
B. x 2
C. 3 x 2
D. x 3
试卷第 1 页,总 6 页
7.在平面直角坐标系中,点 G 的坐标是 2,1 ,连接 OG ,将线段 OG 绕原点 O 旋转180
,得到对应线段 OG ,则点 G 的坐标为( )
根据以上译文,提出以下两个问题:
(1)求每头牛、每只羊各值多少两银子?
(2)若某商人准备用 19 两银子买牛和羊(要求既有牛也有羊,且银两须全部用完), 请问商人有几种购买方法?列出所有的可能.
24.如图,在 RtABC 中, C 90 , AD 平分 BAC 交 BC 于点 D,O 为 AB 上一 点,经过点 A、D 的 O 分别交 AB 、 AC 于点 E、F.
试卷第 4 页,总 6 页

2020年湖北省黄石市中考数学试卷

2020年湖北省黄石市中考数学试卷

2020年湖北省黄石市中考数学试卷一、选择题1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是()A.B.C.D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能二、填空题11.(3分)因式分解:x2y﹣4y=.12.(3分)分式方程=﹣2的解为.13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为.14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.16.(3分)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)三、解答题17.(7分)计算:(﹣2)3++10+|﹣3+|.18.(7分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.19.(7分)已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.20.(8分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.21.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.22.(8分)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?23.(8分)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)24.(9分)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.25.(10分)如图,直线l:y=kx+b(k<0)与函数y=(x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE.设A、C两点的坐标分别为(a,)、(c,),其中a>c>0.(1)如图①,求证:∠EDP=∠ACP;(2)如图②,若A、D、E、C四点在同一圆上,求k的值;(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.2020年湖北省黄石市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2020•黄石)下列各数是有理数的是()A.﹣ B.C.D.π【分析】利用有理数的定义判断即可.【解答】解:有理数为﹣,无理数为,,π,故选A【点评】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键.2.(3分)(2020•黄石)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将110000用科学记数法表示为:1.1×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2020•黄石)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2020•黄石)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=【分析】根据整式的运算法则以及分式的运算法则即可求出答案.【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选(C)【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.5.(3分)(2020•黄石)如图,该几何体主视图是()A.B.C.D.【分析】根据三棱柱的特点并结合选项作出正确的判断即可.【解答】解:三棱柱的主视图为矩形,∵正对着的有一条棱,∴矩形的中间应该有一条实线,故选B.【点评】考查了简单几何体的三视图的知识,解题的关键是了解中间的棱是实线还是虚线,难度不大.6.(3分)(2020•黄石)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、139【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按从大到小的顺序排列是:125,129,136,140,145,147,故这组数据的中位数是:(136+140)÷2=138;平均数=(125+129+136+140+145+147)÷6=137.故选B.【点评】本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义,此题比较简单,易于掌握.7.(3分)(2020•黄石)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°【分析】根据直角三角形的性质得到BC=2CE=,根据勾股定理的逆定理得到∠ACB=90°,根据三角函数的定义得到∠A=60°,求得∠ACD=∠B=30°,得到∠DCE=60°,于是得到结论.【解答】解:∵CD⊥AB,E为BC边的中点,∴BC=2DE=,∵AB=2,AC=1,∴AC2+BC2=12+()2=4=22=AB2,∴∠ACB=90°,∵tan∠A==,∴∠A=60°,∴∠ACD=∠B=30°,∴∠DCE=60°,∵DE=CE,∴∠CDE=60°,∴∠CDE+∠ACD=90°,故选C.【点评】本题考查了勾股定理的逆定理,直角三角形的性质,三角函数的定义,熟练掌握勾股定理的逆定理是解题的关键.8.(3分)(2020•黄石)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab >0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.0【分析】根据抛物线的开口方向,判断a的符号,对称轴在y轴的右侧判断b的符号,抛物线和y轴的交点坐标判断c的符号,以及抛物线与x轴的交点个数判断b2﹣4ac的符号.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∴ab<0,故①错误;∵抛物线和y轴的负半轴相交,∴c<0,∴abc>0,故②正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴<1,故③正确;故选C.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.9.(3分)(2020•黄石)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故选D.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.10.(3分)(2020•黄石)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能【分析】先根据等腰三角形的底角相等,得出∠AED+∠CDE=180°,判定AE∥CD,再根据一个角是60°的等腰三角形是等边三角形,得出△ABC是等边三角形.【解答】证明:∵AE=AB,∴∠ABE=∠AEB,同理∠CBD=∠CDB∵∠ABC=2∠DBE,∴∠ABE+∠CBD=∠DBE,∵∠ABE=∠AEB,∠CBD=∠CDB,∴∠AEB+∠CDB=∠DBE,∴∠AED+∠CDE=180°,∴AE∥CD,∵AE=CD,∴四边形AEDC为平行四边形.∴DE=AC=AB=BC.∴△ABC是等边三角形,∴BC=CD=1,在△BCD中,∵BD<BC+CD,∴BD<2.故选A.【点评】本题主要考查等腰三角形的性质:等腰三角形的底角相等,以及等边三角形的判定定理.解题时注意,同旁内角互补,两直线平行.二、填空题11.(3分)(2020•黄石)因式分解:x2y﹣4y=y(x﹣2)(x+2).【分析】首先提取公因式y,再利用平方差公式分解因式即可.【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式分解因式是解题关键.12.(3分)(2020•黄石)分式方程=﹣2的解为x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3﹣4x+4,解得:x=,经检验x=是分式方程的解,故答案为:x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(3分)(2020•黄石)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为2π.【分析】首先根据扇形的面积公式求得扇形的半径,然后根据扇形的面积公式S=lR(其中l为扇形的弧长),求得扇形的弧长.扇形【解答】解:设扇形的半径是R,则=6π,解得:r=6,设扇形的弧长是l,则lr=6π,即3l=6π,解得:l=2π.故答案是:2π.【点评】本题考查了扇形面积和弧长的计算,熟练掌握扇形的面积公式和弧长的公式是解题的关键.14.(3分)(2020•黄石)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为137米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)【分析】设AB=x米,由∠ACB=45°得BC=AB=x、BD=BC+CD=x+100,根据tan∠ADB=可得关于x的方程,解之可得答案.【解答】解:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+CD=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB==,即=,解得:x=50+50≈137,即建筑物AB的高度约为137米故答案为:137.