卫星通信信道链路参数计算与模拟

合集下载

卫星通信课件第4章卫星链路设计

卫星通信课件第4章卫星链路设计
为规划适当的链路裕量,需要计算对一给定时间百分 比预测的降雨衰减
预估计雨衰减的方法
➢ 物理方法:路径衰减是路径沿线上遇到的雨点所造成的单 个降雨衰减增量的一个积分;
➢ 预测模型:计算雨中有效路径长度Leff的半经验近似方法, 在这个有效路径上假设降雨率不变。
预测模型主要有三个步骤:
➢确定所关心的时间百分比内的降雨强度;
• 温带纬度范围内仰角接近30o的路径上于30GHz频率附近的云 层衰减的典型值在1dB~2dB之间;
大气损耗和噪声La
太阳噪声、宇宙噪声 地球噪声、人为噪声
N0
接收天线指向损失[LRP]
1 星地传输方程
接收功率通量密度
➢全向天线下
通量密度
Pfd
PT
4 d 2
, (W/m2 )
➢方向性天线下
• 通量密度
Pfd
PTGT
4 d 2
, (W/m2 )
Pfd EIPR 10log(4 d 2 ), (dBW/m2 )
平方频率变化法则
A(E2 ) csc(E2 )
假设同一条路径上在f1 GHz和f2 GHz频率上测得的衰减为A(f1 )和
A(f2
)则它们有如下近似关系:A( A(
f1) f2)
( (
f1)2 f2 )2
这个公式建立起了长期统计值之间的联系,它不能用于链路上的短
期频率变化或是靠近任何共振吸收线的频率。
• 从雨衰产生的机理可以得到雨衰减大小与雨滴半径和波长比 值有密切的关系,当电波的波长可以和雨滴的尺寸相比拟时 ,将引起雨滴共振,产生最大的雨衰。
2 传播效应——与水汽凝结有关
雨衰估计
降雨率超过R的百分比时间 100

卫星通信第四章

卫星通信第四章
C EIRP G / T L 228 .6 n0
载波功率与等效噪声温度之比C/T: C/N=C/T+228.6-B(dB)
C EIRP G /T L T
基本链路分析
总载噪比计算:
设卫星上接收到的载噪比为(C/N)u,它被通信卫星 转发,重新发回地球。由卫星天线转发后的EIRP为 EIRPs,载噪比为:C/N=(C/N)u,噪声功率为 :
伴随的下行噪声功率:
N Pr EIRPs Gr C 1
(C / N )u
L N u
下行附加噪声功率:Nd=kTB
在接收地球站,总的噪声功率为:
N
EIRPs
Gr
C
1
kTB
L N u
基本链路分析
总载噪比计算:
整个卫星线路的载噪比:
C
EIRPs Gr / L
N EIRPs G (C / N )u1 / L kTB
基本链路分析
例:
工作在C波段(6/4GHz)波段的卫星系统,它以FDMA方式工作,
采用QPSK调制,系统参量如下:根据这些参数,计算载噪比。 载波调制参数:
比特率:64kbps 噪声带宽:40kHz 比特持续时间带宽积:0.625
卫星参数:
天线增益噪声温度比:-7dB/K;卫星饱和EIRP:36dBw TWTA输入回退量:11dB;TWTA输出回退量:6dB 载波数:200;转发器饱和功率通量密度:-80dBw/m2
基本链路分析
总载噪比计算: C
卫星线路的基本方程:N
C N
1 u
C N
1
1
d
如果(C/N)u>>(C/N)d,则C/N≈(C/N)d,卫星线路是下

卫星通信链路计算过程

卫星通信链路计算过程

卫星通信链路计算过程星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比CrT或者载波与噪声功率比C/N、以及载波与干扰功率比CzI ,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。

上下行C/T上行和下行C/T 的计算公式分别为CZT u= EIRP E - LOSS U + G/T SatC/T D = EIRP S - Loss D + GZT E/S式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。

上式中的数据均为对数形式。

C/N 与C/T 的关系C/N 与C/T 的关系式为C/N = C/T - k - BW N = CZT + 228.6 - BW N式中的k 为波兹曼常数, BW N 为载波噪声带宽。

式中的数据均为对数形式。

C/I 与C/IM卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^nC/I XP_D、以及上行和下行邻星干扰C/I ASJU和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。

