凸函数不同定义间的关系及其应用

合集下载

凸函数几个等价定义

凸函数几个等价定义

本科生毕业论文题目凸函数的几个等价定义系别班级姓名学号答辩时间年月学院目录摘要 (4)1凸函数的定义 (6)2凸函数的等价定义和性质 (6)2.1凸函数的等价定义 (6)2.2凸函数的性质 (7)3凸函数等价定义和性质的应用举例 (10)3.1一些集合上的凸函数举例 (10)3.2运用凸函数等价定义证明不等式 (11)总结 (16)参考文献 (17)谢辞 (18)凸函数的几个等价定义摘要凸函数是一类重要的函数,它的概念最早见于Jensen在1905年的著述中。

它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论基础和有力工具。

为了理论上的突破,加强它们在实践中的应用,产生了广义凸函数。

本文主要归纳了凸函数的几个常见定义和性质以及它们在不等式证明等几个方面的应用。

关键词:凸函数;等价性;不等式Several equivalent of convex function definedAbstractConvex function is a kind of important function, it is the concept of the earliest Jensen in 1905 in the works. It in pure mathematics and applied mathematics of many fields has wide application, it has become the mathematical programming, the game theory and mathematical economics, variational learn and optimal control subjects such as theoretical basis and powerful tools. In order to theoretical breakthrough, strengthen them in practical application, produced the generalized convex function. This paper mainly summarizes the convex function of several common definition and characteristics and their inequation and so on several aspects in the application. [Key wards]Convex functions; Equivalence; Inequality.凸函数是一种性质特殊的函数,在许多数学分支中,经常可以看到有关的应用,例如在数学分析、函数论、泛函分析、最优化理论等当中。

凸函数的性质及其应用

凸函数的性质及其应用

高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。

凸函数的许多良好性质在数学中都有着非常重要的作用。

凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。

同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。

为了突破其局限性并加强凸函数在实际中的运用,丁是在60年代中期便产生了凸分析。

本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。

关键词:凸函数;不等式;经济学;最优化问题AbstractConvex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research,economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines.Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's.The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply.Key words : Convex function; Inequality; Economics; Optimization problem摘要 (I)Abstract .................................................................................................................... I I..第1章绪论 (1)第2章预备知识 (3)2.1 凸函数的定义 (3)2.2 凸函数的定理 (6)2.3 凸函数的简单性质 (9)2.4 几种常见的不等式 (10)第3章在数学中的应用 (12)3.1.初等不等式的证明 (12)3.2 函数不等式的证明 (14)3.3 积分不等式的证明 (15)第4章凸函数在经济学的中应用 (19)4.1 最优化问题 (19)4.1.1线性规划下的最优化问题 (19)4.1.2非线性规划下的最优化问题 (21)4.2 Arrow-pratt风险厌恶度量 (26)结论 (28)参考文献 (29)致谢 (30)第1章绪论提起凸函数我们就知道它是一种性质特殊的函数,在初高中阶段我们只是对其性质,及其图像进行了简单的认识。