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.15.(3分)(2020•黄石)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.【分析】利用列表法即可解决问题.【解答】解:甲、乙两位同学各抛掷一枚质地均匀的骰子,所有可能的结果是:满足a+b=9的有4种可能,∴a+b=9的概率为=,故答案为.【点评】本题考查的是古典型概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)(2020•黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)【分析】根据上述各式的规律即可求出第n个式子的计算结果.【解答】解:n=1时,结果为:=;n=2时,结果为:=;n=3时,结果为:所以第n个式子的结果为:故答案为:【点评】本题考查数字规律问题,解题的关键是根据已给出的式子找出规律,本题属于基础题型.三、解答题17.(7分)(2020•黄石)计算:(﹣2)3++10+|﹣3+|.【分析】原式利用乘方的意义,算术平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣8+4+1+3﹣=﹣.【点评】此题考查了实数的运算,以及零指数幂,熟练掌握运算法则是解本题的关键.18.(7分)(2020•黄石)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.【分析】将原式括号内通分、将除法转化为乘法,再计算减法,最后约分即可化简原式,根据特殊锐角三角函数值求得a的值,代入即可.【解答】解:原式=[﹣]•(a﹣1)=•(a﹣1)=当a=2sin60°﹣tan45°=2×﹣1=﹣1时,原式==.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键,也考查了特殊锐角的三角函数值.19.(7分)(2020•黄石)已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.【解答】解:解5x+1>3(x﹣1)得:x>﹣2,解x≤8﹣x+2a得:x≤4+a.则不等式组的解集是:﹣2<x≤4+a.不等式组只有两个整数解,是﹣1和0.根据题意得:0≤4+a<1.解得:﹣4≤a<﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.(8分)(2020•黄石)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=16+4m2>0,由此可证出该方程有两个不等的实根;(2)根据根与系数的关系可得x1+x2=4①、x1•x2=﹣m2②,结合x1+2x2=9③,可求出x1、x2的值,将其代入②中即可求出m的值.【解答】(1)证明:∵在方程x2﹣4x﹣m2=0中,△=(﹣4)2﹣4×1×(﹣m2)=16+4m2>0,∴该方程有两个不等的实根;(2)解:∵该方程的两个实数根分别为x1、x2,∴x1+x2=4①,x1•x2=﹣m2②.∵x1+2x2=9③,∴联立①③解之,得:x1=﹣1,x2=5,∴x1•x2=﹣5=﹣m2,解得:m=±.【点评】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)联立x1+x2=4①、x1+2x2=9③,求出x1、x2的值.21.(8分)(2020•黄石)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E 为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.【分析】(1)欲证明DB=DE,只要证明∠DBE=∠DEB;(2)欲证明直线CF为⊙O的切线,只要证明BC⊥CF即可;【解答】(1)证明:∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)连接CD.∵DA平分∠BAC,∴∠DAB=∠DAC,∴=,∴BD=CD,∵BD=DF,∴CD=DB=DF,∴∠BCF=90°,∴BC⊥CF,∴CF是⊙O的切线.【点评】本题考查三角形的内切圆与内心、切线的判定、等腰三角形的判定、直角三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.22.(8分)(2020•黄石)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?【分析】(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.【解答】解:(1)进行该试验的车辆数为:9÷30%=30(辆),(2)B:20%×30=6(辆),D:30﹣2﹣6﹣9﹣4=9(辆),补全频数分布直方图如下:(3)900×=660(辆),答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.【点评】本题主要考查了频数分布直方图以及扇形统计图的运用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.23.(8分)(2020•黄石)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)【分析】(1)将x=4、y=2和x=6、y=1代入y=ax2+bx+10,求得a、b即可;(2)根据“平均利润=销售价﹣平均成本”列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)将x=4、y=2和x=6、y=1代入y=ax2+bx+10,得:,解得:,∴y=x2﹣3x+10;(2)根据题意,知L=P﹣y=9﹣x﹣(x2﹣3x+10)=﹣(x﹣4)2+3,∴当x=4时,L取得最大值,最大值为3,答:4月份的平均利润L最大,最大平均利润是3元/千克.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求二次函数解析式和二次函数的性质是解题的关键.24.(9分)(2020•黄石)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.【分析】(1)如图①中,设AD=BC=a,则AB=CD=a.通过计算得出AB=BP=a,由此即可证明;(2)如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD=a,可得CQ=CQ′=a﹣a,由CQ′∥AB,推出===;(3)如图③中,作TH∥AB交NM于H,交BC于K.由S△=•TH•CK+•TH•BK=HT•(KC+KB)=HT•BC=HT,利用梯形的中位线定MNT理求出HT即可解决问题;【解答】(1)证明:如图①中,设AD=BC=a,则AB=CD=a.∵四边形ABCD是矩形,∴∠C=90°,∵PC=AD=BC=a,∴PB==a,∴BA=BP.(2)解:如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG 的周长最小.设AD=BC=QD=a,则AB=CD=a,∴CQ=CQ′=a﹣a,∵CQ′∥AB,∴===.(3)证明:如图③中,作TH∥AB交NM于H,交BC于K.由(2)可知,AD=BC=1,AB=CD=,DP=CF=﹣1,∵S=•TH•CK+•TH•BK=HT•(KC+KB)=HT•BC=HT,△MNT∵TH∥AB∥FM,TF=TB,∴HM=HN,∴HT=(FM+BN),∵BN=PM,∴HT=(FM+PM)=PF=•(1+﹣1)=,∴S=HT==定值.△MNT【点评】本题考查相似形综合题、矩形的性质、平行线分线段成比例定理、勾股定理、梯形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造梯形的中位线解决问题,属于中考压轴题.25.(10分)(2020•黄石)如图,直线l:y=kx+b(k<0)与函数y=(x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE.设A、C两点的坐标分别为(a,)、(c,),其中a>c>0.(1)如图①,求证:∠EDP=∠ACP;(2)如图②,若A、D、E、C四点在同一圆上,求k的值;(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.【分析】(1)由P、E、D的坐标可表示出PA、EP、PC和DP的长,可证明△EPD ∽△CPA,利用相似三角形的性质可证得结论;(2)连接AD、EC,可证明△AEC≌△CDA,可得CD=AE,把A、C坐标代入直线l解析式,可求得k的值;(3)假设在线段AT上存在点M,使得OM⊥AM,连接OM、OA,可表示出C、F、P、B的坐标,利用直线BF的解析式可求得a的值,可求得A点坐标,可求得T点坐标,在△OAT中,利用等积法可求得OM的长,在RtOMT中可求得MT 的长,作MN⊥x轴,同理可求得MN的长,则可求得ON的长,可判断N在线段BT上,满足条件,从而可知存在满足条件的M点.【解答】(1)证明:由题意可知P(c,),E(0,),D(c,0),∴PA=a﹣c,EP=c,PC=﹣=,DP=,∴==,且∠EPD=∠APC,∴△EPD∽△CPA,∴∠EDP=∠ACP;(2)解:如图1,连接AD、EC,由(1)可知DE∥AC,∴∠DEC+∠ECA=180°,∵A、D、E、C四点在同圆周上,∴∠DEC+∠DAC=180°,∴∠ECA=∠DAC,在△AEC和△CDA中∴△AEC≌△CDA(AAS),∴CD=AE,即a=,可得ac=4,∵A、C在直线l上,∴,解得k==﹣=﹣1;(3)假设在线段AT上存在点M,使OM⊥AM,连接OM、OA,作MN⊥x轴于点N,如图2,∵c=1,∴C(1,4),F(0,4),P(1,),B(a,0),设直线BF的解析式为y=k′x+4,由题意可得,解得a=2,∴A(2,2),∴AP为△DCT的中位线,∴T(3,0),∴AT===OT•AB=AT•OM,∵S△OAT∴OM===,在Rt△OMT中,MT===,同理可求得MN==,在Rt△OMN中,ON===,∵2<<3,∴点M在线段AT上,即在线段AT上存在点M,使得OM⊥AM,M点的坐标为(,).【点评】本题为反比例函数的综合应用,涉及相似三角形的判定和性质、全等三角形的判定和性质、圆的性质、勾股定理、等积法等知识.在(1)中证得△EPD ∽△CPA是解题的关键,在(2)中构造全等三角形,求得ac=4是解题的关键,在(3)中求得A点坐标,再分别求得OM和ON的长是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度适中.。