C/N 与C/I 的合成由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为(C/N Total ) -1 = (C/N U ) -1 + (C/N D ) T(C/I Total ) -1 = (C/I XPJU) -1 + (C/I ASJU) -1 + (C∕IM) -1 + (C/I XPJD)-I + (C/I ASJD)-I-1 -1 - 1(C/(N+I)) -1 = (C/N Total ) -1 + (C/ITotal )上述三个算式中的数据均为真数形式。

由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为-1 -1 - 1 - 1(C∕(N+I) U ) = (C∕N u ) + (C/1 XP_U) + (C/1 AS_U)-1 -1 -1 -1 -1(C∕(N+I) D ) = (C∕N D ) + (C∕I XP_D) + (C∕I AS_D) + (C/IM)(C∕(N+I)) -1= (C∕(N+I) U ) -1 + (C∕(N+I) D ) -1上述两种不同计算步骤所得到的结果是相同的。

基于STK的海上卫星通信链路建模与仿真

基于STK的海上卫星通信链路建模与仿真

基于STK的海上卫星通信链路建模与仿真作者:徐曼睿张雅声来源:《现代信息科技》2022年第07期摘要:文章對海上远距离航行船只卫星通信链路连通性进行了研究,在理论分析卫星通信系统组成、天线和信道模型基础上,基于STK/Comm通信分析模块和软件集成的发射机和接收机模型、大气吸收模型、雨衰模型,完成链路参数设置,构建包括星间链路的卫星通信链路仿真环境,利用软件动态处理能力完成三维态势可视化显示,生成了详细海上卫星通信多跳链路性能报告,并对可能存在的干扰进行分析,为海上卫星通信链路的设计提供重要参考。

关键词:多跳通信链路;可视化仿真;STK中图分类号:TP391.9 文献标识码:A文章编号:2096-4706(2022)07-0053-05Modeling and Simulation of Maritime Satellite Communication Links Based on STKXU Manrui, ZHANG Yasheng(Graduate School, Space Engineering University, Beijing 101416, China)Abstract: This paper studies the connectivity of satellite communication links for the maritime long-distance sailing ships. On the basis of theoretical analysis of satellite communication system composition, antenna and channel models, based on the STK/Comm communication analysis modules, software-integrated transmitter and receiver models, atmospheric absorption models and rain attenuation models, this paper completes the setting of the link parameters, builds a satellite communication link simulation environment including inter-satellite links, uses the software dynamic processing capability to complete the three-dimensional situational visualization display,and generates the detailed maritime satellite communication multi-hop link performance reports. And the possible existing interference is analyzed to provide an important reference for the design of maritime satellite communication links.Keywords: multi-hop communication link; visualization simulation; STK0 引言信息化的急速发展使海上作战任务面临节奏快、覆盖空间大、情况复杂的情况,对海上战场通信传输可靠性和时效性提出更高要求。

卫星传输链路的建模与仿真

卫星传输链路的建模与仿真

站及 地 面传 输 线 路 组 成 。它 的工 作 过 程 是 在 一 个 卫 星 通 信 系 统 中 , 各
地球 站 经 过 卫 星 的 转 发可 以组 成 多 条 卫 星 通 信线 路 。 整个 系 统 的 全 部
() 1 通信 距 离 远 , 信 覆 盖 面积 大 ; 通 () 2 具有 多址 连 接 性 , 信灵 活性 大 : 通
益 高 等特 点 , 到 人 们 的关 注 , 迅 速 发 展 , 光 纤 通 信 、 字 微 波 通 信 受 并 与 数

3 影 响 卫 星通 信 的主 要 因 素 的建 模 .
31 星通 信 系 统 的 组成 及 其 工 作 过 程 .卫 所 谓卫 星 通 信 , 指 地球 站 之 间利 用 人 造 地 球 卫 星 转 发 信 号 实 现 是
维普资讯
科技信息
。高校 讲台o
S IN E E H O O YIF R TO CE C &T C N L G O MA IN N
20 0 7年第 3 源自 3卫星传输链路的建模与仿真
陈 新 王 洪 源 ( 沈阳 理工大 学信 息工 程与工 程学 院 辽 宁 沈阳 1 0 6 ) 1 8 1
() 3 可用 频 带 宽 , 信 容 量 大 ; 通
通信 任 务 就 是 利 用 这 些线 路 分 别 完 成 的 。 在 卫 星 通 信 线 路 中 , 常 把 通 从 发 信 地 球 站 到 卫 星 这一 段 称 为 上 行 线 路 . 卫 星 到 收 信 地 球 站 这 一 从
段 称 为 下行 线 路 , 者 合 起 来 就构 成 一 条 最 简 单 的 单 工 线 路 , 两个 两 当 地 球 站 都 有 收 、 设 备 和 相 应 的信 道 终 端 时 , 上 收 、 共 用 天 线 , 发 加 发 便

