凸函数及其在证明不等式中的应用37885

合集下载

凸函数在证明不等式中的运用

凸函数在证明不等式中的运用

凸函数在证明不等式中的运用不等式是数学中一个重要的概念,经常出现在数学问题的解决过程中。

而凸函数作为一种特殊的函数类型,具有很好的性质。

本文将介绍凸函数在证明不等式中的运用。

首先,我们来定义凸函数。

在实数集上的函数f(x)被称为凸函数,如果对于任意的x1、x2∈[a,b],以及0≤λ≤1,有:f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2)这个定义表明,在凸函数上,任意两点的连线实际上都位于函数曲线的上方或切于函数曲线。

凸函数具有很多良好的性质,其中一个非常有用的性质是“切线大于曲线”,即对于凸函数f(x),对于任意x1,x2∈[a,b],有f(x2)≥f(x1)+f'(x1)(x2-x1)。

1.使用切线法。

利用凸函数的“切线大于曲线”性质,我们可以通过构造或应用合适的凸函数来证明各种不等式。

例如,考虑证明柯西-施瓦茨不等式,即:对于任意的a1,a2,…,an和b1,b2,…,bn,有:(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+anbn)^2我们可以取凸函数f(x)=x^2,然后应用“切线大于曲线”性质,即:f(b1^2+b2^2+…+bn^2- λ(a1^2+a2^2+…+an^2)) ≥f(b1^2+b2^2+…+bn^2)− λf(a1^2+a2^2+…+an^2)然后,通过选择合适的λ值,并利用普通不等式,我们可以得到柯西-施瓦茨不等式的证明。

2.使用幂平均不等式。

幂平均不等式是一类难题中常见的不等式之一,它可以通过利用凸函数的特性来证明。

根据幂平均不等式的定义,对于任意的正实数x1,x2,⋯,xn和正实数p,q(p≠q),我们有:((x1^p+x2^p+⋯+xn^p)/(n))^(1/p) ≥((x1^q+x2^q+⋯+xn^q)/(n))^(1/q)这个不等式可以通过定义幂函数f(x) = x^p(其中 p>1)来证明。

凸函数及其在不等式证明中的应用

凸函数及其在不等式证明中的应用

凸函数及其在不等式证明中的应用
凸函数是一种特殊的函数,它是数学及其应用中最重要的函数之一,它具有许多特性,可以用于在约束条件下寻找最优解和不等式证明中。

凸函数具有一个很重要的性质,它满足凸性,即任何两个点之间的夹
线都必须全部位于函数的上方。

这一性质的重要性在于可以将复杂的
问题表示为凸多变量函数的形式,从而使其更容易求解。

在数学分析中,凸性可以用来证明不同的不等式。

def-convex函数的
不等式可以满足:f(x)> a*x + b,其中a,b是算数常数,x是n维向量。

同样,f(x)< a*x + b也可以适用于凸函数,而这正是满足凸函数性质的常见不等式。

此外,凸函数可以用来求解约束优化问题。

如果函数是凸函数,则可
以确保取得最优值,而这样的解决方案也可以用来验证不等式或求解
数学建模问题。

总而言之,凸函数在数学及其应用中十分重要,它的凸性和求解最优
值的能力可用来证明不等式和解决约束优化问题,可以说是一种非常
强大的函数类型。

凸函数在不等式中的证明

凸函数在不等式中的证明

凸函数在不等式中的证明凸函数在数学中是一类具有特殊性质的函数。

它在实数域上的定义是对于任意的实数x1和x2,以及0≤λ≤1的实数λ,满足以下不等式的函数称为凸函数:f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2)这一定义说明了凸函数的弧线上的任意两点的连线都不会位于函数图像的下方。

这个性质在许多实际问题中具有很好的应用,例如优化问题、经济学和凸优化等领域。

为了证明凸函数在不等式中的性质,我们需要先证明凸函数的一个引理:若函数f(x)是凸函数,则对于任意的实数a和b,有以下不等式成立:f(b)≥f(a)+f'(a)(b-a)证明如下:首先,构造一个函数g(t)=f(a+t(b-a))。

这个函数可以理解为函数f(x)在x=a+t(b-a)处所取得的值。

由于f(x)是凸函数,根据凸函数的定义可得:f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2)令x1=a+t1(b-a),x2=a+t2(b-a),其中0≤t1≤t2≤1,λ=t2-t1,则可得:f(a+t2(b-a))≤(t2-t1)f(a+t1(b-a))+(1-(t2-t1))f(a+(t2-t1)(b-a))整理可得:g(t2)≤(t2-t1)g(t1)+(1-(t2-t1))g(t2-t1)令h(t)=(t2-t1)g(t1)+(1-(t2-t1))g(t2-t1),则上述不等式可以写为:g(t2)≤h(t)对t∈[0,1],将h(t)在[0,1]上进行插值,可以得到以下两个不等式:g(t2)≤h(1)-(1-t)h(0)+(t-t^2)(h(0)-h(1))g(t1) ≤ h(1) - th(0)对第一个不等式两边同时对t求导,得到:g'(t2)≤-h(0)+2h(1)-h(t)由于g(t)=f(a+t(b-a)),则有:g'(t)=f'(a+t(b-a))(b-a)将t2替换为t,可得:f'(a+t(b-a))(b-a)≤-h(0)+2h(1)-h(t)令t=0,则有:f'(a)(b-a)≤-h(0)+2h(1)再次将h(t)代入,可得:f'(a)(b-a)≤-(t2-t1)g(t1)+2(1-(t2-t1))g(t2-t1)将g(t)=f(a+t(b-a))替换回去,得到:f'(a)(b-a)≤-(t2-t1)f(a+t1(b-a))+2(1-(t2-t1))f(a+(t2-t1)(b-a))整理可得:f'(a)(b - a) ≤ -tf(a) + 2(1 - t)f(b)再整理可得:f(b)≥f(a)+f'(a)(b-a)这个结论在数学上被称为切线不等式,它在证明凸函数在不等式中的性质时起到了至关重要的作用。