凸函数的性质与应用

凸函数的性质与应用

凸函数的性质与应用数学与统计学院、数学与应用数学、0701班,湖北,黄石,4350021.引言凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用,而且在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用.关于凸函数,虽然很多书籍都做了相应的介绍,但多是从不同的角度出发来进行不同的定义和应用.在高等数学中,利用导数讨论函数的性态时,经常遇到一类特殊函数—凸函数,由于凸函数具有一些特殊性质,利用这些性质可非常简单地证明一些初等不等式、函数不等式和积分不等式. 凸函数是一类重要的函数,在不等式的研究中尤为重要.本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想. 函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.2. 凸函数的有关概念2.1凸函数的定义、定理及其几何意义定义 若函数()f x 对于区间(),a b 内的任意12,x x 以及()0,1,λ∈恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间的割线总在曲线之上.定理1 若函数()f x 在区间(),a b 内连续,对于区间(),a b 内的任意12,x x 恒有12121[][()()]22x x f f x f x +≤+, 则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间割线的中点总在曲线上.定理2 若函数()f x 在区间(),a b 内可微,且对于区间(),a b 内的任意x 及0x ,恒有00()()()f x f x f x x '≥+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任一点处的切线,总在曲线之下. 注 若将定义1,2,3中的≤“”改为<“”则称()f x 为(),a b 上的严格凸函数. 2.2 凸函数定义与定理之间的等价性条件2.2.1 定义1与定理1的等价性证 定义1⇒定理1:显然,只要取12λ=即可由定义1推得定理1.定理1⇒定义1:我们首先推证()f x 对于任意的12,x x (),a b ∈及有理数()0,1λ∈,不等式1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,成立.事实上,对于此有理数λ,总可表示为有穷二进位小数,即121121122220.2n n n nn na a a a a a a ---++= , 其中0,1(1,2,,1);1i n a i n a ==-= 或由于1λ-也是有理数,故也可以表示为有穷的二进位小数,即1λ-=121121122220.2n n n nn nb b b b b b b ---++= , 其中()1,1,2,,1;i i b a i n =-=- 1,n b =这是因为()11λλ+-=的缘故, 因此111212[]()()i i f a x b x a f x b f x +≤+(1,2,,1)i n =- ,所以12[(1)]f x x λλ+-12112112112112222222[]22n n n n n n n nn na a a ab b b b f x x ------++++=+ 21212121111212112222()(22[]2n n n n n nn n a a a b b b a x b x x x f ------+++++= 2121212111121211222211[()]()2222n n n nn n n n a a a b b b f a x b x f x x ------++≤+++ 2121212111121211222211[()()]()2222n n n n n n n n a a a b b b a f x b f x f x x ------++≤+++ 121112212221111[()()][()()]()2222n n n a x b x a f x b f x a f x b f x f -+≤++++ 11122122122111[()()][()()][()()]222n n n a f x b f x a f x b f x a f x b f x ≤+++++12112112112112222222()()22n n n n n n n n n na a a ab b b b f x f x ------++++=+ 12()(1)().f x f x λλ=+-下面再推证()f x 对λ为无理数时定义1也成立.事实上,对任意无里数()0,1,λ∈{}(0,1),n λ⊂存在有理数列12(),(1)n n n n x x λλλλ→→∞+-→所以,12(1)()x x n λλ+-→∞,由于()f x 在(),a b 内连续,所以1212121212[(1)][lim (1)]lim [(1)]lim[()(1)()]()(1)()n n x n n n n x x f x x f x x f x x f x f x f x f x λλλλλλλλλλ→∞→∞→∞+-=+-=+-≤+-=+-综上即知,定义1与定理1等价.2.2.2 定义1与定理2的等价条件证 定义1⇒定理2:对(),a b 内任意的0x 及x ,若0,x x <则取0h >,使00,x x h x <+<由推论1得0000()()()()].f x h f x f x f x h x x +-+≤-上式中令0,h →由于()f x 可微,所以有0()f x '00()(),f x f x x x +≤-即00()()()f x f x f x x '≥+-.若0,x x <则取0h >,使00,,x x x x h x <<+<同理可证.2.2.3 定理2与定义1的等价条件对于区间(),a b 内的任意12,x x (不妨设12x x <)以及()0,1,λ∈令()121x x x λλ=+-,则12,x x x << ()()1121,x x x x λ-=-- 2x x -= ()()211,x x λ--由泰勒(Taylor)公式,我们有111222()()()()()()()()f x f x f x x f x f x f x x θθ''=+-=+-及其中1122x x x θθ<<<<,于是12()(1)()f x f x λλ+-12[(1)]f x x λλ=+-+2121(1)()[()()]x x f f λλθθ''---.再由单调性知21()()f f θθ''≥,所以12()(1)()f x f x λλ+-≥ 12[(1)]f x x λλ+-,即12[(1)]f x x λλ+-≤12()(1)()f x f x λλ+-.所以在一定条件下,定义1与定理3等价.3. 凸函数的有关结论 3.1 凸函数的运算性质性质1 若()f x 为区间I 上的凸函数, k 为非负实数,则()kf x 也为区间I 上的凸函数.性质2 若()(),f x g x 均为区间I 上的凸函数,则()f x + ()g x 也为区间I 上的凸函数.推论 若()(),f x g x 均为区间I 上的凸函数,12,k k 为非负实数,则()()12f x k g x +k 也为区间I 上的凸函数.性质3 若()f x 为区间I 上的凸函数,()g x 为J 上的凸增函数,且()f I J ⊂,则g f ⋅为区间I 上的凸函数.性质4 若()(),f x g x 均为区间I 上的凸函数,则()F x =()(){}max ,f x g x 也是区间I 上的凸函数.上述性质很容易证明,故在此省略.3.2 凸函数的其他性质引理 f 为I 上的凸函数的充要条件是:对于I 上的任意三点12x x x <<,总有32212132()()()()f x f x f x f x x x x x +-≤--. ()1证 [必要性]记3231,x x x x λ-=-则213(1).x x x λλ=+- 由f 的凸性知道()21313[(1)]()(1)()f x f x x f x f x λλλλ=+-≤+-=3221133131()()x x x xf x f x x x x x --+--.从而有()()312321213()()()()x x f x x x f x x x f x -≤-+-,即()()()322212321213()()()()()x x f x x x f x x x f x x x f x -+-≤-+-.整理后即得()1式.