微纳卫星测控系统链路预算与仿真

微纳卫星测控系统链路预算与仿真

微纳卫星测控系统链路预算与仿真1. 内容概述本文档旨在详细介绍微纳卫星测控系统链路预算与仿真的相关知识和技术。

随着微纳卫星技术的不断发展,其在通信、导航、遥感等领域的应用越来越广泛。

为了提高微纳卫星的性能和可靠性,对其测控系统的链路预算与仿真进行研究具有重要意义。

本文档首先介绍了微纳卫星测控系统的基本概念和组成,包括通信链路、控制链路、数据链路等。

然后详细阐述了链路预算的概念和方法,包括链路预算的计算步骤、参数设置、性能评估等。

本文对微纳卫星测控系统的链路预算与仿真进行了实例分析,通过具体的实验数据和仿真结果,验证了链路预算方法的有效性。

本文档还讨论了微纳卫星测控系统中的关键技术,如信道编码、多址接入、干扰抑制等,并提出了相应的解决方案。

本文对微纳卫星测控系统链路预算与仿真的未来发展趋势进行了展望,包括采用新型算法、优化设计方法、提高仿真精度等方面的研究。

1.1 研究背景与意义随着航天技术的迅速发展,微纳卫星作为一种低成本、高效率的航天器解决方案,已成为当今航天领域的研究热点。

微纳卫星具有体积小、质量轻、研制周期短等特点,广泛应用于科研实验、通信技术、地球观测等多个领域。

而微纳卫星测控系统作为保障微纳卫星正常运行的关键组成部分,其性能优劣直接影响到微纳卫星的任务执行效果。

在当前复杂的航天环境中,微纳卫星测控系统面临着诸多挑战,如通信链路不稳定、能源管理困难、控制精度要求高等。

为了解决这些问题,对微纳卫星测控系统的链路预算与仿真研究显得尤为重要。

通过对测控系统的链路进行全面预算,可以评估系统性能,预测潜在问题,并优化资源配置。

仿真技术的运用能够在不实际制造卫星的情况下模拟测控系统的运行情况,从而验证设计的合理性和可行性,降低研发风险。

深入研究微纳卫星测控系统的链路预算与仿真技术具有十分重要的意义。

这不仅有助于提升微纳卫星的整体性能,还能推动航天测控技术的进步,为未来的航天事业发展提供有力支撑。

1.2 国内外研究现状随着微纳卫星技术的飞速发展,微纳卫星测控系统及其链路预算在空间探索领域受到了越来越多的关注。

卫星链路计算公式

卫星链路计算公式

卫星链路计算公式
1.链路预算
链路预算是用于确定卫星链路的信号强度和传输损耗的公式。

它用于计算链路损耗、可用信号功率和接收信噪比等参数。

链路预算公式通常由以下几个部分组成:发射端天线增益、发射机功率、传输路线损耗、接收端天线增益、接收机灵敏度和链路容量等。

链路预算的目的是确定链路的可靠性和传输性能。

2.接收信噪比计算公式
接收信噪比是用于评估卫星链路接收端性能的指标。

接收信噪比计算公式通常由以下几个参数组成:信号功率、噪声功率和信道带宽。

接收信噪比公式可以用于确定链路的接收能力和系统的传输性能。

3.系统容量计算公式
系统容量是用于评估卫星通信系统吞吐量的指标。

系统容量计算公式通常由以下几个参数组成:带宽、调制方式、编码方式和误码率。

系统容量的计算公式可以用于确定链路的传输容量和系统的传输性能。

4.链路可靠性计算公式
链路可靠性是用于评估卫星链路稳定性和可靠性的指标。

链路可靠性计算公式通常由以下几个参数组成:链路错误率、链路间隔、链路失效概率和故障修复时间。

链路可靠性的计算公式可以用于确定链路的稳定性和系统的可靠性。

5.链路质量计算公式
链路质量是用于评估卫星链路传输质量的指标。

链路质量计算公式通常由以下几个参数组成:误码率、帧错误率、比特错误率和信号失真度。

链路质量的计算公式可以用于确定链路的传输质量和系统的性能。

需要注意的是,卫星链路计算公式的具体形式和参数可能会因具体的应用场景和卫星通信系统而有所不同。

因此,使用者在进行卫星链路计算时应根据具体情况选择适当的计算公式,并结合实际数据进行计算。

卫星通信信道的传输特性及vsat下行链路具体仿真模型的建立

卫星通信信道的传输特性及vsat下行链路具体仿真模型的建立
基本的信道模型有高斯白噪声信道模型、衰落信道模型(瑞利、莱斯、对数正态)等等,衰落信道模型根据时间长短又分为快衰落和慢衰落。做好信道分析和建模,首先要对各种信道模型进行收集整理,然后根据实际的情况提出模型假设,最后实地测量进行验证。对于那些非线性何时变的信道在仿真中可以通过相应的抽头滤波器系统来进行设计,如TDL等。