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用数学计算机科学学院摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果.关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用Nature of Convex Function and its Application in ProvingInequalitiesChen Huifei, College of Mathematics and Computer ScienceAbstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,whichmakes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality). We also have promoted and proved some inequality (Triangle inequality, Jensen inequality) and reached new results.Key words : Convex function;Logarithmic convex function ; Jensen inequality; Hadamard Inequality;Application1引言在很多数学问题的分析与证明中,我们都需要用到凸函数,例如在数学分析、函数论、泛函分析、最优化理论等当中.凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线的下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数.本文试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其作用.2 概念2.1 凸函数的定义上面对凸函数作了直观的描述,我们用分析式子给出其精确定义.定义[1]2.1设函数()f x 在区间[,]a b 上有定义,若对[,]a b 上任意两点12,x x 和正数λ∈(0,1),总有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+- (A)则f 为区间[,]a b 上的凸函数.(同时也称为上凸函数,若是不等号反向则称为下凸函.)定义[1]2.2 若函数()f x 在D 上是正的,且ln ()f x 在D 上是下凸函数,则称()f x 是D 上的对数下凸函数这时, 对于任意,x y D ∈ 和(0,1)λ∈,有ln [(1)]ln ()(1)ln ()f x y f x f y λλλλ+-≤+-. 即(1)[(1)]()()f x y f x f y λλλλ-+-≤ (B)如果(2) 中的不等号反向,则称()f x 是D 上的对数上凸函数.2.2 对数凸函数的性质 我们已经有了凸函数以及对数凸函数的定义,现在我们来看一下对数的一些引理,定理及其性质等.定理 2.1[2] (对数下(上) 凸函数的判定定理) 设()f x 是D 上的正值函数,且在D 上有二阶导数,则()f x 在D 上为对数下(上) 凸函数的充要条件为对于任意x ∈D ,有2()()(())0(0)f x f x f x '''-≥≤先证下引理引理 2.1[2] (1) 若()g x 是[,]a b 上的下(上) 凸函数,则()()g x f x e = 为[,]a b e e 上的对数下(上) 凸函数.(2) 若()f x 是[,]c d 上的对数下(上) 凸函数,则()ln ()g x f x =为[ln ,ln ]c d 上的下(上) 凸数.证明(1) 任取12,[,]c d x x e e ∈,由()g x 在[,]c d 上是下凸函数,对任意01λ<<有()()121212[(1)]()(1)()121()()112[(1)][][]()()g x x g x g x g x g x f x x e e e e f x f x λλλλλλλλλλ+-+---+-=≤==(2)任取12,[ln ,ln ]x x c d ∈ ,由()f x 是[,]c d 上的对数下凸函数,对任意01λ<<有11212121212[(1)]ln [(1)]ln[()][()]ln ()(1)ln ()()(1)()g x x f x x f x f x f x f x g x g x λλλλλλλλλλ-+-=+-≤=+-=+-所以()g x 为区间[ln ,ln ]c d 上的下凸函数. (用类似方法可证上凸的情形)下证定理2.1[2] “⇐” 设[,]D c d =,()ln ()g x f x =,则 ()()[ln ()]()f xg x f x f x '''==,22()()[()]()()f x f x f x g x f x '''-''= 所以()g x 是为区间[ln ,ln ]c d 上的下凸函数,根据引理1 得()ln ()()g x f x e e f x ==为[ c ,d] 上的对数下凸函数“⇒” 若()f x 为[,]c d 上的对数下凸函数,由引理1 得()ln ()g x f x =为区间[ln ,ln ]c d 上的下凸函数,从而()0g x ''≥ ,对()ln ()g x f x =求二阶导数即得2()()(())0f x f x f x '''-≥. (用类似方法可证上凸的情形) .推论2.1[2] 设12(),()f x f x 是D 上的对数下(上) 凸函数,则1212()(),()()f x f x f x f x +也是D 上的对数下(上) 凸函数证明:设1212()()(),,,(0,1)g x f x f x x x D λ=+∀∈∈121122121111112221221121122212((1))((1))((1))()()()()[()()][()()]()()g x x f x x f x x f x f x f x fx f x f x f x f x g x g x λλλλλλλλλλλλλλ----+-=+-++-≤+≤+⨯+= 其中(A) 由..H older 不等式得到根据定义 2.2 得出1121()()f x f x +是D 上的对数下凸函数.122112[()()]()()()()f x f x f x f x f x f x '''=+12211212[()()]()()2()()()()f x f x f x f x f x f x f x f x ''''''''=++2121212222221111222[()()][()()]{[()()]}(){()()[()]}(){()()[()]}0f x f x f x f x f x f x f x f x f x f x f x f x f x f x '''-=''''''-+-≥根据定理2.1 得12(),()f x f x 是D 上的对数下凸函数. (用类似方法可证上凸的情形)用数学归纳法可将推论1 推广到有限情形.推论 2.2[2] 设()f x 是定义在D 上的正值函数,1) 若()f x 是对数下凸函数,则1()f x 在区间D 上是对数上凸函数. 2) 若()f x 是对数上凸函数,则1()f x 在区间D 上是对数下凸函数. 证明 1) 设1()()x f x φ=22322224241()()()2(())()(),()[]()()()()()2(())()()()(())()()[()][][][]()()()f x f x f x f x x x f x f x f x f x f x f x f x f x f x f x x x x f x f x f x φφφφφ''''-''''==-=-'''''''--'''-=--=-显然是小于0的,所以1()()x f x φ=是对数上凸函数,同理可证2) . 定理 2.2[2] (Jensen 型不等式) 设()f x 是D 上的正值对数下凸函数, 12,01, (1)i i n x D λλλλ∈<<+++=12112212(...)()()...()n n n n f x x x f x f x f x λλλλλλ+++≤ (*)若()f x 是D 上的正值对数上凸函数,则(*) 中不等号反向.证明 (用数学归纳法) 当2n =时,由定义2.2 知不等式(*) 成立. 假设n k =时不等式(*) 成立,即121122121(...)()()...()(1,0)kkk k k i i i f x x x f x f x f x λλλλλλλλ=+++≤=>∑ ,(1,2,...,1),i x D i k ∈=+设1(1,0)ki i i λλ==>∑111211121111221111111121111211[...()()]()()...()()()()...()()()k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k x x f x x x x x f x f x f x f f x f x f x f x f x λλλλλλλλλλλλλλλλλλλλλλλλλλλ-+-+++--++++++-++-+++++++++≤+≤++ 所以当1n k =+时,不等式(*) 成立,从而对于一切自然数(2)n n ≥ 不等式(*) 成立. 用同样方法可证明上凸情形.当然这里的定理对凸函数也是成立的.在下面的运算性质中有介绍.也就是下面的Jensen 不等式 1,Jensen 不等式 2.引理 2.2[2] (凸函数的Hadamard 不等式) 设()x φ是区间D 上的下凸函数则对于任意,.a b D a b ∈≤有11()[()()]22b a a b x dx a b b aφφφφ+⎛⎫≤≤+ ⎪-⎝⎭⎰ (#) 若()x φ是区间D 上的上凸函数,则对于任意,.a b D a b ∈≤,(#)中不等号反向.定理 2.3[2] ( Hadamard 型不等式) 设():[,](0,)f x a b →+∞对数下凸函数,则11()()[()()]2ln ()ln ()b a a b f f x dx f b f a b a f a f b +≤≤---⎰ () 若():[,](0,)f x a b →+∞对数下凸函数,则(5) 中不等号反向.证明 由引理2.1 和引理2.2有1ln ()ln ()11ln ()()lim lim lim n f a bb f x n a a n i f a n n n b a f x dx e dx e n +∆→∞=+∆→∞→∞-==≥=∑⎰⎰nn 由平均值i=1(b-a )e (b-a )11(ln ())()2lim ()ln ()()()()2n i b ai f a b n n b a a n a b lmf b a e f x dxa b b a e b a f =-+∆-→∞+∑==-+≥-=-⎰1b-a (b-a)e (其中b a ∆=-)又令()ln ()x f x φ=,根据定义2.1,对于a x b <<,有()()()()()a b x b x a x b aφφφ-+-≤- ()()()()()()ln ()()()()()()()()()()()exp()|()()[]()()ln ()ln (b a x b a a b x b x a b b b b f x x b a a a a a b a a b b a a b b b b a b aa ab a f x dx edx e dx e dx b a b a e e dx e x b a b a b a b a e e b a f b f a φφφφφφφφφφφφφφφφφ-⎡⎤⎢⎥-⎣⎦-+------==≤--⎡⎤==⎢⎥--⎣⎦--=-=--⎰⎰⎰⎰⎰[()()])f b f a - 定理得证.2.3[3] 凸函数的性质 在讨论了一些对数凸函数的定理,引理,我们来看一看凸函数的运算性质以及它们实用的定理:(1) 若()f x 与()g x 均为区间[,]a b 上的凸函数,则()f x +()g x 也是区间[,]a b 上的凸函数.(2)若()f x 与()g x 为区间[,]a b 上的凸函数,则ⅰ)0λ≥,则()f x λ是[,]a b 上的凸函数;ⅱ)0λ<,则()f x λ是[,]a b 上的凹函数.(3) 设()f x 与()g x 都是[,]a b 上的非负单调递增的凸函数,则()()()h x f x g x =也是[,]a b 上的凸函数.证明:对任意12,x x ∈[,]a b 且12x x <和任意λ∈(0,1),因()f x 与()g x 在[,]a b 上单调递增,故 :1212[()()][()()]0f x f x g x g x --≥即: 12211122()()()()()()()()f x g x f x g x f x g x f x g x +≤+ (1) 又因为()f x 与()g x 在[,]a b 上的凸函数,故1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,2121g(x +(1-)x )g(x )+(1-)g(x )λλλλ≤ 而()0,()0f x g x ≥≥,设将上面两个不等式相乘,可得2122222211211[(1)][(1)]()()(1)[()()()()](1)()()f x x g x g x f x f x g x f x g x f x g x λλλλλλλλ+-+-≤+-++-又由⑴知21212222211211[(1)][(1)]()()(1)[()()()()(1)()()]f x x g x x g x f x f x g x f x g x f x g x λλλλλλλ+-+-≤+-++-=1122(1)()()()()f x g x f x g x λλ-+由凸函数的定义知:()()()h x f x g x =是[,]a b 上的凸函数.注:1°()f x 与()g x 非负不能少,2°(),()f x g x 单调递增不能少. (4)[4][5] 设()u ϕ是单调递增的凸函数,()u f x =是凸函数,则复合函数[()]f x ϕ也是凸函数.对于其他情况也有类似的情况的命题,如下列:我们也可以看一下单值有反函数的函数的反函数与自身的凸凹性的关系. 如下表:(5) 若()f x 为区间I 的凸函数,且()f x 不是常数,则()f x 在I 部不能达到最大值.2.4[3] 凸函数的等价定义和判定设函数f 在区间(,)a b 上有定义,则下列命题彼此互相等价:(1)对任意12,x x ∈(,)a b 及任意恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-(2)对任意i x ∈(,)a b 及任意i p >0. 1,2,...,i n =. 11n i i p -=∑ 恒有11()n ni i i i i i f p x p f x ==⎛⎫≤ ⎪⎝⎭∑∑ (3)对任意1,2,(,)x x x a b ∈, 12x x x <<,恒有12121212()()()()()()f x f x f x f x f x f x x x x x x x---≤≤--- (4)在(,)a b 上曲线在其每一点处具有不垂直于x 轴的左、右切线,并且曲线在左、右切线之上.