[充分性]在I 上任取两点1313,,(),x x x x <在[13,x x ]上任取一点213(1)x x x λλ=+- ()0,1,λ∈即3231.x x x x λ-=-由必要性的推导逆过程,即可证明 1313[(1)]()(1)()f x x f x f x λλλλ+-≤+-.故f 为I 上的凸函数.同理可证,f 为I 上的凸函数的充要条件是:对于I 上的任意三点12,x x x <<总有313221213132()()()()()()]]f x f x f x f x f x f x x x x x x x -+-≤≤---.性质1 设f 为区间I 上的严格凸函数,若有0x 是()f x 的极小值点,则0x 是()f x 在I 上唯一的极小值点.证明 若()f x 有异于0x 的另一极小值点1x I ∈ ,不妨设()()10f x f x ≤ 由于()f x 是在I 上的严格凸函数, 故对于任意的()0,1λ∈,都有()01010[(1)]()(1)()f x x f x f x f x λλλλ+-<+-≤.于是,任意的0δ>,1,只要充分接近时总有()0010(1),x x x U x λλδ=+-∈.但是,()0()f x f x ≤,这与1x 是()f x 的极小值点的条件矛盾,从而0x 是()f x 在I 上唯一的极小值点.性质2 设()f x 为(),a b 内的凸函数,有()f x 在I 的任一内闭区间()(),,a b αβ<上满足Lipschitz 条件.证明 要证明()f x 在(),αβ上满足Lipschitz 条件,即要证明:0,L ∃>使得()12,,x x αβ∀∈有1212()()f x f x L x x -≤-. ()2()()()(),,,,,,a b h h a b αβαβ⊂-+⊂因为,故可取充分小使得因此,()12,,x x αβ∀∈,12,x x <32x x h =+取,根据定义有32212132()()()()f x f x f x f x M mx x x x h+--≤≤--,(其中,M m 分别表示()f x 在(),h h αβ-+的上、下界)从而2121()()M mf x f x x x h--≤-, ()3 若1232,,x x x x h >=-可取由定义有32211223()()()()f x f x f x f x x x x x --≤--,从而32211223()()()()f x f x f x f x M m x x x x h---≤≤--.由此也可推出()3式.若12x x =,则()2显然成立.这就证明了()3式显然对于一切()12,,x x αβ∈都成立,因此()3式当12,x x 互换位置也应成立,故有2121()()M mf x f x x x h--≤-. 令M mL h-=,则原命题成立.性质3 设()f x 是(),a b 上的凸函数,则()f x 在(),a b 上处处存在左、右导数,且左导数小于、等于右导数.证明 ()()()00,,,x a b U x a b δ∀∈∃⊂.记()()00()(),,f x f x F x x a b x x +=∈-,()121200,x x x x x x δ<∈-任意且,,,有引理得()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.()F x 在()00x x δ-,上单调递增;再在0x 右方任取一定点()00,x x λλδ∈+,,由引理得: ()()()12F F F x x λ≤≤所以()F x 在()00x x δ-,上单调递增且有上界, 故由单调有界原理: 极限()0lim x x F x -→存在,即0()f x +'存在; 任意102x x x <<由定义3有()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.令1020,x x x x -+→→,则()f x 在0x 的左导数小于等于()f x 在0x 的右导数.性质4 设()f x 为(),a b 内可导凸函数,证明()0,x a b ∈ 为()f x 的极小值的充要条件是0()0f x '=.证明 [必要性]已知函数()f x 在0x 可导,且取得极小值,则0()0f x '=(极值的必要条件).[充分性] (),x a b ∀∈,0,x x ≠有00()()().f x f x x x ≥+-因为0()0f x '=,故(),,x a b ∀∈都有0()(),f x f x ≥所以0x 为()f x 的极小值点.定理1 设f 为区间I 上的可导函数,则下列论断互相等价;1) f 为I 上的凸函数, 2) f '为I 上的增函数, 3) 对I 上的任意两点12,,x x 有()21121()()()f x f x f x x x '≥+-. ()*证明 1)2)→ 任取I 上的两点1212,x x x x <()及充分小的正数,h 由于1122,x h x x x h -<<<+根据的凸性及引理有11212212()()()()()()f x f x h f x f x f x h f x h x x h---+-≤≤-.有f 是可导函数,令0h +→时可得211212()()()()f x f x f x f x x x -''≤≤-.所以f '为I 上的递增函数.2)3)→ 在以1212,()x x x x <为端点的区间上,应用拉格朗日中值定理和f '递增条件,有()()2121121()()()()f x f x f x x f x x x ξ''-=-≥-,移项后即得()*式成立,且当12x x >仍可得到相同结论3)1)→ 设以12,x x 为I 上的任意两点,312(1)x x x λλ=+-,由3)并利用131223211)()x x x x x x x x λλ-=---=-与(),()()133133312()()()()(1)()f x f x f x x x f x f x x x λ''≥+-=+--,()233233321()()()()()f x f x f x x x f x f x x x λ''≥+-=+-(),分别用λ和1λ-乘上列两式并相加,便得()()12312(1)()()(1)f x f x f x f x x λλλλ+-≥=+-,从而为I 上的凸函数.推论1 设()f x 为区间I 上的二阶可导函数,则()f x 为凸函数.()0,f x x I ''⇔≥∈.推论2 设()f x 为区间I 上的可微凸函数,则有0x I ∈是()f x 的极小值点.()00.f x ''⇔=定理2 设()f x 在(),a b 上连续,则()f x 是(),a b 上的凸函数的充要条件是:对任意含于(),a b 的闭区间[],,x h x h -+都有1()()2hhf x f x t dt h -≤+⎰. 证明 必要性:()()()()1,2t h f x f x t f x t ∀≤≤-++,故 ()()()()12[]2hhhhhf x f x t f x t f x t dt --≤-++≤+⎰⎰.充分性:假定存在12,x x <使()()1212122x x f f x f x +⎛⎫>+⎡⎤ ⎪⎣⎦⎝⎭ 作辅助函数()()()()11,x f x k x x f x ϕ=---其中2121()()f x f x k x x +=-则120,2x x ϕ+⎛⎫> ⎪⎝⎭因此[]()()[][]12012,max 0,0,,,,x x x x h x h x h x x ϕϕ=>=-+⊂取()()000t h x x t ϕϕ≤-+≥当时,且不恒为0,因此()()002hhh x xt dt ϕϕ->+⎰.再由()x ϕ的定义推出: ()002()hhf x t hf x dt -+>⎰这与条件矛盾, 故定理2得证.定理3 若()f x 为(),a b 内的凸函数,(),,i x a b ∈ 1,2,,,i n = 则()111.ni ni i i x f f x n n ==⎛⎫⎪ ⎪≤ ⎪ ⎪⎝⎭∑∑ 证明 对12,2n x ==不等式是显然的,设对1n -不等式成立. 因为1212111,1n n n x x x x x x n x n n n n-++++++-=⋅+-这里()()1211,,,,,1n n x x x n a b x a b n n λ-+++-=∈∈- 由题得()()111111.1nn i i n i i n i i x x n f f f x f x n n n nn ===⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪≤+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 4.凸函数的一些应用4.1应用凸函数性质证明不等式在初等数学及数学分析的课程中,对于不等式的证明是一个重要内容.