2020年湖北省黄石市数学中考题(含答案)

2020年湖北省黄石市数学中考题(含答案)

湖北省黄石市2020年初中毕业生学业考试数学试题卷姓名:准考证号:注意事项:1.本试卷分为试题卷和答题卷两部分,考试时间120分钟,满分120分。

2.考生在答题前请阅读答题卷中的“注意事项”,然后按要求答题。

3.所有答案均须做在答题卷相应区域,做在其它区域内无效。

一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的,请把正确的选项所对应的字母在答题卷中相应的格子涂黑,注意可用多种不同的方法来选取正确答案。

1.13-的倒数是(C)A.13B. 3C. -3D.13-【考点】倒数.【分析】一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.【解答】解:13-的倒数是331-=-.故选C.【点评】此题考查倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.某星球的体积约为66354213km,用科学计数法(保留三个有效数字)表示为6.6410n⨯3km,则n=(C)A. 4B. 5C. 6D. 7【考点】科学记数法与有效数字.【分析】科学记数法的形式为 a×10n,其中1≤|a|<10,n是整数.此时的有效数字是指a中的有效数字.【解答】解:6635421=6.635421×106≈6.64×106.故选C.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.3.已知反比例函数by x=(b 为常数),当0x >时,y 随x 的增大而增大,则一次函数y x b =+的图像不经过第几象限( B )A.一B. 二C. 三D. 四 【考点】一次函数图象与系数的关系;反比例函数的性质. 【专题】探究型.【分析】先根据反比例函数的增减性判断出b 的符号,再根据一次函数的图象与系数的关系判断出次函数y=x+b 的图象经过的象限即可. 【解答】解:∵反比例函数by x=(b 为常数),当x >0时,y 随x 的增大而增大, ∴b <0,∵一次函数y=x+b 中k=1>0,b <0, ∴此函数的图象经过一、三、四限, ∴此函数的图象不经过第二象限. 故选B .【点评】本题考查的是一次函数的图象与系数的关系及反比例函数的性质,熟知一次函数y=kx+b (k ≠0)中,当k >0,b <0时函数的图象在一、三、四象限是解答此题的关键.4. 2020年5月某日我国部分城市的最高气温统计如下表所示: 城 市 武汉 成都 北京 上海 海南 南京 拉萨 深圳 气温(℃) 27 27 24 25 28 28 23 26 请问这组数据的平均数是( C )A.24B.25C.26D.27 【考点】算术平均数.【分析】求这组数据的算术平均数,用8个城市的温度和÷8即为所求. 【解答】解:(27+27+24+25+28+28+23+26)÷8=208÷8 =26(℃). 故选C .【点评】考查了算术平均数,只要运用求平均数公式:121()n x x x x n=++⋅⋅⋅+. 即可求出,为简单题.5.如图(1)所示,该几何体的主视图应为( C )【考点】简单组合体的三视图.【分析】几何体的主视图就是从正面看所得到的图形,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看可得到一个大矩形左上边去掉一个小矩形的图形.故选C .图(1) AB C D【点评】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是掌握主视图所看的位置.6.如图(2)所示,扇形AOB 的圆心角为120°,半径为2,则图中阴影部分的面积为( A ) A.433π- B. 4233π- C. 433π- D. 43π【考点】扇形面积的计算. 【专题】探究型.【分析】过点O 作OD ⊥AB ,先根据等腰三角形的性质得出∠OAD的度数,由直角三角形的性质得出OD 的长,再根据S 阴影=S 扇形OAB -S △AOB 进行计算即可.【解答】解:过点O 作OD ⊥AB ,∵∠AOB=120°,OA=2,∴∠OAD=90°-∠AOB/2 =180°-120°/2 =30°,∴OD=12 OA=12×2=1, 2222213AD OA OD =-=-=∴223AB AD ==,∴S 阴影=S 扇形OAB -S △AOB =120π×22/360 -1/2 ×23×1=433π-. 故选A .【点评】本题考查的是扇形面积的计算及三角形的面积,根据题意得出S 阴影=S 扇形OAB -S△AOB 是解答此题的关键. 7.有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( B ) A. 1x =,3y = B. 3x =,2y = C. 4x =,1y = D. 2x =,3y =【考点】一次函数的应用.【分析】根据金属棒的长度是40mm ,则可以得到7x+9y ≤40,再 根据x ,y 都是正整数,即可求得所有可能的结果,分别计算出省料的长度即可确定.【解答】解:根据题意得:7x+9y ≤40,则x ≤40-9y 7 ,∵40-9y ≥0且y 是非负整数,∴y 的值可以是:0或1或2或3或4. 当x 的值最大时,废料最少,因而当y=0时,x ≤40 7 ,则x=5,此时,所剩的废料是:40-5×7=5mm ; 当y=1时,x ≤31 7 ,则x=4,此时,所剩的废料是:40-1×9-4×7=3mm ; 当y=2时,x ≤22 7 ,则x=3,此时,所剩的废料是:40-2×9-3×7=1mm ;OAB图(2)当y=3时,x ≤13 7 ,则x=1,此时,所剩的废料是:40-3×9-7=6mm ; 当y=4时,x ≤4 7 ,则x=0,此时,所剩的废料是:40-4×9=4mm . 则最小的是:x=3,y=2. 故选B .【点评】本题考查了不等式的应用,正确确定x ,y 的所有取值情况是关键.8.如图(3)所示,矩形纸片ABCD 中,6AB cm =,8BC cm =,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( B )A. 258cmB. 254cm C.252cm D. 8cm 【考点】翻折变换(折叠问题).【分析】设AF=xcm ,则DF=(8-x )cm ,利用矩形纸片ABCD 中,现将其沿EF 对折,使得点C 与点A 重合,由勾股定理求AF 即可.【解答】解:设AF=xcm ,则DF=(8-x )cm ,∵矩形纸片ABCD 中,AB=6cm ,BC=8cm ,现将其沿EF 对折,使得点C 与点A 重合, ∴DF=D ′F ,在Rt △AD ′F 中,∵AF 2=AD ′2+D ′F 2, ∴x 2=62+(8-x )2, 解得:x=25/4 (cm ). 故选:B .【点评】本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变是解题关键.9.如图(4)所示,直线CD 与线段AB 为直径的圆相切于点D ,并交BA 的延长线于点C ,且2AB =,1AD =,P 点在切线CD 上移动.当APB ∠的度数最大时,则ABP ∠的度数为( B )A. 15°B. 30°C. 60°D. 90° 【考点】切线的性质;三角形的外角性质;圆周角定理.【分析】连接BD ,有题意可知当P 和D 重合时,∠APB 的度数最大,利用圆周角定理和直角 三角形的性质即可求出∠ABP 的度数.【解答】解:连接BD ,∵直线CD 与以线段AB 为直径的圆相切于点D , ∴∠ADB=90°,当∠APB 的度数最大时, 则P 和D 重合,D (C) ABC E FD 图(3) P 图(4) · O A CDB∴∠APB=90°, ∵AB=2,AD=1,∴sin ∠DBP=AD/AB =1/2 , ∴∠ABP=30°,∴当∠APB 的度数最大时,∠ABP 的度数为30°. 故选B .【点评】本题考查了切线的性质,圆周角定理以及解直角三角形的有关知识,解题的关键是有题意可知当P 和D 重合时,∠APB 的度数最大为90°.(圆内角>圆周角>圆外角) 10.如图(5)所示,已知11(,)2A y ,2(2,)B y 为反比例函数1y x=图像上的两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( D )A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)2【考点】反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系. 【专题】计算题.【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P ′,当P 在P ′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【解答】解:∵把A (1/2 ,y 1),B (2,y 2)代入反比例函数y=1/ x 得:y 1=2,y 2=1/2 ,∴A (1/2 ,2),B (2,1/2 ),∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB , ∴延长AB 交x 轴于P ′,当P 在P ′点时,PA-PB=AB , 即此时线段AP 与线段BP 之差达到最大, 设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得: 2=1/2k+b ,1/2 =2k+b , 解得:k=-1,b=5/2 ,∴直线AB 的解析式是y=-x+5/2 , 当y=0时,x=5/2 , 即P (5/2 ,0), 故选D .【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.二、认真填一填(本题有6个小题,每小题3分,共18分) 11.分解因式:22x x +-=(2)(1)x x +-.【考点】因式分解-十字相乘法等.yxOABP 图(5)【专题】探究型.【分析】因为(-1)×2=-2,2-1=1,所以利用十字相乘法分解因式即可. 【解答】解:∵(-1)×2=-2,2-1=1,∴x 2+x-2=(x-1)(x+2). 故答案为:(x-1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程. 12.若关于x 的不等式组{23335x x x a >-->有实数解,则a 的取值范围是4a <. 【考点】解一元一次不等式组. 【专题】计算题. 【分析】分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a 的不等式,求出a 的取值范围即可.【解答】解: 2x >3x-3①, 3x-a >5② ,由①得,x <3,由②得,x >5+a 3 ,∵此不等式组有实数解, ∴5+a/3 <3,解得a <4. 故答案为:a <4.【点评】本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a 的不等式是解答此题的关键.13.某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图(6)所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为0075.【考点】频数(率)分布直方图;用样本估计总体.【专题】计算题. 【分析】先根据频率分布直方图,利用频数=频数组距 ×组距,求出每一阶段内的频数,然后让60减去已求的每一阶段内的人数,易求70≤x <80阶段内的频数,再把所有大于等于60分的频数相加,然后除以60易求及格率.【解答】解:∵频数=频数 组距 ×组距,∴当40≤x <50时,频数=0.6×10=6, 同理可得:50≤x <60,频数=9, 60≤x <70,频数=9, 80≤x <90,频数=15, 90≤x <100,频数=3,∴70≤x <80,频数=60-6-9-9-15-3=18,∴这次测试的及格率=9+18+15+3 60 ×100%=75%, 故答案是75%.【点评】本题考查了频率分布直方图,解题的关键是利用公式频数=频数 组距 ×组距,求出每一阶段内的频数.14.将下列正确的命题的序号填在横线上② .分数图(6)①若n 大于2的正整数,则n 边形的所有外角之和为0(2)180n -.②三角形三条中线的交点就是三角形的重心.③证明两三角形全等的方法有:SSS ,SAS ,ASA ,SSA 及HL 等.【考点】三角形的重心;全等三角形的判定;多边形内角与外角;命题与定理. 【专题】探究型. 【分析】分别根据多边形内角和定理、三角形的重心及全等三角形的判定定理得出结论. 【解答】解:①若n 为大于2的正整数,则n 边形的所有内角之和为(n-2)•180°,故本小题错误;②三角形三条中线的交点就是三角形的重心,符合重心的定义,故本小题正确; ③SSA 不能证明两三角形全等,故本小题错误. 故答案为:②.【点评】本题考查的是多边形内角和定理、三角形的重心及全等三角形的判定定理,熟知以上知识是解答此题的关键.15.“数学王子”高斯从小就善于观察和思考.在他读小学时候就能在课堂上快速的计算出12398991005050+++⋅⋅⋅⋅⋅⋅+++=,今天我们可以将高斯的做法归纳如下: 令1239899100S =+++⋅⋅⋅⋅⋅⋅+++ ① 1009998321S =+++⋅⋅⋅⋅⋅⋅+++ ②①+②:有2(1100)100S =+⨯ 解得:5050S = 请类比以上做法,回答下列问题:若n 为正整数,357(21)168n +++⋅⋅⋅⋅⋅⋅++=,则n =12.【考点】有理数的混合运算. 【专题】规律型.【分析】根据题目提供的信息,列出方程,然后求解即可. 【解答】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②, ①+②得,2S=n (2n+1+3)=2×168,整理得,n 2+2n-168=0, 解得n 1=12,n 2=-14(舍去). 故答案为:12.【点评】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.16.如图(7)所示,已知A 点从点(1,0)出发,以每秒1个单位长的速度沿着x 轴的正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且060AOC ∠=,又以P(0,4)为圆心,PC 为半径的圆恰好与OA 所在直线相切,则t=1.【考点】切线的性质;坐标与图形性质;菱形的性质;解直角三角形.图(7)【专题】动点型.【分析】先根据已知条件,求出经过t 秒后,OC 的长,当⊙P 与OA ,即与x 轴相切时,如图所示,则切点为O ,此时PC=OP ,过P 作PE ⊥OC ,利用垂径定理和解直角三角形的有关知识即可求出t 的值.【解答】解:∵已知A 点从(1,0)点出发,以每秒1个单位长的速度沿着x 轴的正方向运动,∴经过t 秒后, ∴OA=1+t ,∵四边形OABC 是菱形, ∴OC=1+t ,当⊙P 与OA ,即与x 轴相切时,如图所示,则切点为O ,此时PC=OP , 过P 作PE ⊥OC , ∴OE=CE=1/2 OC , ∴OE=1+t/2 , 在Rt △OPE 中,OE=OP •cos30°=23, ∴11232t +=, ∴431t =- 故答案为:431-.【点评】本题综合性的考查了菱形的性质、坐标与图形性质、切线的性质、垂径定理的运用以及解直角三角形的有关知识,属于中档题目.三、全面答一答(本题有9个小题,共72分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答尽量写出来。