(5)若在(,)a b 存在单调递增的函数()x ϕ.以及0x ∈(,)a b ,使得对任意(,)x a b ∈,恒有00()()()xx f x f x t dt ϕ-=⎰,(6)对任意12,x x ∈(,)a b ,12x x <,恒有21121221()()1()22x x x x f x f x f f t dt x x ++⎛⎫≤≤ ⎪-⎝⎭⎰ (7)对任意12,(,)x x a b ∈,恒有1212()()22x x f x f x f ++⎛⎫≤ ⎪⎝⎭对于凸函数定义等价性的证明,可参看[4]及[5].对于等价定义(5)事实上,我们也有类似的这样一个定理: 定理 2.4 设函数f 在[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上为上(下)凸函数(严格上(下)凸函数)的一个必要充分条件f '是在(,)a b 上递增(减)(严格递增(减)).证明 先证条件是必要的.设()12,(,)x x a b ⊂.只要x x '与满足12x x x x '<<<,由于等价定义(3)可知12121212()()()()()()f x f x f x f x f x f x x x x x x x '---≤≤'--- 在上式中令12,x x x x +-'→→,得211221()()()()f x f x f x f x x x -''≤≤-. 在是严格上凸函数的情形,我们取一点*x 满足*12x x x <<,从而得出**1212**12()()()()()()f x f x f x f x f x f x x x x x--''≤<≤--. 这样就得出了严格的不等式12()()f x f x ''<,必要性得证.再证充分性.设f '是在(,)a b 上递增.对任何()12,x x x ∈,由Lagrange 中值定理,可只存在()12,x x ξ∈与()12,x x η∈,使得11()()()f x f x f x x ξ-'=-,22()()()f x f x f x x η-'=- 因为x ξη<<,所以()()f f ξη''≤.从而有1212()()()()f x f x f x f x x x x x--≤--所以,可知函数f 在[,]a b 上为上凸函数.容易看出,当f '严格递增时,()()f f ξη''<.上述不等式中成立着严格的不等号,从而函数f 在[,]a b 上是严格的上凸函数.同理可以证明下凸时的情景.当函数f 在[,]a b 有二阶导数时,我们有下列应用起来就会更方便的定理 定理 2.5 设函数f 在[,]a b 上连续,f 在(,)a b 有二阶导数,则f 在[,]a b 上为上凸函数(下凸函数)的充分条件0(0)f f ''''≥≤在(,)a b 成立;而f 在[,]a b 上为严格上(下)凸函数的充分必要条件是0(0)f f ''''≥≤在(,)a b 成立并且在(,)a b 的任何开的子区间f ''不恒等于0.证明 第一个结论,由于0f ''≥得出f '在(,)a b 上递增再由定理4可得出.同理可证明下凸时的情景; 第二个结论,先证充分性 由于0f ''≥在(,)a b 成立并且在(,)a b 的任何开的子区间f ''不恒等于0.对任意12,(,)x x a b ∈,12x x <,又由于2121()()()x x f x f x f x dx ''''=+⎰,所以21()()f x f x ''>.所以函数f 在[,]a b 上为严格的凸函数.充分性得证.再证必要性(反证法) 因为函数f 在[,]a b 上为严格凸函数,对任意12,(,)x x a b ∈,12x x <,则21()()f x f x ''>,而由于2121()()()x x f x f x f x dx ''''=+⎰,若是有一个(,)a b 的子区间恒等于0.不妨设为(,)(,)a b ξη⊂,对任意(,)x ξη∈,()0f x ''=.则由于21()()()x x f f f x dx ηξ''''=+⎰,()()f f ξη''=,这与已知条件相矛盾.所以,必要性得证.同理可证明下凸时的情景. 所以,定理得证.关于凸函数的判定有很多,应用围最广的是Jensen 不等式. Jensen 不等式 1 设()f x 在区间I 上有定义,()f x 为凸函数,当且仅当12,,...,n x x x I ∀∈1212...()()...()n n x x x f x f x f x f n n ++++++⎛⎫≤⎪⎝⎭(J1) 此外,当且仅当12...n x x x === 时,上式等号成立(证明略请参考附[1]). Jensen 不等式 2 12,,...,[,]n x x x a b ∀∈,12,,...,0n λλλ>,且11ni i λ==∑,1.则()f x 为凸函数的充要条件为:11()()n ni i i i i i f x f x λλ==≤∑∑ (J2)此外,上式当且仅当12...n x x x === 时,等号成立.(证明略请参考附[1]). 这里对任意12,,...,0n βββ>,若是令1ii nii βλβ==∑,那么就有1111()nni i i i i i n n i i i i x f x f ββββ====⎛⎫ ⎪ ⎪≤⎪ ⎪⎝⎭∑∑∑∑ (J3) 每个凸函数都有一个Jensen 不等式,Jensen 不等式的应用围甚广,既可用于求解不等式问题,又可用于证明不等式定理,应用Jensen 不等式解题的关键有两条:一是必须先判明函数的上(下)凸性,二是直接应用Jensen 不等式有困难时,可以根据命题的特点,选择恰当的上凸函数和下凸函数,然后再进行解答.3 凸函数以及对数凸函数的应用在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质来证明可以非常简洁、巧妙.证明不等式是凸函数的一个重要应用领域,但关键是构造能够解决问题的凸函数.例 1[1] 利用凸函数证明调和平均值H ≤几何平均值G ≤对数平均值L ≤指数平均值E ≤算术平均值A.证明:事实上,我们可以用凸函数理论证明,对任意0(1,2,...,)ix i n = 有1212 (111)...nnx x x n nx x x +++≤≤+++ (2)只要将不等式各部分同时取对数,这时左边的不等式可变为121111...1111ln (ln ln ...ln )n nx x x n n x x x +++-≤----.从而由函数()ln f x x =-在(0,)+∞上的(严格)凸性可得;右边的不等式可直接由()ln g x x =上的(0,)+∞(严格)下凸性可得.(具体证明可参看[2])为了证明例1 中的连不等式,我们先来看下面两个小题:(1) 设0(1,2,...,)i a i n >=且不全相等,0(1,2,...,)i p i n >=有不等式链11111ln ln exp exp n n nii i i i i i i i i nn n ii i i i n i i p a p a p a a p p p a ======⎛⎫⎛⎫ ⎪ ⎪ ⎪≤≤ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭∑∑∑∑∑∑ (3) 证:凸函数()ln f x x =-的Jensen 不等式:取0i q >,11ni i q ==∑,0(1,2,...,).i a i n >=得11ln ln n n i i i i i i q a q a ==-≤-∑∑ [4] 111ln ln nn i i i i i i q q a a ==-≤-∑∑ (5)在[4]中令1i ini ii ip a q p a ==∑得 1111exp ln nn niiii ni i i i iii ip p p a p a a a ====⎛⎫≤ ⎪⎝⎭∑∑∑∑ (6)又由(4),(5)可得 1111in nq i i i n i i i i ia q a q a ===≤≤∑∏∑ (7)在此令1ini i i p q p ==∑,可得111111ln exp nn ni i i i ii i i n n n ii i i i i i p p a p a p p p a ======⎛⎫ ⎪≤≤ ⎪ ⎪ ⎪⎝⎭∑∑∑∑∑∑ (8) 联立(6),(8)既得证 (3).(2) 设()()f x p x 与在[,]a b 上正的连续函数且()f x ≠常数,在⑻中作代换i b a p p a i n -⎛⎫=+ ⎪⎝⎭,i b a a f a i n -⎛⎫=+ ⎪⎝⎭并在“∑”号后均乘b a n -,由0b a ->,不改变原不等号方向.令n →∞ 便得(3)的积分形式:ln ln exp exp b bb ba aa ab b bba aa ap fdx pdxp fdx pfdx f p p pdx pdxdx dx f f ⎛⎫⎛⎫ ⎪⎪ ⎪≤≤≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰(3)'在(3)'中令()1,()p x f x x ==()11ln ln ln ln 2b ab a b a b ab a e ----+⎛⎫≤≤≤⎪-⎝⎭再联立(2),得出H G L E A ≤≤≤≤.例 2 (1)在锐角ABC ∆中,证明1cos cos cos 2A B C ++≤, (2)12,,...,n a a a 设为正数,证明恒成立12...n a a a n +++≥. 证明 (1)令()cos()f x x =-,(0,)x π∈.由于()cos()0f x x ''=>,(0,)2x π∈.所以()f x 在(0,)2x π∈上凸函数,所以由于(J1)()()()()33f A f B f C A B Cf ++++≥,即cos()cos()cos()s()33A B C A B C co ---++≥-1()2=-即1cos cos cos 2A B C ++≤;(2) 令()ln ,(0,)g x x x =-∈+∞,所以21()0,(0,)g x x x''=>∈+∞, 故()g x 是在(0,)+∞上的上凸函数.也是根据(J1)121212121212()()...()...()ln ln ...ln ...ln()ln ln ...ln ...ln()n nn nn n g a g a g a a a a g n n a a a a a a n na a a a a a n n++++++≥++++++-≥-++++++≤即即从而,有12...n a a a n+++≥.下面我们再看一个用对数凸函数证明的不等式题. 例 3[2]10,0,12ni i i πλλ=<<>=∑i 设x ,则12112212sin(...)sin sin ...sin n n n n x x x x x x λλλλλλ+++≥ (&)12112212cos(...)cos cos ...cos n n n n x x x x x x λλλλλλ+++≥(%)证明 设()sin()f x x =,由于2()()[()]10f x f x f x '''-=-<,故sin()x 是(0,)2π上的对数凸函数,同理cos()x 也是(0,)2π上对数凸函数.根据定理2即可得(&),(%).例 4 设()f x 在[,]a b 上可积,且()m f x M ≤≤,()t ϕ是在[,]m M 上的连续下凸函数,则11()(())b b a a f x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 证明 令,()k n k f f a b a n ⎛⎫=+- ⎪⎝⎭,,1()k n x b a n ∆=-.由于()t ϕ是凸函数,故有1,2,,1,2,,...()()...()n n n n n n n n f f f f f f n n ϕϕϕϕ++++++⎛⎫≥⎪⎝⎭. 由定积分的定义,上式就相当于,,,,11()n ni n i n i n i ni i f f b a b a ϕϕ==⎛⎫∆∆ ⎪ ⎪≥-- ⎪⎪⎝⎭∑∑,,1()k n x b a n ∆=- 在上式中令n →∞时, 则有11()(())b b a a f x dx f x dx b a b a ϕϕ⎛⎫≥⎪--⎝⎭⎰⎰. 命题得证.例 5[7]设,i i a b R +∈,111,2,...,,,n n i i i i i n a b ====∑∑则21112nni i i i i ia a ab ==≥+∑∑.证明 记1ni i s a ==∑,11ni i a s ==∑,将21112nni i i i i i a a a b ==≥+∑∑变为11121n ii i ia b s a =≥+∑,那么取11i ib a +作为函数1()1f x x =+,则由于3()2(1)0f x x -''=+>,再令i i i b x a =,i i a sλ=所以根据凸函数性质和(J3)得出11111211ni n i i i i i i a b s x a λ==≥=++∑∑结论本文主要讨论了凸函数以及对数凸函数一类重要的函数的概念,包括它们的一些定义,性质,定理,引理和它们在证明一些不等式的重要应用.本文介绍了Jensen不等式,Hadamard不等式,叙述了一些定理,引理,性质并给出了它们的证明,并指出它们在判断凸函数的应用.本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用.最后举出了一些例题来具体的来体现凸函数以及对数凸函数在不等式证明的应用.参考文献:[1]汪文珑.数学分析选讲[M].文理学院数学系,2001[2] 琼.对数凸函数的Jensen型和Hadamard型不等式[J].学报,,2005,3[3]查良凇.凸函数及其在不等式证明中的应用[J].工贸职业技术学院学报,,2005,3[4]燕建梁,喜善.凸函数的性质及其在不等式证明中的应用[J].教育学院学报,,2002,4[5]T.M菲赫金哥尔茨普.微积分教程[M].1965: 290-300[6]常庚哲,史济怀.数学分析教程(上册)(M).高等教育,2003:167-176[7]碧荣.凸函数及其性质在不等式证明中的应用[J].广西师学院学报,,2004,2[8]白景华.图函数的性质、等价定义及应用[J].大学学报,,2003,2[9]Satish Shirali, Harkrishan L. Vasudeva. Mathematical analysis[M]. Alpha Science International Ltd., c2006.[10]Tom M. Apostol.Mathematical analysis[M].China Machine Press, 2004.致这是本人的第一篇论文,所以在多方面没有指导老师金洪老师的指导是很难进行下去的.老师从我的选题开始便给予了很大帮助,在以后的开题,开题报告,初稿的资料搜索,初稿出来后的校正,进一步的改进都给予了极大帮助,使我在论文的完成进程中得以较为平坦地进行下去.在论文的写作的进行中,我同组等同学也给了我很多帮助.在此表示感.也在此对我们的学校师大学以及我校资料室提供这样一个学习环境和帮助,表示感.也感那在身后的帮助.。