有时利用凸 函数的理论,证明一些不等式,将会更加简单.下面用例题加以说明.例1 求证:对任意实数,,a b 有()21.2a ba bee e +≤+ 证明 设()()(),0,,x f x e f x x ''=≥∈-∞+∞则故()xf x e =(),-∞+∞为上的凸函数.从而对121,,2x a x b λ===有定义 12121[][()()]22x x f f x f x +≤+. 即得()212a ba bee e +≤+. 注:该题构造函数,运用凸函数的定义很容易就导出.例2 设01,01,x a <<<<则有()()1111.aax x x -+-<-证明 设()()()()11101aaf x x x x -=+-<<.那么()()()()()()111111,aaaa f x a x x x ax ---'=-+-++-()()()()()()1111111aaa a f x a a x x a a x x ----''=--+---+()()()()1121111aaa a a a x x a a x x ------+--+()()()()()()12112111111aa a a a a a x x x x x x x x -----⎡⎤=--+-++++-+⎣⎦()()()()()()1212111111.a a aa a a x x a a x x ------=--+-=-+-于是 ,当01,01x a <<<<时,()0,f x ''>由严格凸函数的定义,其中12,1,0,x x x λ===得()()()()()110110,f x f x x x f x f =⋅+-⋅<⋅+-⋅⎡⎤⎣⎦即()()1111.aax x x -+-<-注:该题运用了定理1及推论1的结论.例3 在ABC 中,证明sin sin sin 2A B C ++()()()()sin ,0,,sin 0,0,f x x x f x x x ππ''=-∈=>∈证明 令由应用2得()()()33f A f B f C A B C F ++++⎛⎫≥ ⎪⎝⎭,即sin sin sin sin3A B CA B C ++++≤s i n ,3π≤=所以sinA+sinB+sinC 2注:该题运用了定理3的结论.例4设12n a a a 、、均为正数,且121n a a a +++= .求证: ()2222212121111.n n n a a a a a a n +⎛⎫⎛⎫⎛⎫++++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证 因为()2,f x x =()()()22,20,f x x f x f x x ''==>=由于得是凸函数,有凸函数的性质,有22212122121221211111111111.n n n n n a a a a a a a a a a a a n n n a a a ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫++++++ ⎪⎪≥⎪ ⎪⎝⎭⎛⎫=++++ ⎪⎝⎭()4由柯西不等式:222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑得1212111111()1n n a a a a a a ⎛⎫+++=+++⋅ ⎪⎝⎭()12122111(),n n a a a a a a n =++++++≥212111()nn a a a ∴+++≥ ,由()4即得 ()2222212121111n n n a a a a a a n+⎛⎫⎛⎫⎛⎫+++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .4.2关于凸函数的某些猜想猜想1 三次函数不是(),-∞+∞上的凸函数. 证 设()3232103,0.x x a x a x a a f a +++≠= 显然,()f x 在(),-∞+∞上可导,且()232123x x a x a f a ++'=,因为30,a ≠故()f x '在(),-∞+∞上不单调,所以不是凸函数.猜想2 试给出四次的函数在定义域上是凸函数的一个充分条件. 设()432432104,0,x x x a x a x a a f a a ++++≠=因为四次的在定义域上二次同样可导,且()324321432x x x a x a f a a +++'=, ()24321262x x x a f a a ++''=.根据3..1的推论1可知,下式()423420.64120a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 则该四次函数在(),-∞+∞是凸函数. 化简得① 423420.380a a a a >⎧⎨-⋅≤⎩ ② 423420.380a a a a <⎧⎨-⋅≤⎩ 则该四次函数在(),-∞+∞不是凸函数.③ 423420.380a a a a >⎧⎨-⋅>⎩设()24321262x x x a f a a ++''=与x 轴的两交点分别是()1212,,x x x x <则()x f 在()()12,,,x x -∞+∞内分别为凸函数,在()12,x x 内不是凸函数.④ 423420.380a a a a <⎧⎨-⋅>⎩ 同理设()x f ''与x 轴的两交点分别是()1212,,x x x x <则()x f 在()12,x x 内为凸函数,其他区间不是凸函数.猜想3 5次函数在实数范围内是否有为凸函数的?设5次函数的表达式为()54325432105,0,x x x x a x a x a a f a a a +++++≠= 显然该是在实数范围内二次可导.()432543215432,x x x x a x a f a a a ++++'= ()325432201262.x x x x a f a a a +++''=现在需要找出二次导数在实数范围内是否恒大于等于0. 我们设()()325432201262,x f x x x x a g a a a ''=+++=()2154360246.x x x g a a a =++'下面分情况讨论:()524530,2446060a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 即()0x g ≥'在R 上恒成立.则()x g 在R 上单调递增,此时5a 为某一定值,但是总,x R ∃∈使得()0,x g <即x R ∃∈使()0f x ''<成立.同四次的理一样,其他3种情况更不可能为凸函数. 所以五次函数在R 上不是凸函数.以此类推,高次函数()11100,,n n n n n f x a x a x a x a a --=+++≠5n 时,该函数在实数范围内不是凸函数.5.小结本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想.函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.致谢经过半年的忙碌和工作,本次毕业论文已经接近尾声,在这里首先要感谢我的指导老师柴国庆教授.柴老师平日里工作繁多,但在我做毕业论文的每个阶段,从初次选题到查阅资料,论文初稿的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导,还不惜把自己的研究成果让我参考、借鉴,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩柴老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,然后还要感谢大学四年来所有的老师,为我们打下坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!参考文献[1]数学分析上第三版.华东师范大学数学系编.北京.高等教育出版社,2001,148-154.[2]李惜雯.数学分析例题解析及难点注释(上册).西安.西安交通大学出版社,2004.1,265-269.[3]林源渠方企勤.数学分析解题指南.北京.北京大学大学出版社,2003.11.84-87.[4]大学数学名师导学丛书.北京.中国水利水电出版社,2004208-212..[5]花树忠.邯郸市职工大学基础教学部.邯郸,056001.[6]李世杰.衢州市教育局.浙江.衢州,324002.[7]宋小军.西华师范大学数学与信息学院.四川文理学院学报.2010年5期.[8]陈迪红.长沙铁道学院学报.第12卷.第3期.1994年9月.[9]曹良干.阜阳师范学院学报.总22期.[10]陈太道.琼州大学.数学系.临沂师范学院学报第24卷,第3期.[11]李宗铎.湖南教育学院学报长沙大学.第18卷第2期.。