2020年湖北省黄石市中考数学试卷及答案解析(word版)

2020年湖北省黄石市中考数学试卷及答案解析(word版)
又∵AE=AB,∠E=∠CAB=40°,
∴△DAE≌△CBA(ASA),
∴AD=BC.
【点睛】本题考查了平行线的性质,全等三角形的判定和性质,求出∠DAE的度数是解题关键.
20.如图,反比例函数 的图象与正比例函数 的图象相交于 、B两点,点C在第四象限,BC∥x轴.
(1)求k的值;
(2)以 、 为边作菱形 ,求D点坐标.
【详解】解:在优弧AB上取一点F,连接AF,BF.
∵ ,
∴∠CDO=∠CEO=90°.
∵ ,
∴∠O=140°,
∴∠F=70°,
∴∠ACB=180°-70°=110°.
故选C.
【点睛】本题考查了多边形的内角和,圆周角定理,以及圆内接四边形的性质,正确作出辅助线是解答本题的关键.
10.若二次函数 的图象,过不同的六点 、 、 、 、 、 ,则 、 、 的大小关系是()
C、是轴对称图形,不是中心对称图形,故本选项错误;
D、既是中心对称图又是轴对称图形,故本选项正确;
故选:D.
【点睛】本题考查中心对称图与轴对称图形定义,熟练掌握中心对称图形和轴对称图形的定义是解题关键.
3.如图所示,该几何体的俯视图是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据俯视图的定义判断即可.
【答案】85
【解析】
【分析】
按照 的比例算出本学期的体育成绩即可.
【详解】解:小明本学期的体育成绩为: =85(分),
故答案为:85.
【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.
15.如图,在 的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作 的外接圆,则 的长等于_____.