凸函数及其在证明不等式中的应用

凸函数及其在证明不等式中的应用

本科毕业论文题目凸函数及其在证明不等式中的应用系别数学与信息科学学院专业数学与应用数学指导教师吴开腾评阅教师班级 2004级2班姓名冀学本学号 0642008 年5月27日目录摘要 .............................................................. 错误!未定义书签。

Abstract......................................................... 错误!未定义书签。

1引言 ............................................................ 错误!未定义书签。

2 凸函数的等价定义 ........................................... 错误!未定义书签。

凸函数三种定义的等价性的讨论.................................. 错误!未定义书签。

定义1⇔定义2................................................. 错误!未定义书签。

定义1⇔定义3................................................. 错误!未定义书签。

判定定理与JESEN不等式.......................................... 错误!未定义书签。

3.性质 .......................................................... 错误!未定义书签。

4凸函数在不等式证明中的应用 .............................. 错误!未定义书签。

利用凸函数定义证明不等式....................................... 错误!未定义书签。

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March凸函数的性质及其在证明不等式中的应用数学计算机科学学院摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果.关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用Nature of Convex Function and its Application in ProvingInequalitiesChen Huifei, College of Mathematics and Computer ScienceAbstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).We also have promoted and proved some inequality (Triangle inequality, Jensen inequality) and reached new results.Key words : Convex function;Logarithmic convex function ; Jensen inequality; Hadamard Inequality;Application1 引言在很多数学问题的分析与证明中,我们都需要用到凸函数,例如在数学分析、函数论、泛函分析、最优化理论等当中.凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线的下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数.本文试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其作用.2 概念2.1 凸函数的定义上面对凸函数作了直观的描述,我们用分析式子给出其精确定义.定义[1]2.1设函数()f x 在区间[,]a b 上有定义,若对[,]a b 上任意两点12,x x 和正数λ∈(0,1),总有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+- (A)则f 为区间[,]a b 上的凸函数.(同时也称为上凸函数,若是不等号反向则称为下凸函.)定义[1]2.2 若函数()f x 在D 上是正的,且ln ()f x 在D 上是下凸函数,则称()f x 是D 上的对数下凸函数这时, 对于任意,x y D ∈ 和(0,1)λ∈,有ln [(1)]ln ()(1)ln ()f x y f x f y λλλλ+-≤+-. 即(1)[(1)]()()f x y f x f y λλλλ-+-≤ (B)如果(2) 中的不等号反向,则称()f x 是D 上的对数上凸函数.2.2 对数凸函数的性质我们已经有了凸函数以及对数凸函数的定义,现在我们来看一下对数的一些引理,定理及其性质等.定理 2.1[2] (对数下(上) 凸函数的判定定理) 设()f x 是D 上的正值函数,且在D 上有二阶导数,则()f x 在D 上为对数下(上) 凸函数的充要条件为对于任意x ∈D ,有2()()(())0(0)f x f x f x '''-≥≤先证下引理引理 2.1[2] (1) 若()g x 是[,]a b 上的下(上) 凸函数,则()()g x f x e = 为[,]a b e e 上的对数下(上) 凸函数.(2) 若()f x 是[,]c d 上的对数下(上) 凸函数,则()ln ()g x f x =为[ln ,ln ]c d 上的下(上) 凸数.证明(1) 任取12,[,]c d x x e e ∈,由()g x 在[,]c d 上是下凸函数,对任意01λ<<有()()121212[(1)]()(1)()121()()112[(1)][][]()()g x x g x g x g x g x f x x e e e e f x f x λλλλλλλλλλ+-+---+-=≤==(2)任取12,[ln ,ln ]x x c d ∈ ,由()f x 是[,]c d 上的对数下凸函数,对任意01λ<<有11212121212[(1)]ln [(1)]ln[()][()]ln ()(1)ln ()()(1)()g x x f x x f x f x f x f x g x g x λλλλλλλλλλ-+-=+-≤=+-=+-所以()g x 为区间[ln ,ln ]c d 上的下凸函数. (用类似方法可证上凸的情形)下证定理2.1[2] “⇐” 设[,]D c d =,()ln ()g x f x =,则 ()()[ln ()]()f xg x f x f x '''==,22()()[()]()()f x f x f x g x f x '''-''= 所以()g x 是为区间[ln ,ln ]c d 上的下凸函数,根据引理1 得()ln ()()g x f x e e f x ==为[ c ,d] 上的对数下凸函数“⇒” 若()f x 为[,]c d 上的对数下凸函数,由引理1 得()ln ()g x f x =为区间[ln ,ln ]c d 上的下凸函数,从而()0g x ''≥ ,对()ln ()g x f x =求二阶导数即得2()()(())0f x f x f x '''-≥. (用类似方法可证上凸的情形) .推论2.1[2] 设12(),()f x f x 是D 上的对数下(上) 凸函数,则1212()(),()()f x f x f x f x +也是D 上的对数下(上) 凸函数证明:设1212()()(),,,(0,1)g x f x f x x x D λ=+∀∈∈121122121111112221221121122212((1))((1))((1))()()()()[()()][()()]()()g x x f x x f x x f x f x f x fx f x f x f x f x g x g x λλλλλλλλλλλλλλ----+-=+-++-≤+≤+⨯+= 其中(A) 由..H older 不等式得到根据定义 2.2 得出1121()()f x f x +是D 上的对数下凸函数.122112[()()]()()()()f x f x f x f x f x f x '''=+12211212[()()]()()2()()()()f x f x f x f x f x f x f x f x ''''''''=++2121212222221111222[()()][()()]{[()()]}(){()()[()]}(){()()[()]}0f x f x f x f x f x f x f x f x f x f x f x f x f x f x '''-=''''''-+-≥根据定理2.1 得12(),()f x f x 是D 上的对数下凸函数. (用类似方法可证上凸的情形)用数学归纳法可将推论1 推广到有限情形.推论 2.2[2] 设()f x 是定义在D 上的正值函数,1) 若()f x 是对数下凸函数,则1()f x 在区间D 上是对数上凸函数. 2) 若()f x 是对数上凸函数,则1()f x 在区间D 上是对数下凸函数. 证明 1) 设1()()x f x φ=22322224241()()()2(())()(),()[]()()()()()2(())()()()(())()()[()][][][]()()()f x f x f x f x x x f x f x f x f x f x f x f x f x f x f x x x x f x f x f x φφφφφ''''-''''==-=-'''''''--'''-=--=-显然是小于0的,所以1()()x f x φ=是对数上凸函数,同理可证2) . 定理 2.2[2] (Jensen 型不等式) 设()f x 是D 上的正值对数下凸函数, 12,01, (1)i i n x D λλλλ∈<<+++=12112212(...)()()...()n n n n f x x x f x f x f x λλλλλλ+++≤ (*)若()f x 是D 上的正值对数上凸函数,则(*) 中不等号反向.证明 (用数学归纳法) 当2n =时,由定义2.2 知不等式(*) 成立. 假设n k =时不等式(*) 成立,即121122121(...)()()...()(1,0)kkk k k i i i f x x x f x f x f x λλλλλλλλ=+++≤=>∑ ,(1,2,...,1),i x D i k ∈=+设1(1,0)ki i i λλ==>∑111211121111221111111121111211[...()()]()()...()()()()...()()()k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k x x f x x x x x f x f x f x f f x f x f x f x f x λλλλλλλλλλλλλλλλλλλλλλλλλλλ-+-+++--++++++-++-+++++++++≤+≤++ 所以当1n k =+时,不等式(*) 成立,从而对于一切自然数(2)n n ≥ 不等式(*) 成立. 用同样方法可证明上凸情形.当然这里的定理对凸函数也是成立的.在下面的运算性质中有介绍.也就是下面的Jensen 不等式 1,Jensen 不等式 2.引理 2.2[2] (凸函数的Hadamard 不等式) 设()x φ是区间D 上的下凸函数则对于任意,.a b D a b ∈≤有11()[()()]22b a a b x dx a b b aφφφφ+⎛⎫≤≤+ ⎪-⎝⎭⎰ (#) 若()x φ是区间D 上的上凸函数,则对于任意,.a b D a b ∈≤,(#)中不等号反向.定理 2.3[2] ( Hadamard 型不等式) 设():[,](0,)f x a b →+∞对数下凸函数,则11()()[()()]2ln ()ln ()b a a b f f x dx f b f a b a f a f b +≤≤---⎰ (@) 若():[,](0,)f x a b →+∞对数下凸函数,则(5) 中不等号反向. 证明 由引理2.1 和引理2.2有1ln ()ln ()11ln ()()lim lim lim n f a bbf x naan i f a nn n b a f x dx edx e n +∆→∞=+∆→∞→∞-==≥=∑⎰⎰nn 由平均值i=1(b-a )e(b-a )11(ln ())()2lim ()ln ()()()()2ni b aif a bnn b aan a blmf b a ef x dxa bb a eb a f =-+∆-→∞+∑==-+≥-=-⎰1b-a (b-a)e(其中b a ∆=-)又令()ln ()x f x φ=,根据定义2.1,对于a x b <<,有()()()()()a b x b x a x b aφφφ-+-≤-()()()()()()ln ()()()()()()()()()()()exp()|()()[]()()ln ()ln (b a x b a a b x b x a bbbbf x x b aaaaa b a a b b a a b bbb ab aa ab a f x dx edx edx edxb a b a eedx ex b a b a b a b a e e b a f b f a φφφφφφφφφφφφφφφφφ-⎡⎤⎢⎥-⎣⎦-+------==≤--⎡⎤==⎢⎥--⎣⎦--=-=--⎰⎰⎰⎰⎰[()()])f b f a - 定理得证.2.3[3] 凸函数的性质 在讨论了一些对数凸函数的定理,引理,我们来看一看凸函数的运算性质以及它们实用的定理:(1) 若()f x 与()g x 均为区间[,]a b 上的凸函数,则()f x +()g x 也是区间[,]a b 上的凸函数.(2)若()f x 与()g x 为区间[,]a b 上的凸函数,则ⅰ)0λ≥,则()f x λ是[,]a b 上的凸函数;ⅱ)0λ<,则()f x λ是[,]a b 上的凹函数.(3) 设()f x 与()g x 都是[,]a b 上的非负单调递增的凸函数,则()()()h x f x g x =也是[,]a b 上的凸函数.证明:对任意12,x x ∈[,]a b 且12x x <和任意λ∈(0,1),因()f x 与()g x 在[,]a b 上单调递增,故 :1212[()()][()()]0f x f x g x g x --≥即: 12211122()()()()()()()()f x g x f x g x f x g x f x g x +≤+ (1) 又因为()f x 与()g x 在[,]a b 上的凸函数,故1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,2121g(x +(1-)x )g(x )+(1-)g(x )λλλλ≤而()0,()0f x g x ≥≥,设将上面两个不等式相乘,可得2122222211211[(1)][(1)]()()(1)[()()()()](1)()()f x xg x g x f x f x g x f x g x f x g x λλλλλλλλ+-+-≤+-++-又由⑴知21212222211211[(1)][(1)]()()(1)[()()()()(1)()()]f x x g x x g x f x f x g x f x g x f x g x λλλλλλλ+-+-≤+-++-=1122(1)()()()()f x g x f x g x λλ-+由凸函数的定义知:()()()h x f x g x =是[,]a b 上的凸函数. 注:1°()f x 与()g x 非负不能少,2°(),()f x g x 单调递增不能少.(4)[4][5] 设()u ϕ是单调递增的凸函数,()u f x =是凸函数,则复合函数[()]f x ϕ也是凸函数.对于其他情况也有类似的情况的命题,如下列:我们也可以看一下单值有反函数的函数的反函数与自身的凸凹性的关系. 