凸函数的等价命题及其应用举例

凸函数的等价命题及其应用举例

凸函数的等价命题及其应用举例一、凸函数的定义及其等价命题定义1:f 在区间I 上有定义,如果对[]1,0,,,2121∈∀<∈∀t x x I x x , 有)()()1())1((2121x tf x f t tx x t f +-≤+-,则f 称在I 上为凸函数。

这个一般定义下,我们得到了凸函数的几个等价命题: 命题1:下面几个命题等价: (1))(x f 为区间上的凸函数;(2)对,,,2121x x I x x <∈∀令21)1(tx x t x +-=,则1221211;x x x x t x x x x t --=---=于是有)()()(21211122x f x x x x x f x x x x x f --+--≤;(3)对,,,,321321x x x I x x x <<∈∀,有232313131212)()()()()()(x x x f x f x x x f x f x x x f x f --≤--≤--;(4)对),2(0,,,,,,2121≥>∈∀n t t t I x x x n n ∑==ni it11,有;)()(11∑∑==≤ni i ini i i x f tx t f ;(5)对,,00R I x ∈∃∈∀α,使得I x x x x f x f ∈-≥-),()()(00α。

引理:若f 为定义在)(0x U +上的单调有界函数,则左极限)(lim 0x f x x +→存在.下面给出凸函数的一个重要性质:性质:)(x f 是[]b a ,上的凸函数,则)(x f 上()b a ,连续. 证明:本证明分两步:首先证明)(x f 是()b a ,上的凸函数,则)(x f 在()b a ,内任一点0x 都存在左右导数.下面只证明凸函数)(x f 在0x 存在右导数,同理可证明也存在左导数.事实上,由命题1(3),设2031020121,,0h x x h x x x x h h +=+==<<,(这里取充分小的2h ,使()b a h x ,20∈+).则,)()()()(20201010h x f h x f h x f h x f -+≤-+令hx f h x f h F )()()(00-+=,由上式可见)(h F 为递增函数,现取0),,(x x b a x <'∈',则对任何0≥h ,只要),,(0b a h x ∈+,由命题1(3)也有)()()()()(0000h F hx f h x f x x x f x f =-+≤-''-,于是上面不等式左端为定数,因而函数)(h F 在0>h 上有上界,根据引理得)(lim 0h F h +→存在.即)(0x f +存在.再证明)(x f 在0x 存在左右导数,则)(x f 在0x 连续.事实上,在0x 存在右导数,则)(x f 在0x 右连续)(x f 在0x 存在左导数,则)(x f 在0x 左连续 故, )(x f 在0x 连续.综上,性质得证.命题2[:如果)(x f 在I 上任一闭区间上有上界,则它是凸函数的充分条件是:(6)2)()()2(,,212121x f x f x x f I x x +≤+∈∀推论1:将上一命题中“在I 上任一闭区间上有上界”换成“在I 上连续”,结论仍然成立。