2020年湖北省黄石市中考数学试卷

2020年湖北省黄石市中考数学试卷

2020年湖北省黄石市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. 3B. −3C. 13D. −132.下列图形中,既是中心对称又是轴对称图形的是()A. B. C. D.3.如图所示,该几何体的俯视图是()A.B.C.D.4.下列运算正确的是()A. 8a−3b=5abB. (a2)3=a5C. a9÷a3=a3D. a2⋅a=a35.函数y=1x−3+√x−2的自变量x的取值范围是()A. x≥2,且x≠3B. x≥2C. x≠3D. x>2,且x≠36.不等式组{x−1<−32x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−37.在平面直角坐标系中,点G的坐标是(−2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG′,则点G′的坐标为()A. (2,−1)B. (2,1)C. (1,−2)D.(−2,−1)8.如图,在Rt△ABC中,∠ACB=90°,点H、E、F分别是边AB、BC、CA的中点,若EF+CH=8,则CH的值为()A. 3B. 4C. 5D. 69.如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为()A. 140°B. 70°C. 110°D. 80°10.若二次函数y=a2x2−bx−c的图象,过不同的六点A(−1,n)、B(5,n−1)、C(6,n+1)、D(√2,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y2<y1<y3二、填空题(本大题共6小题,共18.0分)11.计算:(13)−1−|1−√2|=______.12.因式分解:m3n−mn3=______.13.据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元.用科学记数法表示137.6亿元,可写为______元.14.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是______分.15.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则BC⏜的长等于______.16.匈牙利著名数学家爱尔特希(P.Erdos,1913−1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是______.三、解答题(本大题共9小题,共72.0分)17.先化简,再求值:x2+2x+1x2−1−xx−1,其中x=5.18.如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房AB的楼顶,测量对面的乙栋楼房CD的高度.已知甲栋楼房AB与乙栋楼房CD 的水平距离AC= 18√3米,小丽在甲栋楼房顶部B点,测得乙栋楼房顶部D点的仰角是30°,底部C点的俯角是45°,求乙栋楼房CD的高度(结果保留根号).19.如图,AB=AE,AB//DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.20.如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,BC//x轴.(1)求k的值;(2)以AB、BC为边作菱形ABCD,求D点坐标.21.已知:关于x的一元二次方程x2+√mx−2=0有两个实数根.(1)求m的取值范围;(2)设方程的两根为x1、x2,且满足(x1−x2)2−17=0,求m的值.22.我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.23.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.24.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A、D的⊙O分别交AB、AC于点E、F.(1)求证:BC是⊙O的切线;(2)若BE=8,sinB=513,求⊙O的半径;(3)求证:AD2=AB⋅AF.25.在平面直角坐标系中,抛物线y=−x2+kx−2k的顶点为N.(1)若此抛物线过点A(−3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C坐标;(3)已知点M(2−4√3,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解3析式.答案和解析1.【答案】B【解析】【分析】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是−3.故选:B.2.【答案】D【解析】解:A、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;B、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、既是中心对称图形,又是轴对称图形,故本选项符合题意;故选:D.根据中心对称图形和轴对称图形的定义逐个判断即可.本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义的内容是解此题的关键.3.【答案】B【解析】解:该几何体的俯视图是故选:B.根据俯视图的概念求解可得.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.【答案】D【解析】解:A.不是同类项不能合并,选项错误;B.原式=a2×3=a6,选项错误;C.a9÷a3=a9−3=a6,选项错误;D.a2⋅a=a2+1=a3,选项正确.故选:D.根据合并同类项法则和幂的运算法则进行解答便可.本题主要考查了合并同类项法则和幂的运算法则,熟记法则是解题的关键.5.【答案】A【解析】解:根据题意得:x−2≥0,且x−3≠0,解得x≥2,且x≠3.故选:A.根据二次根式的被开方数是非负数,以及分母不等于0,就可以求出x的范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【答案】C【解析】解:不等式组{x−1<−3 ①2x+9≥3 ②,由①得:x<−2,由②得:x≥−3,则不等式组的解集为−3≤x<−2,故选:C.分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】A【解析】解:由题意G与G′关于原点对称,∵G(−2,1),∴G′(2,−1),故选:A.根据中心对称的性质解决问题即可.本题考查旋转变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.【答案】B【解析】解:∵在Rt△ABC中,∠ACB=90°,点H,E,F分别是边AB,BC,CA的中点,∴EF=12AB,CH=12AB,∵EF+CH=8,∴CH=EF=12×8=4,故选:B.根据三角形的中位线定理和直角三角形斜边上的中线等于斜边的一半求得即可.本题考查了直角三角形的性质以及三角形的中位线定理,熟练掌握各定理是解题的关键.9.【答案】C【解析】解:如图,在优弧AB上取一点P,连接AP,BP,∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90°,∵∠DCE=40°,∴∠AOB=360°−90°−90°−40°=140°,∴∠P=12∠AOB=70°,∵A、C、B、P四点共圆,∴∠P+∠ACB=180°,∴∠ACB=180°−70°=110°,故选:C.先根据四边形的内角和为360°求∠AOB=360°−90°−90°−40°=140°,再由同弧所对的圆周角是圆心角的一半可得∠P的度数,最后由四点共圆的性质得结论.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.【答案】D【解析】解:∵二次函数y=a2x2−bx−c的图象过点A(−1,n)、B(5,n−1)、C(6,n+1),∴抛物线的对称轴直线x满足2<x<2.5,抛物线的开口向上,∴抛物线上离对称轴水平距离越大的点,对应函数值越大,∵D(√2,y1)、E(2,y2)、F(4,y3),则y2<y1<y3,故选:D.由解析式可知抛物线开口向上,点A(−1,n)、B(5,n−1)、C(6,n+1)求得抛物线对称轴所处的范围,然后根据二次函数的性质判断可得.本题主要考查二次函数图象上点的坐标特征,根据题意得到抛物线的对称轴和开口方向是解题的关键.11.【答案】4−√2【解析】解:原式=3−(√2−1)=3−√2+1=4−√2.故答案为:4−√2.原式利用负整数指数幂法则,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.12.【答案】mn(m+n)(m−n)【解析】解:原式=mn(m2−n2)=mn(m+n)(m−n).故答案为:mn(m+n)(m−n).原式提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【答案】1.376×1010【解析】解:137.6亿元=137********元=1.376×1010元,故答案为:1.376×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】85【解析】解:90×22+3+5+90×32+3+5+80×52+3+5=85(分),故答案为:85.根据加权平均数的计算方法进行计算即可.本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.15.【答案】√52π【解析】解:∵每个小方格都是边长为1的正方形,∴AB=2√5,AC=√10,BC=√10,∴AC2+BC2=AB2,∴△ACB为等腰直角三角形,∴∠A=∠B=45°,∴连接OC,则∠COB=90°,∵OB=√5,∴BC⏜的长为:90⋅π×√5180=√52π,故答案为:√52π.由AB、BC、AC长可推导出△ACB为等腰直角三角形,连接OC,得出∠BOC=90°,计算出OB的长就能利用弧长公式求出BC⏜的长了.本题考查了三角形的外接圆与外心,弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出△ACB为等腰直角三角形.16.