如下表:(5) 若()f x 为区间I 内的凸函数,且()f x 不是常数,则()f x 在I 内部不能达到最大值.2.4[3] 凸函数的等价定义和判定设函数f 在区间(,)a b 上有定义,则下列命题彼此互相等价:(1)对任意12,x x ∈(,)a b 及任意恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-(2)对任意i x ∈(,)a b 及任意i p >0. 1,2,...,i n =. 11ni i p -=∑ 恒有11()n ni i i i i i f p x p f x ==⎛⎫≤ ⎪⎝⎭∑∑ (3)对任意1,2,(,)x x x a b ∈, 12x x x <<,恒有12121212()()()()()()f x f x f x f x f x f x x x x x x x---≤≤---(4)在(,)a b 上曲线在其每一点处具有不垂直于x 轴的左、右切线,并且曲线在左、右切线之上.(5)若在(,)a b 内存在单调递增的函数()x ϕ.以及0x ∈(,)a b ,使得对任意(,)x a b ∈,恒有00()()()xx f x f x t dt ϕ-=⎰,(6)对任意12,x x ∈(,)a b ,12x x <,恒有21121221()()1()22x x x x f x f x f f t dt x x ++⎛⎫≤≤ ⎪-⎝⎭⎰(7)对任意12,(,)x x a b ∈,恒有1212()()22x x f x f x f ++⎛⎫≤ ⎪⎝⎭对于凸函数定义等价性的证明,可参看[4]及[5].对于等价定义(5)事实上,我们也有类似的这样一个定理:定理 2.4 设函数f 在[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上为上(下)凸函数(严格上(下)凸函数)的一个必要充分条件f '是在(,)a b 上递增(减)(严格递增(减)).证明 先证条件是必要的.设()12,(,)x x a b ⊂.只要x x '与满足12x x x x '<<<,由于等价定义(3)可知12121212()()()()()()f x f x f x f x f x f x x x x x x x '---≤≤'---在上式中令12,x x x x +-'→→,得211221()()()()f x f x f x f x x x -''≤≤-.在是严格上凸函数的情形,我们取一点*x 满足*12x x x <<,从而得出**1212**12()()()()()()f x f x f x f x f x f x x x x x --''≤<≤--. 这样就得出了严格的不等式12()()f x f x ''<,必要性得证.再证充分性.设f '是在(,)a b 上递增.对任何()12,x x x ∈,由Lagrange 中值定理,可只存在()12,x x ξ∈与()12,x x η∈,使得11()()()f x f x f x x ξ-'=-,22()()()f x f x f x xη-'=-因为x ξη<<,所以()()f f ξη''≤.从而有1212()()()()f x f x f x f x x x x x--≤--所以,可知函数f 在[,]a b 上为上凸函数.容易看出,当f '严格递增时,()()f f ξη''<.上述不等式中成立着严格的不等号,从而函数f 在[,]a b 上是严格的上凸函数.同理可以证明下凸时的情景.当函数f 在[,]a b 内有二阶导数时,我们有下列应用起来就会更方便的定理 定理 2.5 设函数f 在[,]a b 上连续,f 在(,)a b 内有二阶导数,则f 在[,]a b 上为上凸函数(下凸函数)的充分条件0(0)f f ''''≥≤在(,)a b 内成立;而f 在[,]a b 上为严格上(下)凸函数的充分必要条件是0(0)f f ''''≥≤在(,)a b 内成立并且在(,)a b 的任何开的子区间内f ''不恒等于0.证明 第一个结论,由于0f ''≥得出f '在(,)a b 上递增再由定理4可得出.同理可证明下凸时的情景; 第二个结论,先证充分性 由于0f ''≥在(,)a b 内成立并且在(,)a b 的任何开的子区间内f ''不恒等于0.对任意12,(,)x x a b ∈,12x x <,又由于2121()()()x x f x f x f x dx ''''=+⎰,所以21()()f x f x ''>.所以函数f 在[,]a b 上为严格的凸函数.充分性得证. 再证必要性(反证法) 因为函数f 在[,]a b 上为严格凸函数,对任意12,(,)x x a b ∈,12x x <,则21()()f x f x ''>,而由于2121()()()x x f x f x f x dx ''''=+⎰,若是有一个(,)a b 的子区间恒等于0.不妨设为(,)(,)a b ξη⊂,对任意(,)x ξη∈,()0f x ''=.则由于21()()()x x f f f x dx ηξ''''=+⎰,()()f f ξη''=,这与已知条件相矛盾.所以,必要性得证.同理可证明下凸时的情景. 所以,定理得证.关于凸函数的判定有很多,应用范围最广的是Jensen 不等式.Jensen 不等式 1 设()f x 在区间I 上有定义,()f x 为凸函数,当且仅当12,,...,n x x x I∀∈1212...()()...()n n x x x f x f x f x f n n ++++++⎛⎫≤⎪⎝⎭(J1) 此外,当且仅当12...n x x x === 时,上式等号成立(证明略请参考附[1]). Jensen 不等式 2 12,,...,[,]n x x x a b ∀∈,12,,...,0n λλλ>,且11ni i λ==∑,1.则()f x 为凸函数的充要条件为:11()()n ni i i i i i f x f x λλ==≤∑∑ (J2)此外,上式当且仅当12...n x x x === 时,等号成立.(证明略请参考附[1]). 这里对任意12,,...,0n βββ>,若是令1ii nii βλβ==∑,那么就有1111()nni i i i i i n n i i i i x f x f ββββ====⎛⎫ ⎪ ⎪≤⎪ ⎪⎝⎭∑∑∑∑ (J3) 每个凸函数都有一个Jensen 不等式,Jensen 不等式的应用范围甚广,既可用于求解不等式问题,又可用于证明不等式定理,应用Jensen 不等式解题的关键有两条:一是必须先判明函数的上(下)凸性,二是直接应用Jensen 不等式有困难时,可以根据命题的特点,选择恰当的上凸函数和下凸函数,然后再进行解答.3 凸函数以及对数凸函数的应用在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质来证明可以非常简洁、巧妙.证明不等式是凸函数的一个重要应用领域,但关键是构造能够解决问题的凸函数.例 1[1] 利用凸函数证明调和平均值H ≤几何平均值G ≤对数平均值L ≤指数平均值E ≤算术平均值A.证明:事实上,我们可以用凸函数理论证明,对任意0(1,2,...,)ix i n 有1212...111...nnx x x n nx x x +++≤≤+++ (2)只要将不等式各部分同时取对数,这时左边的不等式可变为121111...1111ln (ln ln ...ln )n nx x x n n x x x +++-≤----.从而由函数()ln f x x =-在(0,)+∞上的(严格)凸性可得;右边的不等式可直接由()ln g x x =上的(0,)+∞(严格)下凸性可得.(具体证明可参看[2])为了证明例1 中的连不等式,我们先来看下面两个小题:(1) 设0(1,2,...,)i a i n >=且不全相等,0(1,2,...,)i p i n >=有不等式链11111ln ln exp exp n n nii i i i i i i i i nn n ii i i i n i i p a p a p a a p p p a ======⎛⎫⎛⎫ ⎪ ⎪ ⎪≤≤ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭∑∑∑∑∑∑ (3) 证:凸函数()ln f x x =-的Jensen 不等式:取0i q >,11ni i q ==∑,0(1,2,...,).i a i n >=得11ln ln n n i i i i i i q a q a ==-≤-∑∑ [4] 111ln ln nni i i i i i q q a a ==-≤-∑∑ (5)在[4]中令1iini ii ip a q p a ==∑得 1111exp ln nn niiii ni i i i iii ip p p a p a a a ====⎛⎫≤ ⎪⎝⎭∑∑∑∑ (6)又由(4),(5)可得 1111in nq i i i n i i i i ia q a q a ===≤≤∑∏∑ (7)在此令1ini i i p q p ==∑,可得111111ln exp nn ni i i i ii i i n n n ii i i i i ip p a p a p p p a ======⎛⎫ ⎪≤≤ ⎪ ⎪ ⎪⎝⎭∑∑∑∑∑∑ (8)联立(6),(8)既得证 (3).(2) 设()()f x p x 与在[,]a b 上正的连续函数且()f x ≠常数,在⑻中作代换i b a p p a i n -⎛⎫=+ ⎪⎝⎭,i b a a f a i n -⎛⎫=+ ⎪⎝⎭并在“∑”号后均乘b a n -,由0b a ->,不改变原不等号方向.令n →∞ 便得(3)的积分形式:ln ln exp exp b bb ba aa ab b bba aa ap fdx pdxp fdx pfdx f p p pdx pdxdx dx f f ⎛⎫⎛⎫ ⎪⎪ ⎪≤≤≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰(3)'在(3)'中令()1,()p x f x x ==()11ln ln ln ln 2b ab a b a b ab a e ----+⎛⎫≤≤≤⎪-⎝⎭再联立(2),得出H G L E A ≤≤≤≤.例 2 (1)在锐角ABC ∆中,证明1cos cos cos 2A B C ++≤, (2)12,,...,n a a a 设为正数,证明恒成立12...n a a a n +++≥证明 (1)令()cos()f x x =-,(0,)x π∈.由于()cos()0f x x ''=>,(0,)2x π∈.所以()f x 在(0,)2x π∈上凸函数,所以由于(J1)()()()()33f A f B f C A B C f ++++≥,即cos()cos()cos()s()33A B C A B C co ---++≥-1()2=-即1cos cos cos 2A B C ++≤;(2) 令()ln ,(0,)g x x x =-∈+∞,所以21()0,(0,)g x x x''=>∈+∞,故()g x 是在(0,)+∞上的上凸函数.也是根据(J1)121212121212()()...()...()ln ln ...ln ...ln()ln ln ...ln ...ln()n nn nn n g a g a g a a a a g n n a a a a a a n na a a a a a n n++++++≥++++++-≥-++++++≤即即从而,有12...n a a a n+++≥下面我们再看一个用对数凸函数证明的不等式题. 例 3[2]10,0,12ni i i πλλ=<<>=∑i 设x ,则12112212sin(...)sin sin ...sin n n n n x x x x x x λλλλλλ+++≥ (&)12112212cos(...)cos cos ...cos n n n n x x x x x x λλλλλλ+++≥ (%)证明 设()sin()f x x =,由于2()()[()]10f x f x f x '''-=-<,故sin()x 是(0,)2π上的对数凸函数,同理cos()x 也是(0,)2π上对数凸函数.根据定理2即可得(&),(%).例 4 设()f x 在[,]a b 上可积,且()m f x M ≤≤,()t ϕ是在[,]m M 上的连续下凸函数,则11()(())b b a af x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 证明 令,()k n k f f a b a n ⎛⎫=+- ⎪⎝⎭,,1()k n x b a n ∆=-.由于()t ϕ是凸函数,故有1,2,,1,2,,...()()...()n n n n n n n n f f f f f f n n ϕϕϕϕ++++++⎛⎫≥⎪⎝⎭. 由定积分的定义,上式就相当于,,,,11()n ni n i n i n i ni i f f b a b a ϕϕ==⎛⎫∆∆ ⎪ ⎪≥-- ⎪⎪⎝⎭∑∑,,1()k n x b a n ∆=-在上式中令n →∞时, 则有11()(())b b a a f x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 命题得证.例 5[7]设,i i a b R +∈,111,2,...,,,n n i i i i i n a b ====∑∑则21112nni i i i i ia a ab ==≥+∑∑.证明 记1ni i s a ==∑,11ni i a s ==∑,将21112nni i i i i i a a a b ==≥+∑∑变为11121n ii i ia b s a =≥+∑,那么取11i ib a +作为函数1()1f x x=+,则由于3()2(1)0f x x -''=+>,再令i i i b x a =,ii a sλ=所以根据凸函数性质和(J3)得出11111211ni n i i i ii i a b s x a λ==≥=++∑∑结论本文主要讨论了凸函数以及对数凸函数一类重要的函数的概念,包括它们的一些定义,性质,定理,引理和它们在证明一些不等式的重要应用.本文介绍了Jensen 不等式,Hadamard 不等式,叙述了一些定理,引理,性质并给出了它们的证明,并指出它们在判断凸函数的应用.本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用.最后举出了一些例题来具体的来体现凸函数以及对数凸函数在不等式证明的应用.参考文献:[1]汪文珑.数学分析选讲[M].绍兴文理学院数学系,2001[2]刘琼.对数凸函数的Jensen型和Hadamard型不等式[J].邵阳学报,邵阳,2005,3[3]查良凇.凸函数及其在不等式证明中的应用[J].浙江工贸职业技术学院学报,绍兴,2005,3[4]燕建梁,张喜善.凸函数的性质及其在不等式证明中的应用[J].太原教育学院学报,太原,2002,4[5]T.M菲赫金哥尔茨普.微积分教程[M].1965: 290-300[6]常庚哲,史济怀.数学分析教程(上册)(M).高等教育出版社,2003:167-176[7]李碧荣.凸函数及其性质在不等式证明中的应用[J].广西师范学院学报,南宁,2004,2[8]白景华.图函数的性质、等价定义及应用[J].开封大学学报,开封,2003,2[9]Satish Shirali, Harkrishan L. Vasudeva. Mathematical analysis[M]. Alpha Science International Ltd., c2006.[10]Tom M. Apostol.Mathematical analysis[M].China Machine Press, 2004.致谢这是本人的第一篇论文,所以在多方面没有指导老师张金洪老师的指导是很难进行下去的.张老师从我的选题开始便给予了很大帮助,在以后的开题,开题报告,初稿的资料搜索,初稿出来后的校正,进一步的改进都给予了极大帮助,使我在论文的完成进程中得以较为平坦地进行下去.在论文的写作的进行中,我同组等同学也给了我很多帮助.在此表示感谢.也在此对我们的学校安徽师范大学以及我校资料室提供这样一个学习环境和帮助,表示感谢.也感谢那在身后的帮助.。