图1-1使用蒙特卡罗方法进行通信系统误码率仿真模型框图
如图1.1,使用MC方法进行仿真步骤如下:
(1)生成输入比特序列采样值A(k) k=1,2,3…….
(2)通过功能模块处理采样数据,并且产生输出序列Y(k)
(3)估计E(g(Y(k)); (1-2-1)
(4)与理论值BPSK和QPSK的误码率进行比较
中国的VSAT系统发展至今,已经形成种类齐全(话音、数据、单向、双向等),规模庞大(几千个用户站)和运行稳定可靠的专业服务体系。
利用Ka波段[1](30/20GHz)或更高频段构成卫星通信系统是未来的发展趋势。因此,研究和开发Ka频段的卫星通信系统对我国未来卫星通信事业的发展有着及其重要的意义。对于Ka频段的卫星通信系统,由降雨引起的电波衰减是影响卫星通信线路传输质量的一个重要因素,准确的把握降雨衰减特性和补偿降雨衰减的方法研究,成为实现该系统的关键性问题之一。
而另外一些模型中[3]认为固定卫星通信系统的乘性干扰的包络符合如下的随机分布:A和U分别表示等效低通雨衰信道的包络和相位,二者均为随机变量,其分布特性由天气条件决定,它们均服从高斯分布,其概率密度函数分别表示如下[7]:
(1-3-1)
其中 为信号包络的概率密度函数, 是信号相位的概率密度函数. 和 分别是信号包络和相位的标准差,而 和 分别为相应的均值.。不同天气条件下,认为卫星通信信道包络的乘性干扰符合高斯分布(幅度和相位都为高斯分布)。而本文着重对降雨和对流层闪烁等混合天气因素的影响进行了仿真研究。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合课程设计
卫星通信信道链路参数计算与模拟
姓名:
学号:
一、课程设计内容及基本参数
1、 设计目的
近年来互联网和移动通信飞速发展,使得网络终端用户数量不断扩大、新业务不断增加,这对通信技术的发展提出了新的挑战。

卫星通信系统以其全球覆盖性、固定的广播能力、按需灵活分配带宽以及支持移动终端等优点,逐渐成为一种向全球用户提供互联网络和移动通信网络服务的补充方案。

本学期我们学习了《微波与卫星通信技术》这门课程,对于卫星通信技术有了基本的了解。

本课程设计基于已学的的基本理论,对卫星通信信道链路参数进行计算和模拟,从而掌握卫星通信信道链路参数计算的基本方法,了解影响卫星通信信道性能的因素。

同时熟悉Matlab 编程仿真过程,利于今后的学习和研究。

2、 基本参数列表
表1 根据学号得到的系统参数3、 涉及公式
1) ITU 法计算雨衰值:
),()(βα
p p R L R K A =(dB) (1) 其中,p R 为降雨率,单位为mm/h ,β为仰角,可以通过以下经验公式获得 0779.041.1-⨯=f α (255.0≤≤f ) (2)
42
.251021.4f K ⨯⨯=- (549.0≤≤f ) (3)
上式中频率f 的计算单位为GHz 。

雨衰距离:
14766.03]sin )108.1232.0(1041.7[),(---⨯-+⨯=ββp p
p R R R L (km) (4)
2)ITU 法计算氧、水蒸气分子吸收损耗值:
氧分子损耗率,对于57GHZ 以下的频段,可以按下式近似计算
3230226.09 4.81[7.1910]100.227(57) 1.50
f f f γ--=⨯++⋅⋅+-+(dB/km) (5) 对流层氧气的等效高度0h 和水蒸气的等效高度可分别按如下公式确定:
06(57)h km
f GHz =<
因此,对于氧分子的吸收损耗为: 002h R O γ= (dB) (6) 水蒸气分子损耗率与频率和水蒸气密度
)/(3m g p w 有关,对于350GHz 以下频段,都可以用下式计算(dB/km): 242223.610.68.9[0.050.0021]10(22.7)8.5(183.3)9.0(325.4)26.3
w w w p f p f f f γ-=++++⋅⋅⋅-+-+-+ (7) 对流层水蒸气等效高度w h 可按如下公式确定: ]4
)4.325(5.26)3.183(0.55)2.22(0.31[2220+-++-++-+=f f f h h w w (km) (350f GHz <) (8)
其中,0w h 取2.1km 。