【答案】18°【解析】解:∵这个五边形由正五边形的任意四个顶点及正五边形的中心构成,∴根据正五边形的性质可得OA=OB=OC=OD,AB=BC=CD,∴△AOB≌△BOC≌△COD(SSS),∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,∵正五边形每个角的度数为:(5−2)×180°5=108°,∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∴∠AOB=∠BOC=∠COD=(180°−2×54°)=72°,∴∠AOD=360°−3×72°=144°,∵OA=OD,∴∠ADO=(180°−144°)=18°,故答案为:18°.先证明△AOB≌△BOC≌△COD,得出∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,然后求出正五边形每个角的度数为108°,从而可得∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∠AOB=∠BOC=∠COD=72°,可计算出∠AOD=144°,根据OA=OD,即可求出∠ADO.本题考查了正多边形的内角,正多边形的性质,等腰三角形的性质,全等三角形的判定和性质,求出∠AOB=∠BOC=∠COD=72°是解题关键.17.【答案】解:原式=(x+1)2(x+1)(x−1)−xx−1=x+1x−1−xx−1=1x−1,当x=5时,原式=14.【解析】原式第一项约分后,两项利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.本题考查分式的化简求值,掌握分式的运算法则是解题的关键.18.【答案】解:如图所示:由题意得:BE=AC=18√3,CE=AB,∠DBE=30°,∠CBE=45°,在Rt△EDB中,∠DBE=30°,DEBE=tan30°,∴DE=BE×tan30°=18√3×√33=18,在Rt△ABC中,∠ABC=90°−45°=45°,∴△ABC是等腰直角三角形,∴CE=AB=AC=18√3,∴CD=DE+CE=18+18√3(米);答:乙栋楼房CD的高度为(18+18√3)米.【解析】由三角函数定义求出DE=BE×tan30°=18,证出△ABC是等腰直角三角形,得出CE=AB= AC=18√3,进而得出答案.本题考查解直角三角形的应用−仰角俯角问题以及等腰直角三角形的判定与性质等知识;解题的关键是借助仰角构造直角三角形,利用三角函数定义解直角三角形.19.【答案】解(1)∵AB//DE,∠E=40°,∴∠EAB=40°,∵∠DAB=70°,∴∠DAE=30°;(2)证明:在△ADE与△BCA中,{∠B=∠DAE AB=AE∠BAC=∠E,∴△ADE≌△BCA(ASA),∴AD=BC.【解析】(1)根据平行线的性质可得∠EAB,再根据角的和差关系即可求解;(2)根据ASA可证△ADE≌△BCA,再根据全等三角形的性质即可求解.本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应角相等.20.【答案】解:(1)∵点A(1,a)在直线y=2x上,∴a=2×1=2,即点A的坐标为(1,2),∵点A(1,2)是反比例函数y=kx(k≠0)的图象与正比例函数y=2x图象的交点,∴k=1×2=2,即k的值是2;(2)由题意得:2x=2x,解得:x=1或−1,经检验x=1或−1是原方程的解,∴B(−1,−2),∵点A(1,2),∴AB=√(1+1)2+(2+2)2=2√5,∵菱形ABCD是以AB、BC为边,且BC//x轴,∴AD=AB=2√5,∴D(1+2√5,2).【解析】(1)根据点A(1,a)在y=2x上,可以求得点A的坐标,再根据反比例函数y=kx(k≠0)的图象与反比例函数y=2x的图象相交于A(1,a),即可求得k的值;(2)因为B是反比例函数y=2x和正比例函数y=2x的交点,列方程可得B的坐标,根据菱形的性质可确定点D的坐标.本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)∵关于x的一元二次方程x2+√mx−2=0有两个实数根,∴△=[√m]2−4×1×(−2)=m+8≥0,且m≥0,解得:m≥0.(2)∵关于x的一元二次方程x2+√mx−2=0有两个实数根x1、x2,∴x1+x2=−√m,x1⋅x2=−2,∴(x1−x2)2−17=(x1+x2)2−4x1⋅x2−17=0,即m+8−17=0,解得:m=9.【解析】(1)根据方程的系数结合根的判别式,即可得出△=m+8≥0,根据二次根式的意义即可得出m≥0,从而得出m的取值范围;(2)根据根与系数的关系可得x1+x2=−√m,x1⋅x2=−2,结合(x1−x2)2−17=0即可得出关于m的一元一次方程,解之即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元一次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合(x1−x2)2−17=0找出关于m的一元一次方程.22.【答案】解:(1)用列表法表示所有可能出现的结果情况如下:(2)共有12种可能出现的结果,其中“一男一女”的有8种,∴P(一男一女)=812=23.【解析】(1)用列表法表示所有可能出现的结果;(2)从所有可能出现的结果中,找出“一男一女”的结果,进而求出相应的概率.本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的前提.23.【答案】解:(1)设每头牛值x两银子,每只羊值y两银子,根据题意得:{5x+2y=192x+5y=16,解得:{x=3y=2.答:每头牛值3两银子,每只羊值2两银子.(2)设购买a头牛,b只羊,依题意有3a+2b=19,b =19−3a2,∵a,b都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.【解析】(1)设每头牛值x两银子,每只羊值y两银子,根据“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,即可得出关于x、y的二元一次方程组,解之即可得出结论.(2)可设购买a头牛,b只羊,根据用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),列出方程,再根据整数的性质即可求解.本题考查了二元一次方程(组)的应用,找准等量关系,正确列出二元一次方程(组)是解题的关键.24.【答案】解:(1)如图,连接OD,EF,则OA=OD,∴∠ODA=∠OAD,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD//AC,∴∠ODB=∠C=90°,∵点D在⊙O上,∴BC是⊙O的切线;(2)∵∠BDO=90°,∴sinB=ODBO =ODBE+OD=513,∴OD=5,∴⊙O的半径为5;(3)连接EF,∵AE是直径,∴∠AFE=90°=∠ACB,∴EF//BC,∴∠AEF=∠B,又∵∠AEF=∠ADF,∴∠B=∠ADF,又∵∠OAD=∠CAD,∴△DAB∽△FAD,∴ADAB=AFAD,∴AD2=AB⋅AF.【解析】(1)先判断出OD//AC,得出∠ODB=90°,即可得出结论;(2)由锐角三角函数可得sinB=ODBO=ODBE+OD=513,即可求解;(3)通过证明△DAB∽△FAD,可得ADAB=AFAD,可得结论.本题是圆的综合题,考查了圆的有关知识,锐角三角函数,相似三角形的判定和性质,熟练运用这些性质进行推理是本题的关键.25.【答案】解:(1)把A(−3.1)代入y=−x2+kx−2k,得−9−3k−2k=1.解得k=2,∴抛物线的解析式为y=−x2−2x+4;(2)设C(t,−t2−2t+4),则E(t,−t22−t+2),设直线AB的解析式为y=kx+b,把A(−3,1),(0,4)代入得到,{−3k+b=1b=4,解得{k=1b=4,∴直线AB的解析式为y=x+4,∵E(t,−t22−t+2)在直线AB上,∴−t22−t+2=t+4,解得t=−2,∴C(−2,4).(3)由y=−x2+kx−2k=k(x−2)−x2,当x−2=0时,x=2,y=−4,∴无论k取何值,抛物线都经过定点H(2,−4),二次函数的顶点N(k2,k24−2k),①如图1中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若k2>2时,则k>4,∵M(2−4√33,0),H(2,−4),∴MI=4√33,HI=4,∴tan∠MHI=4√334=√33,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH=GHGN =k2−2k24−2k+4=√33,解得k=4+2√3或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若k2<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,即k24−2k═−4,解得k=4(不符合题意舍弃).③若k2=2,则N,H重合,不符合题意舍弃,综上所述,抛物线的解析式为y=−x2+(4+2√3)x−(8+4√3).【解析】(1)把A(−3.1)代入y=−x2+kx−2k即可求解.(2)根据题意作图,求出直线AB的解折式,再表示出E点坐标,代入直线可求解.(3)先求出定点H,过H点做HI⊥x轴,根据题意求出∠MHI=30°,再根据题意分情况即可求解.本题考查二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄石市2020年初中毕业生学业水平考试数学试题卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是().A.3-B.3C.13- D.13【答案】A【解析】【分析】相反数的定义:只有符号不同的两个数互为相反数,根据相反数的定义即可得.【详解】3的相反数是-3故选:A.【点睛】本题考查了相反数的定义,熟记定义是解题关键.2.下列图形中,既是中心对称又是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】利用中心对称图与轴对称图形定义对每个选项进行判断即可.