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用凸函数是数学中一个重要的概念,广泛应用于优化理论、经济学、物理学等领域。

在不等式证明中,凸函数可以帮助我们简化证明过程,并且提供了一些常用的不等式。

1. 定义:对于定义在实数域上的函数f(x),如果对于任意的x1、x2,以及0≤t≤1,都有f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),则称函数f(x)是凸函数。

如果不等式方向反过来,即f(tx1+(1-t)x2)≥tf(x1)+(1-t)f(x2),则称函数f(x)是凹函数。

2.一阶导数判别法:如果函数f(x)在区间(a,b)上二次可导,且f''(x)≥0,则f(x)是凸函数;如果f''(x)≤0,则f(x)是凹函数。

3. Jensen不等式:如果函数f(x)是凸函数,则对于任意的实数x1,x2,…,xn,以及任意的正实数λ1,λ2,…,λn,满足λ1+λ2+…+λn=1,有f(λ1x1+λ2x2+…+λnxn)≤λ1f(x1)+λ2f(x2)+…+λnf(xn)。

在不等式证明中,凸函数可以用来简化证明过程,常用的应用有:1. 平均值不等式:对于任意的正实数x1,x2,…,xn,有(x₁+x₂+⋯+xₙ)/n ≥ √(x₁x₂⋯xₙ)。

这个不等式可以通过使用以函数f(x)=ln(x)为代表的凸函数来证明。

由于ln(x)在定义域(0,+∞)上是凸函数,我们可以使用Jensen不等式来证明平均值不等式。

2. Cauchy-Schwarz不等式:对于任意的实数a1,a2,…,an以及b1,b2,…,bn,有(a₁²+a₂²+⋯+aₙ²)(b₁²+b₂²+⋯+bₙ²) ≥(a₁b₁+a₂b₂+⋯+aₙbₙ)²。

这个不等式也可以通过使用凸函数来证明,常用的方法是构造凸函数f(x)=x²,然后应用Jensen不等式。

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用

凸函数的性质及其在不等式证明中的应用凸函数是一类在数学中非常重要的函数,它具有很多重要的性质,并且在不等式证明中有着广泛的应用。

在本文中,我将介绍凸函数的性质,并给出一些在不等式证明中的具体应用。

一、凸函数的定义:对于定义在区间上的函数,如果对于区间上的任意两个点和以及任意实数,都有那么我们称函数是凸函数。

如果上式中的等号只在时成立,那么我们称函数是严格凸函数。

二、凸函数的性质:1.凸函数的一阶导数是非递减的。

2.凸函数的二阶导数是非负的。

3.函数的局部极小值点是凸函数。

4.凸函数的和、乘积以及复合仍然是凸函数。

三、凸函数在不等式证明中的应用:凸函数具有很多重要的性质,这些性质使得凸函数在不等式证明中有着广泛的应用。

下面是一些具体的应用示例:1.利用凸函数判断不等式的方向:考虑不等式f(x)≥g(x)如果函数和是凸函数,且在区间上有,那么可以得到f(x) ≥ g(x) for a ≤ x ≤ b2.利用凸函数证明不等式:有时候,我们需要证明一个不等式,其中和可能是一些函数或者表达式。

如果我们可以找到一个凸函数,使得在区间上有,以及在边界处有,那么我们就可以得到f(x) ≥ g(x) for a ≤ x ≤ b从而证明原始的不等式。

3.利用凸函数确定不等式的最优解:在一些优化问题中,我们需要求解一个约束条件下的最优解。

如果我们可以找到一个凸函数,使得在区间上有,且在边界处有,那么我们就可以确定约束条件的最优解。

4.利用凸函数证明柯西不等式:对于实数集和,柯西不等式指的是(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... +an^2)(b1^2 + b2^2 + ... + bn^2)其中和是任意实数。

我们可以通过构造一些凸函数的性质,如二次函数,来证明柯西不等式。

在不等式证明中,凸函数是一个非常重要的工具。

它的性质使得我们可以利用它来判断不等式的方向,证明不等式,确定不等式的最优解,甚至证明柯西不等式等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文题目凸函数及其在证明不等式中的应用系别数学与信息科学学院专业数学与应用数学指导教师吴开腾评阅教师班级2004级2班姓名冀学本学号0642008 年5月27日目录摘要 ........................................................................................................................... 错误!未定义书签。

Abstract ................................................................................................................... 错误!未定义书签。

1引言 ....................................................................................................................... 错误!未定义书签。

2 凸函数的等价定义...................................................................................... 错误!未定义书签。

凸函数三种定义的等价性的讨论...................................................................... 错误!未定义书签。

定义1⇔定义2 ................................................................................................... 错误!未定义书签。

定义1⇔定义3................................................................................................... 错误!未定义书签。

判定定理与JESEN不等式 .................................................................................... 错误!未定义书签。

3.性质 ................................................................................................................... 错误!未定义书签。

4凸函数在不等式证明中的应用............................................................. 错误!未定义书签。

利用凸函数定义证明不等式 ............................................................................... 错误!未定义书签。

利用凸函数性质证明不等式 ............................................................................. 错误!未定义书签。

结束语...................................................................................................................... 错误!未定义书签。

参考文献 ................................................................................................................ 错误!未定义书签。

致谢 ........................................................................................................................... 错误!未定义书签。