同样,对于水蒸气分子的吸收损耗为:
w w O H h R γ=2 (dB) (9)
3)给出经纬度,计算卫星于地面距离及仰角β;
同步卫星的经度s θ,地心角θ定义为从地心点看卫星与卫星终端之间的夹角,卫星终端所在地的经度和纬度(L L φθ,),卫星距地球中心的距离近似为42164.2r km =,地球的平均赤道半径为6378.155e R km =。

)cos(cos cos S L L θθφθ-= (10)
θcos 222r R r R d e e -+= (11)
如图1所示,A 为卫星,B 为地心,C 为地球站,仰角为地球站与卫星连线与水平
C
面之间的夹角,利用余弦定理可得地心角与仰角之间关系:
图1 卫星与地球站的三角关系图
222cos 2e d r R rd
ϕ+-= (12) 90βϕθ=-- (13)
4)路径损耗
f d L s l
g 20lg 204.92++= (dB) (14) 其中,d 的单位为km, f 的单位为GHz ,公式中符号取10lg[*],下面的公式中都取对数计算。

5)品质因素
2200
[][][][][][][][][]b s b O H O E Q L L k R A R R EIRP N =+++++++- (dB/K) (15) 其中,k 为玻尔兹曼常数,0L 为其他损耗。

6)天线的增益
[][]G Q T =+ (dB) (16) 其中T 为接收天线的等效噪声温度。

7)天线的口径
D λπ
= (17) 其中,λ为电磁波传输的波长,η为天线效率。

二、 计算部分
1、 计算卫星到地面站的距离
)cos(cos cos
S L L θθφθ-= 带入数值后可得
cos 0.964
15.5θθ==︒ θcos 222r R r R d
e e -+= 因42164.2r km =且6378.155e R km =
故36058.61d km = (1)
2、 计算地面站对准卫星时的仰角
222cos
2e d r R rd
ϕ+-=, 90βϕθ=-- 2.771.8ϕβ=︒=︒ (2)
3、 计算下行链路的路径损耗
2f GHz = []92.420lg 20lg 189.55s L d f dB =++= (3)
4、 计算下行链路的降雨、氧气和水蒸气的吸收损耗
由经验公式求得0779.041.1-⨯=f α 1.3359=,42.251021.4f K ⨯⨯=-42.25310-=⨯ 已知12/p R mm h =,可得(,) 3.73p L R km β=
得到雨衰值),()(βα
p p R L R K A =0.0232dB = (4) 氧分子吸收损耗值计算
-30 5.79810γ=⨯
002h R O γ=0.0348dB = (5) 水分子吸收损耗值计算
64.72510w γ-=⨯ 2.1158w h =
w w O H h R γ=269.98610dB -=⨯ (6)
5、 利用QPSK BER-Eb/N 0计算公式计算,若需要达到10^(-5)误比
特率(Eb/N 0=10dB ),需要地球站品质因数为多少
2(1)/(log )s s b B R R R M α=+= QPSK 调制,M=4
故可得R b =66.67MHz ,[R b ]=78.239dB , 又知[k]=-228.6dB 2200
[
][][][][][][][][]24.75b s b O H O E Q L L k R A R R EIRP dB N =+++++++-=- (7)
6、 若地球站的接收天线等效噪声温度为20K ,则接收地球站的增
益为多少?若地球站为定向抛物面天线,天线效率为0.7,则天线口径为多大
[][]G Q T =+ G D ληπ
=⨯ 0.06690.0148G D m == (8)
三、 绘图部分
1、 绘制在给定降雨量(10mm/h,30mm/h,100mm/h )的情况下,
降雨衰减同仰角(0-90)的关系图
图2 给定降雨量时降雨衰减同仰角关系
2、绘制在给定仰角(15,45,90)的情况下,降雨衰减同降雨
量(0-120mm/h)的关系图
图3 给定仰角时降雨衰减同降雨量的关系
3、绘制在给定水蒸气密度(0.2g/m^3,0.3g/m^3,0.26/m^3)的
情况下,水蒸气吸收衰减同传输频率(0-15GHz)的关系图图4 给定水蒸气密度时水蒸气吸收衰减同传输频率的关系。

相关文档
最新文档