【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是中心对称图又是轴对称图形,故本选项正确;故选:D.【点睛】本题考查中心对称图与轴对称图形定义,熟练掌握中心对称图形和轴对称图形的定义是解题关键.3.如图所示,该几何体的俯视图是()A. B. C. D.【答案】B【解析】【分析】根据俯视图的定义判断即可.【详解】俯视图即从上往下看的视图,因此题中的几何体从上往下看是左右对称的两个矩形.故选B .【点睛】本题考查俯视图的定义,关键在于牢记定义.4.下列运算正确的是()A.835a b ab-= B.()325a a = C.933a a a ÷= D.23a a a ⋅=【答案】D【解析】【分析】根据整式的加减、幂的乘方、同底数幂的乘除法逐项判断即可.【详解】A 、8a 与3b 不是同类项,不可合并,此项错误B 、()23236a a a ⨯==,此项错误C 、93936a a a a -÷==,此项错误D 、2213a a a a +⋅==,此项正确故选:D .【点睛】本题考查了整式的加减、幂的乘方、同底数幂的乘除法,熟记各运算法则是解题关键.5.函数123y x x =+--的自变量x 的取值范围是()A.2x ≥,且3x ≠ B.2x ≥ C.3x ≠ D.2x >,且3x ≠【答案】A【解析】【分析】根据分式与二次根式的性质即可求解.【详解】依题意可得x-3≠0,x-2≥0解得2x ≥,且3x ≠故选A .【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.6.不等式组13293x x -<-⎧⎨+≥⎩的解集是()A.33x -≤< B.2x >- C.32x -≤<- D.3x ≤-【答案】C【解析】【分析】分别求出每个不等式的解集,再求其公共部分即可.【详解】解13293x x -<-⎧⎨+≥⎩①②由①得,x <−2;由②得,x≥−3,所以不等式组的解集为32x -≤<-.故选:C .【点睛】本题的实质是求不等式的公共解,解答时要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为()A.()2,1- B.()2,1 C.()1,2- D.()2,1--【答案】A【解析】【分析】根据题意可得两个点关于原点对称,即可得到结果.【详解】根据题意可得,G '与G 关于原点对称,∵点G 的坐标是()2,1-,∴点G '的坐标为()2,1-.故选A .【点睛】本题主要考察了平行直角坐标系中点的对称变换,准确理解公式是解题的关键.8.如图,在Rt ABC 中,90ACB ∠=︒,点H 、E 、F 分别是边AB 、BC 、CA 的中点,若8EF CH +=,则CH 的值为()A.3B.4C.5D.6【答案】B【解析】【分析】根据直角三角形的性质求出AB ,根据三角形中位线定理计算即可.【详解】∵∠ACB =90°,点H 是边AB 的中点,∴AB =2CH ,∵点E 、F 分别是边AC 、BC 的中点,∴AB =2EF∴CH=EF∵8EF CH +=,∴CH =4故选:B .【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.如图,点A 、B 、C 在O 上,,CD OA CE OB ⊥⊥,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为()A.140︒B.70︒C.110︒D.80︒【答案】C【解析】【分析】在优弧AB 上取一点F ,连接AF ,BF ,先根据四边形内角和求出∠O 的值,再根据圆周角定理求出∠F 的值,然后根据圆内接四边形的性质求解即可.【详解】解:在优弧AB 上取一点F ,连接AF ,BF .∵,CD OA CE OB ⊥⊥,∴∠CDO=∠CEO=90°.∵40DCE ∠=︒,∴∠O=140°,∴∠F=70°,∴∠ACB=180°-70°=110°.故选C.【点睛】本题考查了多边形的内角和,圆周角定理,以及圆内接四边形的性质,正确作出辅助线是解答本题的关键.10.若二次函数22y a x bx c =--的图象,过不同的六点()1,A n -、()5,1B n -、()6,1C n +、)1D y 、()22,E y 、()34,F y ,则1y 、2y 、3y 的大小关系是()A.123y y y << B.132y y y << C.231y y y << D.213y y y <<【答案】D【解析】【分析】根据题意,把A 、B 、C 三点代入解析式,求出213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,再求出抛物线的对称轴,利用二次根式的对称性,即可得到答案.【详解】解:根据题意,把点()1,A n -、()5,1B n -、()6,1C n +代入22y a x bx c =--,则22225513661a b c n a b c n a b c n ⎧+-=⎪--=-⎨⎪--=+⎩,消去c ,则得到2224613571a b a b ⎧-=-⎨-=⎩,解得:213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的对称轴为:25959422622642b x a -=-==,∵2x =与对称轴的距离最近;4x =与对称轴的距离最远;抛物线开口向上,∴213y y y <<;故选:D .【点睛】本题主要考查对二次函数图象上点的坐标特征的理解和掌握,以及二次函数的性质,解题的关键是掌握二次函数的性质,正确求出抛物线的对称轴进行解题.二、填空题(本大题共6小题,每小题3分,共18分)11.计算:11|1|3-⎛⎫--= ⎪⎝⎭______.【答案】【解析】【分析】根据实数的性质即可化简求解.【详解】11|13-⎛⎫--= ⎪⎝⎭故答案为:.【点睛】此题主要考查实数的运算,解题的关键是熟知负指数幂的运算.12.因式分解:33m n mn -=_______.【答案】()()mn m n m n +-【解析】【分析】根据因式分解的方法,分别使用提公因式法和公式法即可求解.【详解】根据因式分解的方法,先提取公因式得()22mn m n-,再利用公式法得()()mn m n m n +-.故答案为:()()mn m n m n +-.【点睛】本题主要考查因式分解,掌握因式分解的方法是解答本题的关键.13.据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元,用科学计数法表示137.6亿元,可写为_____元.【答案】1.376×1010【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将137.6亿用科学记数法表示为:1.376×1010.故答案为:1.376×1010.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是______分.【答案】85【解析】【分析】按照2:3:5的比例算出本学期的体育成绩即可.【详解】解:小明本学期的体育成绩为:902+903+8052+3+5⨯⨯⨯=85(分),故答案为:85.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.15.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则 BC的长等于_____.【答案】2【解析】【分析】由AB 、BC 、AC 长可推导出△ACB 为等腰直角三角形,连接OC ,得出∠BOC =90°,计算出OB 的长就能利用弧长公式求出 BC的长了.【详解】∵每个小方格都是边长为1的正方形,∴AB =AC ,BC ,∴AC 2+BC 2=AB 2,∴△ACB 为等腰直角三角形,∴∠A =∠B =45°,∴连接OC ,则∠COB =90°,∵OB∴ BC 的长为:90180π⋅=52故答案为:2.【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出△ACB 为等腰直角三角形.16.匈牙利著名数学家爱尔特希(P.Erdos,1913-1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则ADO∠的度数是_____.【答案】18°【解析】【分析】先证明△AOB≌△BOC≌△COD,得出∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,然后求出正五边形每个角的度数为108°,从而可得∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∠AOB=∠BOC=∠COD=72°,可计算出∠AOD=144°,根据OA=OD,即可求出∠ADO.【详解】∵这个五边形由正五边形的任意四个顶点及正五边形的中心构成,∴根据正五边形的性质可得OA=OB=OC=OD,AB=BC=CD,∴△AOB≌△BOC≌△COD,∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,∵正五边形每个角的度数为:()5-21805⨯=108°,∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∴∠AOB=∠BOC=∠COD=(180°-2×54°)=72°,∴∠AOD=360°-3×72°=144°,∵OA=OD,∴∠ADO=12(180°-144°)=18°,故答案为:18°.【点睛】本题考查了正多边形的内角,正多边形的性质,等腰三角形的性质,全等三角形的判定和性质,求出∠AOB=∠BOC=∠COD=72°是解题关键.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或验算步骤)17.先化简,再求值:222111x x x x x ++---,其中5x =.【答案】11x -,14.【解析】【分析】先根据分式的减法法则进行化简,再将5x =代入求值即可.【详解】原式2(1)(1)(1)1x x x x x +=-+--111x x x x +=---11x x x +--=11x =-将5x =代入得:原式11514==-.【点睛】本题考查了分式的减法运算与求值,熟练掌握分式的减法运算法则是解题关键.18.如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房AB 的楼顶,测量对面的乙栋楼房CD 的高度,已知甲栋楼房AB 与乙栋楼房CD 的水平距离AC =B 点,测得乙栋楼房顶部D 点的仰角是30°,底部C 点的俯角是45︒,求乙栋楼房CD 的高度(结果保留根号).