摘要首先给出了凸函数的三个典型定义,分析了它们之间的关系,并证明了三种定义之间的等价性.接着给出了凸函数的一个判定定理以及Jesen不等式.然后讨论了凸函数的几条常用性质,通过例题展示了凸函数在不等式证明中的应用.凸函数具有重要的理论研究价值和实际广泛应用,利用凸函数的性质证明不等式;很容易证明不等式的正确性.因此,正确理解凸函数的定义、性质及应用,更对有关学术问题进行推广研究起着举足轻重的作用.在不等式证明中的应用并举例说明解题思路与证明方法,最后证明了几个常见的重要不等式.并得到了几种常用凸函数的形式.关键词凸函数,凸性不等式,jensen不等式Abstract First has given the convex function three model definition,has analyzed between them the relations,and has proven between three kind of definition equivalence. Then has given a convex function determination theorem as well as the Jesen inequality. Then discussed convex function several commonly used nature,has demonstrated the convex function in inequality proof application through the sample question. The convex function has the important fundamental research value and the actual widespread application,the use convex function nature proof inequality;Very easy to prove the inequality the accuracy. Therefore,the correct understanding convex function's definition,the nature and the application,carry on the promotion to the related academic question to study the pivotal function. In the inequality proved that the application and explains with examples the problem solving mentality and the certificate method,finally has proven several common important inequalities. And obtained several kind of commonly used convex function forms.Key words Convex function,convexity inequality,jensen inequality1引言凸函数是一类常见的重要函数,上世纪初建立了凸函数理论以来,凸函数这一重要概念已在许多数学分支得到广泛应用.例如在数学分析、函数论、泛函分析、最优化理论等当中.常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数.现行高等数学教材中也都对函数的凸性作了介绍,由于各版本根据自己的需要,对凸函数这一概念作了不同形式的定义,本文介绍了凸函数的三种典型定义,讨论了它们的等价性,并给出了利用凸函数的定义证明凸函数的简单应用.凸函数在不等式的研究中尤为重要,而不等式证明最终归结为研究函数的特性,所以研究凸函数的性质就显得十分重要.凸函数的性质相当多,已有很多文献专门就函数凸性作了研究.本文就凸函数的性质介绍了几条常用的性质,并给出了证明;最后,重点介绍了凸函数的性质在不等式证明中的应用.2 凸函数的等价定义定义1[1] 若函数()f x 对于区间(,)a b 内的任意12,x x 以及(0,1)λ∈,恒有[]1212(1)()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间的割线总在曲线之上.定义2 若函数()f x 在区间(,)a b 内连续,对于区间(,)a b 内的任意12,x x ,恒有[]12121()()()22x x f f x f x +≤+, 则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间割线的中点总在曲线上相应点(具有相同横坐标)之上.定义3 若函数()f x 在区间(,)a b 内可微,且对于区间(,)a b 内的任意x 及0x ,恒有000()()()()f x f x f x x x '≥+-,则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任一点处的切线,总在曲线之下.以上三种定义中,定义3要求()y f x =在(,)a b 内是可导的,定义2要求()f x 在(,)a b 上是连续的.而定义1对函数()y f x =则没有明显地要求.实际上可以证明在定义1中,函数()y f x =在(,)a b 上是连续的.而定义1和定义2两个定义是否要求函数()y f x =是可导的,则没有提出.如果加上可导的条件,则可证明三种定义是等价的. 凸函数三种定义的等价性的讨论 定义1⇔定义2证明 定义1⇒定义3,取12λ=, 由定义1推得定义2. 定义2⇒定义1首先,论证()f x 对于任意的()12,,x x a b ∈及有理数()0,1λ∈,不等式()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦,成立.事实上,对于此有理数λ总可以表示为有穷二进位小数,即12121122220.2n n n n n na a a a a a a λ---++++==L L , 其中0i a =或1,()1,2,,1;1n i n a =-=L .由于1λ-也是有理数.所以也可以表示为有穷二进位小数,即121211222210.2n n n nn nb b b b b b b λ---++++-==L L , 由于()11λλ+-=,有0i b =或1,()1,2,,1;1n i n b =-=L ,于是[]()()()12121,2,,1i i i i f a x b x a f x b f x i n +≤+=-L .所以()121f x x λλ+-⎡⎤⎣⎦12121211211222222222n n n n n n n n n na a a ab b b b f x x ------⎡⎤++++++++=+⎢⎥⎣⎦L L()22221112121122112222n n n n n n a a b b f a x b x f x x ----⎛⎫++++≤+++ ⎪⎝⎭L L 232323123111121211222222()222n n n n n n n n n n a a a a b b b b a x b x x x f --------⎡⎤⎛⎫+++++++++++⎢⎥ ⎪⎝⎭⎢⎥=⎢⎥⎢⎥⎣⎦L L ()()22221112121122112222n n n n n n a a b b a f x b f x f x x ----⎛⎫++++≤+++⎡⎤ ⎪⎣⎦⎝⎭L L ()()()()()()()()()()33111221221222211122122111221121221111*222222111222122n n n n n n n n n n n n a b a f x b f x a f x b f x f x x a f x b f x a f x b f x a f x b f x a x b x f --------⎛⎫++++≤+++++⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎝⎭≤≤++++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦+⎛⎫+ ⎪⎝⎭L L L L ()()()()()()()()111221221112211211122212n n n n n n a f x b f x a f x b f x a f x b f x a f x b f x ---≤++++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦++⎡⎤⎣⎦L()()()()()12121211211212222222221n n n n n n n n n na a a ab b b b f x f x f x f x λλ------++++++++=+=+-L L . 下面再论证()f x 对λ为无理数时定义1也成立.事实上,对任意无理数()0,1λ∈,存在有理数列{}()()0,1,n n n λλλ⊂→→∞,所以()()()121211n n x x x x n λλλλ+-→+-→∞,由于()f x 在(),a b 内连续,所以()()()()()()()()()()12121212121lim 1lim 1lim 11n n n n n n f x x f x x f x x f x f x f x f x λλλλλλλλλλ→∞→∞→∞+-⎡⎤⎣⎦⎡⎤=+-⎣⎦=+-⎡⎤⎣⎦≤+-⎡⎤⎣⎦=+-.综上即知,定义1与定义2等价.定义1⇔定义3证明 定义 1 ⇒定义3:对(),a b 内任意的0x 及x ,若0x x <,则取0h >,使00x x h x <+<.于是,可以得到()()()()0000f x h f x f x f x h x x +--≤-, 上式中令0h →,由于()f x 可微,所以有()()()000f x f x f x x x -'≤-,即()()()()000f x f x f x x x '≥+-.若0x x <,则取0h >,使0x x h x <+<,同理可证.定义3⇒定义1:对于区间(),a b 内的任意12,x x (不妨设12x x <)以及()0,1λ∈,令12x x x <<,则有()()()1122211,x x x x x x x x λλ-=---=-,由泰勒公式,得()()()()111f x f x f x x θ'=+-及()()()()222f x f x f x x θ'=+-, 其中1122x x x θθ<<<<,于是()()()()()()()()12122121111f x f x f x x x x f f λλλλλλθθ''+-=+-+---⎡⎤⎡⎤⎣⎦⎣⎦再进一步由()()21f f θθ''>,所以()()()()121211f x f x f x x λλλλ+-≥+-⎡⎤⎣⎦即()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦,最后,由等价的传递性即知定义2与定义3也是等价的.判定定理与Jesen 不等式判定定理[2] 设f 为区间I 上的二阶可导函数,则在I 上f 为凸函数的充要条件是()0f x ''≥,x I ∈.用定义直接来判断一个函数是不是凸函数,往往是很困难的.但用该判定定理来判断一个光滑函数是否凸,则是相当简便的.在实际应用中常常先用导数来肯定函数的凸性,再反过来引出它必定满足凸性不等式.在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质定理来证明可以非常简洁、巧妙.证明不等式就是凸函数的一个应用领域,但关键是构造能够解决问题的凸函数.定理 (Jensen 不等式)[3] 设函数:(,).f a b R →f 在(,)a b 上处处二次可微,且()0f x ''≥ (对任意(,)x a b ∈,则()f x 为(,)a b 上的凸函数,即对任意m N ∈,(,)k x a b ∈及10,1mk k k λλ=≥=∑成立如下不等式11()()m mk k k k k k f x f x λλ==≤∑∑, (1)该不等式称为Jensen 不等式,该性质是凸函数的一个重要性质,也是定义的一般情况.可以说,凸函数在不等式证明中的应用很大程度上是由Jensen 不等式来体现的,因为每个凸函数都有一个Jensen 不等式,因而它在一些不等式证明中有着广泛的应用.利用它可以推出常用的一些重要公式,为证明不等式开辟了一条新路.注:由定理,经简单计算知下列函数在其定义域上都是凸函数,从而()(1,2,3)i f x i =都满足不等式(1).(a )11()0,0)f x x a a x =>≥+ (,(b )21()(0)f x x c c x=<<-,(c )3()(0)x f x x c c x=<<-.凸函数及其性质在解题中有着十分广泛的应用,下面试举数例述之.3.性质利用函数的凸性来证明不等式,是一种重要的方法,通常需要构造适当的凸函数,再运用函数的凸性的定义及几个等价论断,可将一些初等不等式,积分不等式转化为研究函数的性态,从而使不等式简化进而得到证明.函数的凸性是函数在区间上变化的整体性态,把握区间上整体性态,不仅可以更加科学、准确的描绘函数的图象,而且有助于对函数的定性分析.凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,所以研究凸函数的性质就显得十分必要了.性质1[4] 设函数()()f x x 、g 在区间I 为凸函数,则()()f x x +g 在区间I 也为凸函数.