凸函数的几种定义

凸函数的几种定义

凸函数的几种定义凸函数在优化和数学分析中有广泛的应用,其有多种定义,本文将介绍凸函数的几种定义。

1. 凸函数的一阶定义凸函数的一阶定义是指,定义域上的任意两个点之间的割线上,函数值的下凸性。

即对于定义在区间[a,b]上的函数f(x),如果对于所有的x1,x2∈[a,b],且x1<x2,都有f((x1+x2)/2)≤(f(x1)+f(x2))/2,那么f(x)为凸函数。

2. 凸函数的二阶定义凸函数的二阶定义是指,定义域上的所有点都满足函数的二阶导数大于或等于零。

即对于定义在区间[a,b]上的函数f(x),如果f''(x)≥0,那么f(x)为凸函数。

3. 凸函数的三阶定义凸函数的三阶定义是指,定义域上的所有点的曲率大于或等于零。

即对于定义在区间[a,b]上的函数f(x),如果其曲率f'''(x)≥0,那么f(x)为凸函数。

4. 凸函数的凸集定义凸函数的凸集定义是指,函数图像的下方区间所形成的区间也是凸集。

即对于定义在区间[a,b]上的函数f(x),如果其图像下方区间S={(x,y)| y≤f(x)}是凸集,并且S 在[a,b]上是凸的,那么f(x)为凸函数。

综上所述,凸函数的几种定义都指向了函数图像呈现的下凸性,即直线割过函数图像后位于函数图像下方的性质,其不同的定义方式体现了不同的性质和求解方法。

无论采用哪种定义方式,都需要考虑实际问题的特征和函数的定义域,以得到准确可靠的结果。

凸函数的性质有很多,例如在区间[a,b]上凸函数f(x)上,对于任意的x1,x2∈[a,b]和0≤λ≤1,都有f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2),即凸函数的凸组合仍为凸函数。

此外,凸函数也有一些应用,例如在最优化问题中,将问题转化为凸函数求解可以更优effective。

然而,有些函数仅在部分定义域内为凸函数,而在另一部分定义域内则不是,因此在实际应用中必须慎重选择凸函数进行求解。

凸函数的性质及其应用

凸函数的性质及其应用

即 证f在 (上x)≥式α中(分x-别x2)令+f(xx=2) x 1 , x = (∨x3得x∈ [ a , b ] ) f ( x x 33) -- xf (2 x 2 ) ≥ α ≥ f ( xx 2 2) -- fx (1 x 1) ,
3 、应用举例:
例 1:用凸函数方法证明 younger 不等式:x a y a ≤α x+ β y(x,
由于f 2( x )+f 2( y )≥2f( x )f( y ) ,故(D)式成立,结论得证。 另:设 f ( x )=e-2x>0 为 R 上的凸函数,但 f( 1x ) =e-2x 仍为凸函数 定理 6:若 f ( x )为区间 I 上的凸函数,对∨ x ∈ I,且 x 为 I 的 内点,则单侧导数f ( '-x ),f +'( x ) 皆存在,且 f '-( x )≤ f '+( x ) (∨x ∈I) 推论:若f (x)为区间 I 上的凸函数,则f( x )在区间 I的内点连续.
仅当对∨ x1,x2,…,xn ∈ I ,有 n f ( ∑ i= 1 n x i )≤n 1 ∑ i= n1 f (x1) 推论 1:若 f (x )在区间 I 上为凸函数,则对 I 上∨ x1<x2<x3,有
f (xx2)2--fx (1 x 1) ≤ f (xx3)3--fx (1 x 1) ≤ f (xx3)3--xf (2 x 2) 注:若 f (x )在 I 上连续,则上述定义 1,2,3 等价
的凸函数,反之不真。
证明:要证 f( 1 x ) 为I上的凸函数,即证∨x1,x2∈R,λ∈
(0,1 )有
1 f (λx1+(1-λ)x2)
≤ f ( λx 1) +
1-λ f (x2)
………

凸函数的三种典型定义及其间的等价关系

凸函数的三种典型定义及其间的等价关系

凸函数的三种典型定义及其间的等价关系
花树忠
【期刊名称】《邯郸职业技术学院学报》
【年(卷),期】2002(15)3
【摘要】凸函数是一类常见的重要函数,有着十分广泛的应用.但是,不同数学教材中常常会给出不同的定义,本文给出三种比较多见的凸函数定义并就三者间的等价性进行证明.
【总页数】3页(P52-54)
【作者】花树忠
【作者单位】邯郸市职工大学基础教学部,邯郸,056001
【正文语种】中文
【中图分类】O1
【相关文献】
1.等价关系的另外两种定义 [J], 曹发生;杨楠
2.黎曼积分的几种定义及其等价关系 [J], 林庆泽;尚亚东
3.调和p方凸函数与调和p次幂S-凸函数的定义及其判别法 [J], 沈君
4.实变量一元凸函数几种定义的等价关系 [J], 林永
5.凸(凹)函数的3种定义及其等价关系研究 [J], 李潘生
因版权原因,仅展示原文概要,查看原文内容请购买。