【答案】【解析】【分析】根据仰角与俯角的定义得到AB=BE=AC,再根据三角函数的定义即可求解.【详解】如图,依题意可得∠BCA=45°,∴△ABC 是等腰直角三角形,∴AB=CE=AC =∵∠DBE=30°∴DE=BE×tan30°=18∴CD 的高度为+1)m .【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.19.如图,,//,70,40AB AE AB DE DAB E =∠=︒∠=︒.(1)求DAE ∠的度数;(2)若30B ∠=︒,求证:AD BC =.【答案】(1)∠DAE=30°;(2)见详解.【解析】【分析】(1)根据AB ∥DE ,得出∠E=∠CAB=40°,再根据∠DAB=70°,即可求出∠DAE ;(2)证明△DAE ≌△CBA ,即可证明AD=BC .【详解】(1)∵AB ∥DE ,∴∠E=∠CAB=40°,∵∠DAB=70°,∴∠DAE=∠DAB-∠CAB=30°;(2)由(1)可得∠DAE=∠B=30°,又∵AE=AB ,∠E=∠CAB=40°,∴△DAE ≌△CBA (ASA ),∴AD=BC .【点睛】本题考查了平行线的性质,全等三角形的判定和性质,求出∠DAE 的度数是解题关键.20.如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于()1,A a 、B 两点,点C 在第四象限,BC ∥x 轴.(1)求k 的值;(2)以AB 、BC 为边作菱形ABCD ,求D 点坐标.【答案】(1)k=2;(2)D 点坐标为(1+252).【解析】【分析】(1)根据题意,点()1,A a 在正比例函数2y x =上,故将点()1,A a 代入正比例函数2y x =中,可求出a 值,点A 又在反比例函数图像上,故k 值可求;(2)根据(1)中已知A 点坐标,则B 点坐标可求,根据两点间距离公式可以求出AB 的长,最后利用已知条件四边形ABCD 为菱形,BC ∥x ,即可求出D 点坐标.【详解】(1)根据题意,点()1,A a 在正比例函数2y x =上,故将点()1,A a 代入正比例函数2y x =中,得a=2,故点A 的坐标为(1,2),点A 又在反比例函数图像上,设反比例函数解析式为(0)k y k x =≠,将A(1,2)代入反比例函数解析中,得k=2.故k=2.(2)如图,A 、B 为反比例函数与正比例函数的交点,故可得22x x=,解得11x =,21x =-,如图,已知点A 坐标为(1,2),故点B 坐标为(-1,-2),根据两点间距离公式可得AB=22416=25+条件中四边形ABCD 为菱形,故AB=AD=5AD ∥BC ∥x 轴,则点D 坐标为(1+252).故点D 坐标为(1+5,2).【点睛】(1)本题主要考查正比例函数和反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法以及已知解析式求点坐标是解答本题的关键.(2)本题主要考查求正比例函数和反比例函数交点坐标、菱形性质、两点间距离公式,掌握求正比例函数和反比例函数交点坐标、菱形性质、两点间距离公式是解答本题的关键.21.已知:关于x 的一元二次方程220x mx -=有两个实数根.(1)求m 的取值范围;(2)设方程的两根为1x 、2x ,且满足()212170x x --=,求m 的值.【答案】(1)m >−8(2)9【解析】【分析】(1)根据题意可得△>0,再代入相应数值解不等式即可;(2)根据根与系数的关系可得12x x +,12x x =-2,根据()()22121212417x x x x x x =+=--可得关于m 的方程,整理后可即可解出m 的值.【详解】(1)2−4×(−2)>0,解得m >−8.故m 的取值范围是m >−8;(2)方程的两根为1x 、2x ,∴12x x +,12x x =-2∵()212170x x --=∴()()22121212417x x x x x x =+=--即m+8=17解得m =9∴m 的值为9.【点睛】本题主要考查了根的判别式,以及根与系数的关系,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.以及根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1•x 2=c a.22.我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.【答案】(1)6种,见解析;(2)23【解析】【分析】(1)用列举法写出所有可能的结果即可;(2)根据(1)中的数据进行求解即可;【详解】(1)设2名男生分别为x 和y ,2名女生分别为n 和m ,则根据题意可得不同的结果有;(),x y ,(),x n ,(),x m ,(),y n ,(),y m ,(),m n 共6种结果;(2)由(1)可得,恰好为1名男生1名女生的结果有4种,∴42==63P .【点睛】本题主要考查了数据分析的知识点,通过所给数据准确分析是解题的关键.23.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.【答案】(1)每头牛3两银子,每只羊2两银子;(2)三种购买方法,买牛5头,买养2只或买牛3头,买养5只或买牛1头,买养8只.【解析】【分析】(1)根据题意列出二元一次方程组,解出即可.(2)根据题意列出代数式,穷举法代入取值即可.【详解】(1)设每头牛x 银两,每只羊y 银两.52192516x y x y +=⎧⎨+=⎩解得:32x y =⎧⎨=⎩答:每头牛3两银子,每只羊2两银子.(2)设买牛a 头,买养b 只.3a +2b =19,即1932a b -=.解得a =5,b =2;或a=3,b=5,或a=1,b=8.答:三种购买方法,买牛5头,买养2只或买牛3头,买养5只或买牛1头,买养8只.【点睛】本题考查二元一次方程组的应用,关键在于理解题意找出等量关系.24.如图,在Rt ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A 、D 的O 分别交AB 、AC 于点E 、F .(1)求证:BC 是O 的切线;(2)若8BE =,5sin 13B =,求O 的半径;(3)求证:2AD AB AF =⋅.【答案】(1)见解析(2)8(3)见解析【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义即可求出r 的值;(3)先判断出∠AEF =∠B .再判断出∠AEF =∠ADF ,进而得出∠B =∠ADF ,进而判断出△ABD ∽△ADF ,即可得出结论.【详解】(1)如图,连接OD ,则OA =OD ,∴∠ODA =∠OAD ,∵AD 是∠BAC 的平分线,∴∠OAD =∠CAD ,∴∠ODA =∠CAD ,∴OD ∥AC ,∴∠ODB =∠C =90°,∵点D 在⊙O 上,∴BC 是⊙O 的切线;(2)由(1)知,OD ⊥BC ,∴∠BDO =90°,设⊙O 的半径为R ,则OA =OD =OE =R ,∵BE =8,∴OB =BE +OE =8+R ,在Rt △BDO 中,sinB =513,∴sinB =8OD R OB R =+=513,∴R =5;(3)连接OD ,DF ,EF ,∵AE 是⊙O 的直径,∴∠AFE =90°=∠C ,∴EF ∥BC ,∴∠B =∠AEF ,∵∠AEF =∠ADF ,∴∠B =∠ADF ,由(1)知,∠BAD =∠DAF ,∴△ABD ∽△ADF ,∴AB AD AD AF=,∴AD 2=AB•AF .【点睛】此题是圆的综合题,主要考查了切线的判定,圆周角的性质,相似三角形的判定和性质,锐角三角函数,求出圆的半径是解本题的关键.25.在平面直角坐标系中,抛物线22y x kx k =-+-的顶点为N .(1)若此抛物线过点()3,1A -,求抛物线的解析式;(2)在(1)的条件下,若抛物线与y 轴交于点B ,连接AB ,C 为抛物线上一点,且位于线段AB 的上方,过C 作CD 垂直x 轴于点D ,CD 交AB 于点E ,若CE ED =,求点C 坐标;(3)已知点2,03M ⎛⎫- ⎪⎝⎭,且无论k 取何值,抛物线都经过定点H ,当60MHN ∠=︒时,求抛物线的解析式.【答案】(1)224y x x =--+(2)C (-2,4)(3)2(4(8y x x =-++-+.【解析】【分析】(1)把()3,1A -代入22y x kx k =-+-即可求解;(2)根据题意作图,求出直线AB 的解析式,再表示出E 点坐标,代入直线即可求解;(3)先求出定点H ,过H 点做HI ⊥x 轴,根据题意求出∠MHI=30°,再根据题意分情况即可求解.【详解】(1)把()3,1A -代入22y x kx k=-+-得-9-3k-2k=1解得k=-2∴抛物线的解析式为224y x x =--+;(2)设C (t,224t t --+),则E (t,222t t --+),设直线AB 的解析式为y=kx+b ,把A (-3,1),(0,4)代入得134k b b=-+⎧⎨=⎩解得14k b =⎧⎨=⎩∴直线AB 的解析式为y=x+4∵E (t,222t t --+)在直线AB 上∴222t t --+=t+4解得t=-2(舍去正值),∴C (-2,4);(3)由22y x kx k =-+-=k (x-2)-x 2,当x-2=0即x=2时,y=-4故无论k 取何值,抛物线都经过定点H (2,-4)二次函数的顶点为N (2,224k k k -)1°如图,过H 点做HI ⊥x 轴,若2k >2时,则k >4∵2,03M ⎛⎫- ⎪⎝⎭,H (2,-4)∴∵HI=4∴tan ∠MHI=343=∴∠MHI=30°∵60MHN ∠=︒∴∠NHI=30°即∠GNH=30°由图可知tan ∠GNH=22323244k GH k GN k -==-+解得k=4(舍)2°如图,若2k <2,则k <4同理可得∠MHI=30°∵60MHN ∠=︒∴HN ⊥IH ,即2244k k -=-解得k=4不符合题意;3°若2k =2,N 、H 重合,舍去.∴k=4+23∴抛物线的解析式为2(43)(83)y x x =-++-+.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法、二次函数的图像与性质及三角函数的定义.。

相关文档
最新文档