证明:()12,,0,1x x I λ∀∈∀∈因函数()()f x x 、g 在区间I 为凸函数,从而()()()()()121211f x x f x f x λλλλ+-≤+-,且()()()()()121211g x x g x g x λλλλ+-≤+-.于是有()()()()()()()()()12121122[11][]1[]f x x g x x f x g x f x g x λλλλλλ+-++-≤++-+ 因此()()f x +g x 在区间I 为凸函数.性质2设函数()()f x x 、g 在区间I 为凸函数,则()(){}max ,f x g x 在区间I 为凸函数.证明 ()12,,0,1x x I λ∀∈∀∈,因函数()()f x x 、g 在区间I 为凸函数从而有()()()()()121211f x x f x f x λλλλ+-≤+-,且()()()()()121211g x x g x g x λλλλ+-≤+-.令()()(){}max ,F x f x g x =,则()()()()()(){}1212121max 1,1F x x f x x g x x λλλλλλ+-=+-+-()()()()()(){}1212max 1,1f x f x g x g x λλλλ≤+-+-()(){}()()(){}()()()112212max ,1max ,1f x g x f x g x F x F x λλλλ≤+-=+-.因此,()()(){}max ,F x f x g x =在区间I 为凸函数.性质3 [5]设函数()()f x x 、g 在区间(),a b 为递增的非负凸函数,则()()f x x g 在区间(),a b 为凸函数.证明 ()12,,x x a b ∀∈,设12x x <,因()()f x x 、g 为非负凸函数,由定理3知(),x a b ∀∈,()()f x x 、g 在点x 连续,且()()12120()()22f x f x x x f ++≤≤, ()()12120()()22g x g x x x g ++≤≤. 因此()()f x x g 在区间(),a b 连续,因()()f x x 、g 递增,从而()()()()()()()()()()()()2121112212210f x f x g x g x f x g x f x g x f x g x f x g x --=+-+≥⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦且()()()()21211212()()2222f x f xg x g x x x x xf g ++++≤ ()()()()()()()()()()()()11221221221142f xg x f x g x f x g x f x g x f x g x f x g x ++++=≤由定义知()()f x x g 在区间(),a b 为凸函数.当然凸函数的性质还远不止施工述几条,这里就不一一列举.4凸函数在不等式证明中的应用4.1利用凸函数定义证明不等式例1 求证:对任意实数,a b ,有()212a b a bee e +≤+. 证明 设()x f x e =,则()()0,,f x x ''≥∈-∞+∞,故()x f x e =为(),-∞+∞上的凸函数.从而对121,,2x a x b λ===,由定义有 ()12121111(1)(1)()2222f x x f x f x ⎡⎤+-≤+-⎢⎥⎣⎦,即()212a ba bee e +≤+. 例2 设01,01x a <<<<,则有()()1111aa x x x -+-<-.证明 设()()()111a a f x x x -=+- ()01x <<,那么()()()()()()111111aa a a f x a x x x ax ---'=-+-++-()()()()()()()()()()11112111111111aa a a a a aa f x a a x x a a x x a a x x a a x x--------''=--+---+--+--+()()()()()()11122111111a a a a a a a x x x x x x x x -----⎡⎤=--+-++++-+⎣⎦()()()()()()1122111111a a a a a a x x a a x x-----=--+-=-+-,于是01,01x a <<<<时,()0f x ''>.由严格凸函数的定义,其中12,1,0x x x λ=== 得()()()()()110110f x f x x x f x f =+-<+-⎡⎤⎣⎦g g g g ,即()()1111aax x x -+-<-.例3[6] 若()f x 为(),a b 内的凸函数,(,),1,2,,i x a b i n ∈=L ,求证()111()nini i i xf f x n n ==≤∑∑.证明 对12,2n x ==,不等式是显然的,设对1n -不等式成立,则因为 12121111n n n x x x x x x n x n n n n-++++++-=+-L L ,这里1n n λ-=,()()121,,,1n n x x x a b x a b n -+++∈∈-L ,由定义有()()1111111()()1n n ii n i i n i i xx n f f f x f x n n n n n -===-≤+=-∑∑∑,例4若()0,i θπ∈,1,2,,i n =L则12sinnnθθθ+++≥L证明 令 ()ln(sin )i i f θθ=-,()0,i θπ∈,1,2,,i n =L .由于()2sec 0i i f θθ''=>则()f x 为()0,π上的严格凸函数,所以由例3的不等式有1111ln(sin )ln(sin )n ni i i i n n θθ==-≤-∑∑,即12121ln(sin)ln(sin sin sin )nn nnθθθθθθ+++≥L L ,由1e >得12sin n nθθθ+++≥L上式等号仅在12n θθθ===L 成立. 利用凸函数性质证明不等式例5 证明不等式:122212122()n n x x x x x x n n++++++≤≤L L ,其中 10,1,2,,x i n >=L .证明 考虑对数函数()()ln 0f x x x =>,因为()210,f x x''=-<故函数()ln f x x =是上凸函数,由上凸函数的性质,即得()12121ln ln ln ln n n x x x x x x n n +++≥+++=L L由对数性质,即证明了12nx x x n+++≤L . (2)又考虑函数()()20g x x x =->,所以()20g x ''=-<.故()2g x x =-也是上凸函数,由上凸函数的性质,得22221212()n n x x x x x x n n+++-----≥L L ,即 22221212()n n x x x x x x n n ++++++≤L L ,因此122212122()n n x x x x x x n n++++++≤L L ,(3)综合(2),(3)整个命题证明结束.例6 设12n αααL ,,,均为正数,且121n ααα+++=L .求证: 22221212111(1)()()()n n n nαααααα+++++++≥L .证明 考虑函数()2,f x x =因为()20f x ''=>,所以()2f x x =是下凸函数,令1111,x a a =+1,n n nx a a =+L ,由下凸函数的性质,则有 2221212111()()()n na a a a a a ++++++L 12212111()n n a a a a a a n n++++++≥L (4)2121111(1)nn a a a =++++L , 由柯西不等式:22222111()()()nnni ii i i i i a b a b ===≥∑∑∑ 得1212111111()()1n na a a a a a +++=+++L L g ()21212111()n na a a n a a a =++++≥L L , 于是有212111()nn a a a +++≥L ,并代入(4)式即得 22221212111(1)()()()n n n nαααααα+++++++≥L ,证毕.例7[7] 在ABC ∆中,求证sin sin sin A B C ++≤证明 考虑函数()sin 0y x x π=<<,因为()sin 00y x x π''=-<<<,所以sin y x =在()0,π内是上凸函数,由上凸函数的性质有sin sin sin sin33A B C A B C++++≤, 由于A B C π++=.故sin sin sin 2A B C ++≤例8[8] 设,i i a b R +∈,1,2,,i n =L ,11nni i i i a b ===∑∑,则21112nn i i i i i ia a ab ===+∑∑.证明 记1n i i s a ==∑则11ni i a s ==∑,取()1,01f x x x=>+,易知()0f x ''>,有判定定理知()f x 为凸函数,取ii i b x a =,由于11n n i i i i a b s ====∑∑.故由性质得21111111211nn i i nni i i i i i i ii i a a s s s s ab a b s x x ss=====≥==++++∑∑∑∑g . 例9 设,0i i a b >,1,2,,i n =L ,有1111nn nqp q i i i i i i i a b a b ===⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑,其中0,0p q >>,111p q+=. 证明 令(),1,0p f x x p x =>>,因为()2(1)0p f x p p x -''=->,由判定定理知(),1,0p f x x p x =>>,在()0,+∞上是严格凸函数,由Jensen 不等式得到11()nnpp i i i ii i x x λλ==≤∑∑,今设12,,,n u u u L 为非负实数且10ni i u =≠∑,在上述表达式中以1niii u u=∑代替i λ,得到1111()()()n n npp p i i i ii i i i u x u x u -===≤∑∑∑.由题设111p q+=知)1q pp =-令1,q q i ii i iu bx a b-==,不妨设10ni i b =≠∑,代入上式便得不等式1111n n nqp q i i i i i i i a b a b ===⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑.特别地,取2p q ==时得就到柯西不等式1ni i i a b =≤∑综上所述,在不等式的证明中,巧妙地应用凸函数的定义及性质,就可使一些较复杂的不等式迎刃而解.结束语通过研究凸函数的几种定义,分析它们之间的关系,证明了给出三种典型定义之间的等价性.给出了凸函数的一个判定定理以及Jesen 不等式.然后讨论了凸函数的几条常用性质,接着通过例题展示了凸函数在不等式证明中的应用.凸函数的应用领域非常广泛,主要是在不等式的证明中,运用它解题显得巧妙,简练,通过对上述问题的证明,我们认识到利用凸函数的定义、等价定义、性质及判定定理证明不等式,关键是寻找合适的函数,若不能直接找出,则可以对不等式进行适当的变形,从而达到证明不等式的目的.至于凸函数在其他领域的应用则未涉及.参考文献[1] 花树忠.凸函数的三种典型定义及其间的等价关系[J].邯郸职业技术学院学报.2002(1):52-54.[2] 李碧荣.及其性质在不等式证明中的应用[J].广西师范学院学报.2004,21(2) . [3] 林银河.凸函数的等价描述与Jensen 不等式[J].丽水师范专科学校学报.2001,23(2) .[4] 杜厚雄.凸函数的性质及其应用[J].现代企业教育.2007:173-174.[5] 白景华.凸函数的性质、等价定义及应用[J].开封大学学报.2003,17(2):59-64. [6] 曹良干.凸函数的定义及应用[J].阜阳师范学院学报.1994(2) .[7] 燕建梁,张喜善.凸函数的性质及其在不等式证明中的应用[J].太原教育学院学报. 2002,20(4):63-65.[8] 李荣春.利用凸函数证明不等式[J].宁德师专学报.1998,10(1) .致谢经过半年的忙碌和工作,本次毕业论文已经接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的督促指导,以及一起工作的同学们的支持,想要完成这个论文是难以想象的.在这里首先要感谢我的导师吴开腾老师.吴老师平日里工作繁多,但在我做毕业论文的每个阶段,从查阅资料到论文开题,中期检查,后期修稿定稿等整个过程中都给予了我悉心的指导.我的论文较为复杂烦琐,但是,吴老师仍然细心地纠正论文中的错误.除了敬佩吴老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响我今后的学习和工作.然后还要感谢大学四年来所有的老师,为我打下数学与应用数学专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励.此次毕业论文才会顺利完成.最后感谢数学与信息科学学院和我的母校—内江师范学院大学四年来对我的大力栽培.谨以此文献给所有关心和帮助过我的老师、亲人、同学和朋友们.我唯有在以后不断地努力进取,以学业和工作的继续求索来感谢培育我的母校和所有关心我的师长亲朋!希望我们都幸福快乐!谢意难尽,前途漫长,除了热血、辛劳、泪水和汗水之外,我别无奉献.论文落笔,如释重负,但“路漫漫其修远兮,吾将上下而求索”.。

相关文档
最新文档