凸函数的判定与应用

凸函数的判定与应用

凸函数的判定与应用凸函数是数学中一种常见的函数类型。

它在优化问题、经济学、工程和自然科学等领域中得到广泛应用。

本文将介绍凸函数的判定准则,以及凸函数在各个领域中的应用。

一、凸函数的定义与性质在数学中,凸函数可以通过其定义和性质来进行判定。

定义:设函数f在区间[a, b]上连续,在(a, b)内可导。

如果对于任意x1、x2∈[a, b],以及任意0≤t≤1,都满足f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),则称函数f为[a, b]上的凸函数。

性质:凸函数具有以下性质:1. 对于凸函数f(x),若f''(x)存在且恒大于等于0,则f(x)是凸函数。

2. 若函数f(x)在[a,b]上是凸函数且在(a,b)内可导,则在(a,b)内f'(x)是递增函数。

二、凸函数与判定方法凸函数的判定方法包括一阶导数、二阶导数和Jensen不等式等。

1. 一阶导数判定法若函数f(x)在区间[a,b]上可导,且对于任意x1、x2∈(a,b),有f'(x)在[a,b]上单调递增,则f(x)是在[a,b]上的凸函数。

2. 二阶导数判定法若函数f(x)在区间[a,b]上两次可导,且对于任意x∈(a,b),有f''(x)≥0,则f(x)是在[a,b]上的凸函数。

3. Jensen不等式对于凸函数f(x),若λ1、λ2、...、λn为非负实数,且满足λ1+λ2+...+λn=1,以及x1、x2、...、xn为任意n个区间[a,b]上的数,则有以下不等式成立:f(λ1x1+λ2x2+...+λnxn)≤λ1f(x1)+λ2f(x2)+...+λnf(xn)三、凸函数的应用领域凸函数广泛应用于各个领域,包括优化问题、经济学、工程和自然科学。

1. 优化问题在优化问题中,凸函数常被用来描述目标函数或约束条件。

由于凸函数具有良好的性质,如弱凹性和全局极小值,因此可以通过凸优化算法来求解各种优化问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凸函数不同定义间的关系及其应用
俞文辉1,何鹏2
(1.江西机电职业技术学院基础部,江西南昌330013;
2.江西科技师范学院专科部管理系,江西南昌330038)
摘要:本文比较了凸函数不同定义,明确了各种定义之间的强弱关系,等价关系。

在文章的最后,对凸函数的定义作了推广并举例说明其应用。

关键词:凸函数;函数理论;数学分析
中图分类号:O174.13文献标识码:A文章编号:1008-7354(2005)05-0112-02
凸函数在数学的许多分支如数学分析、函数论、泛函
分析、最优化理论等中都有运用,它有许多不同的定义方
法,这些定义形式各不相同,条件有强有弱,彼此之间又
密切相关。

本文先给出通常使用的凸函数的七种定义方
法,然后对它们之间的关系进行研究。

以下文中的凸函数,如果没有特别说明,均指下凸函

1凸函数的各种不同定义
定义1设f(x)在[a,b]上有定义,P x1,x2I,[a,
b],有
f(x1+x2
2
)[
f(x1)+f(x2)
2
定义2设f(x)在[a,b]上有定义,P x1,x2I[a,b],及K I(0,1),有:
f(K x1+(1-K)x2)[K f(x1)+(1-K)f(x2)
定义3设f(x)在[a,b]上有定义,P x1,x,x2I[a, b],且x1<x<x2,有:
$=1x1f(x1)
1x f(x1)
1x2f(x2)
\0
定义4设f(x)在[a,b]上有定义,P x1,x,x2I[a, b],且x1<x<x2,有:
f(x)-f(x1)
x-x1[f(x2)-f(x1)
x2-x1
[f(x2)-f(x)
x1-x
定义5f(x)在[a,b]上连续,在(a,b)内可导,P x, x0I[a,b],有:
f(x)\f c(x0)(x-x0)+f(x0)
定义6f(x)在[a,b]上连续,在(a,b)内可导,且f c (x)单调递增
定义7f(x)在[a,b]上连续,在(a,b)内二次可导,且f d(x)\0
若将上述定义中的/[0改为/<0,f c(x)递增改为严格递增,则是严格凸函数的命题。

2凸函数的几何意义
定义1和定义2表示曲线的弦总是位于被它截得的弓形弧之上,定义3表示曲线上任意三点(x1,f(x1)), (x,f(x)),(x2,f(x2))为逆时针转向。

定义4反映从曲线上任一点引出的弦的斜率是随终点的横坐标x的增大而增大。

定义5显示函数的切线总是在曲线的下方。

定义6表示曲线的切线的斜率递增。

定义7是定义6的微分表示。

3凸函数定义之间的关系
3.1强弱关系
就f(x)要求的强弱而言,定义1是最弱的,它只要求f(x)在[a,b]上有定义;定义2、定义3、定义4有所加强,其蕴涵了f(x)在[a,b]上连续;定义5、定义6进一步增强,要求在f(x)在(a,b)上可导;定义7最强,要求f(x)在
(a,b)上二次可导。

如:f(x)=-ln x[
x1+x2+,+x n
n
只是在定义1下的凸函数,而不满足定义2至定义7。

又如:f(x)=|x|,x I[-1,1],只是在定义1至定义4下的凸函数,而不满足定义5至定义7。

可见,定义1的运用范围最广,但定义6、定义7用起来简便。

不过由于大量的函数在某个区间是连续的,所以又常常采用定义2的较多。

3.2等价关系
在这些定义中,定义2、定义3、定义4是等价的。

而定义5与定义6等价。

事实上,只要令:x1<x<x2,K= x2-x
x2-x1
,代入定义2并去分母,可得:f(x1)(x2-x)+f(x) (x1-x2)+f(x2)(x-x1)\0(*)
112南昌高专学报2005年第5期(总第60期)2005年10月出版
J ournal o f Nanchan g J unior College No.5(Sum60)Oct.2005
收稿日期:2005-09-20
这即是定义3中$的展开式,(*)式两端再加上(f (x )-f (x 1))(x 2-x 1)
可得:
f (x )-f (x 1)x -x 1)[
f (x 2)-f (x 1)
x 2-x 1
而(*)式两端再加上(f (x 2)-f (x 1))(x 2-x )又得:
f (x 2)-f (x 1)x 2-x 1[f (x 2)-f (x )
x 2-x
,从而推出了定
义4,又此过程可逆,故定义2,定义3,定义4等价。

定义
5与定义6也是等价的。

因为定义5中的x 0、x 是任意的,将定义5改写为:
f (x 0)\f c (x )(x 0-x )+f (x )
设x 0<x ,则由此式及定义5,有f c (x 0)[f (x )-f (x 0)
x -x 0
[f c (x )
可见f c (x )递增,这就由定义5推出了定义6;反之,在定义6中,设a [x 0<x [b
由拉格朗日(Lagrange)中值定理,至少存在一点F I (x 0,x ),使
f (x )-f (x 0)
x -x 0
=f c (F ),x 0<F <x
因为f c (x )递增,必有:f c (x 0)[f c (F ),从而:
f (x )-f (x 0)
x -x 0)
\f c (x 0)
即可得出定义5。

4 凸函数的推广及应用
由凸函数的定义(定义2),可以推出下面的重要不等式:
颜森(Jensen)不等式 设f (x )是[a,b]上的凸函数,P x i I (a,b),q i >0(i =1,2,,n),E n
i=1q i =1,则
f (E n i =1
q i x i )[E n
i =1
q i f (x i )
此不等式事实上是凸函数的一个重要性质。

由于每个凸函数都满足颜森(Jensen)不等式,因而颜森(Jensen)不等式是研究不等式的有力工具。

下面的几个命题是使用颜森(Jensen)不等式证明的典型例子。

例1 设U (t)[m,M ]是上的凸函数,t i I [m,M ]。

则U (
1n E n i =1t i )[1n E n
i =1q i
U (t i )该命题是颜森(Jensen)不等式当时的特殊情形。

例2
证明
n
1x 1+1x 2+,+1x n
[
n
x 1x 2,x n [
x 1+x 2+,+x n
n ,其中等号当且仅当x i (i =1,2,n)全部
相等时成立。

证明:将不等式各部分同时取对数,左边不等式可变为:
-ln 1x 1+1x 2+,+1x n n [1n (-ln 1x 1-ln 1x 2-,-ln
1x n
)从而由函数在(0,+])上是凸的,对使用例1即得左边;右边的不等式可直接由g(x )=lnx 在(0,+])上的凹性结合例1得出。

[参考文献]
[1]华东师范大学数学系.数学分析[M ].北京:人民教育
出版社,1981.
[2]陈传璋,金福临,朱学炎,欧阳光中.数学分析[M ].北
京:人民教育出版社,1983.(责任编辑:蔡久评)
(上接第96页)
再次,在动手能力培养方面着重介绍了钳工方面的工艺知识,机械类学生主要是要学会正确使用锉刀,以及使用锉刀的姿势,了解划线的方法,要求学生能独立做个小榔头;对于非机械类专业学生来讲,特别是空调专业的学生,钳工方面主要介绍钣金方面的知识,培养他们这方面的动手能力。

因为中央空调的风管有许多地方是用手工完成的。

如果我们的学生既有设计中央系统的能力,又有制作风管方面的具体技术,那么他们将来毕业就一定能被用人单位所欢迎。

企业最需要的就是这种/银领0人才,我感觉这是我们办学的方向。

除此之外,在课堂上讲课时,举例尽量选用暖通机械方面的例子,这样既讲解了机械方面的工艺问题,又使学生接触专业方面的机械;这样做,既保证了机械制造基础的教学基本要求,又拓宽了专业内容,学生学起来就不再
感到陌生,感到学了没有用,相反,学生更愿意思考、分析老师所讲的问题,提高学习的积极性。

前面讲的情况有人会问:如果讲的内容精简后,还有很多概念和知识怎么办呢?我们的做法是采用课外本保留精简前的一些内容,并在课外本里增加一些原教材没有的或新的东西,这样便于教学,对有潜力的学生可自行作为参考。

这样做,上课的内容少了,学生压力小了,老师也可因地制宜,因材施教,激发学生思索,从而提高教学质量。

[参考文献]
[1]凌爱林.高职金工课课程标准的基本理念与设计思
路[J ].金工研究.2004(4).
[2]王东升.金属工艺学[M ].浙江:浙江大学出版社.
(责任编辑:蔡久评 校对:谢慧芳)
113
第5期俞文辉,何 鹏:凸函数不同定义间的关系及其应用。

相关文档
最新文档