万有引力与航天公式总结

合集下载

必修二物理万有引力与航天知识点总结

必修二物理万有引力与航天知识点总结

必修二物理万有引力与航天知识点总结学习物理知识不是为了背诵定义公式,更不是为了做题,物理的魅力在于是当把它运用到实际生活中去时,可以为你又快又好的解决实际问题。

下面是整理的必修二物理万有引力与航天知识点,仅供参考希望能够帮助到大家。

必修二物理万有引力与航天知识点一、知识点(一)行星的运动1地心说、日心说:内容区别、正误判断2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律1万有引力定律:内容、表达式、适用范围2万有引力定律的科学成就(1)计算中心天体质量(2)发现未知天体(海王星、冥王星)(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、环绕速度;脱离地球引力绕太阳运动;脱离太阳系)(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)二重点考察内容、要求及方式1地心说、日心说:了解内容及其区别,能够判断其科学性(选择)2开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择) 3万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)4计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算)5宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)6计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)7经典力学的局限性:了解其局限性所在,适用范围(选择)物理学专业介绍物理学是研究物质运动最一般规律和物质基本结构的学科,它揭示物质产生、演化、转化和相互作用等方面的基本规律,涉及从微观、宏观到宇观,从少体到多体,从简单到复杂的各种系统,是自然科学的核心和工程技术的基础,并与社会学科具有很强的交叉性;本专业旨在培养掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力,能发展成为在物理学及其相关交叉学科的不同专业领域继续深造或在相应的科学技术领域中从事科研、教学、技术、应用和管理等方面的创新性人才。

《万有引力与航天》知识点总结

《万有引力与航天》知识点总结

万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容开普勒第二定律:v v >远近开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系: 333222===......a a a T T T 水火地地水火 三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。

KT R =23 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝' 2r Mm F ∝ 2r MmG F =2、表达式:221r m m GF = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。

4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。

5、适用条件:①适用于两个质点间的万有引力大小的计算。

②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。

③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。

④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。

6、推导:2224mM G m R R T π= ⇒ 3224R GMT π= 四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。

2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。

五、万有引力的成就1、测量中心天体的质量法一:在天体表面找一个物体m ,不计天体自转,万有引力=重力(=G F F 引)2Mm G mg R=⇒M = 黄金代换式中心天体的密度:233443gR M gG V GR R ρππ===法二:在中心天体周围找一颗卫星绕中心天体做圆周运动,万有引力提供向心力(=n F F 引)2Mm G r= 22232223224v v r m M r Gr mr M G r mr M T GT ωωππ⇒=⇒=⎛⎫⇒=⎪⎝⎭以 2324r M GT π=为例求中心天体的密度 2332233433r M r GT V GT R R ππρπ=== 若为近地卫星,则r=R ,则23GT πρ= T 为近地卫星的公转周期六、双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

万有引力与航天知识点总结

万有引力与航天知识点总结

万有引力与航天知识点总结————————————————————————————————作者:————————————————————————————————日期:ﻩ332T=2.GM GM GM r M v a Gr r r ωπ=== , , ,万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。

即: 其中G =6. 67×10-11N·m 2/kg 2②适用条件1.可看成质点的两物体间,r 为两个物体质心间的距离。

2.质量分布均匀两球体间,r为两球体球心间距离。

③运用万有引力与重力的关系:重力是万有引力的一个分力,一般情况下, 可认为重力和万有引力相等。

忽略地球自转可得:二. 重力和地球的万有引力:1.地球对其表面物体的万有引力产生两个效果:(1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。

由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。

(2)重力约等于万有引力:在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。

说明:如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。

如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。

在地球的同一纬度处,g 随物体离地面高度的增大而减小,即2)('h R GM g +=。

强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。

2.绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。

万有引力定律及其应用

万有引力定律及其应用

万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,描述了物体之间相互作用的力,被广泛应用于天体运动、地球运行、航天探索等领域。

本文将介绍万有引力定律的定义与公式,并探讨其在宇宙学、卫星运行和导航系统中的应用。

一、万有引力定律的定义和公式万有引力定律是由艾萨克·牛顿于1687年提出的,它描述了两个物体之间的引力大小与它们的质量及距离的关系。

牛顿的万有引力定律可以用以下公式表示:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力,G是万有引力常数,m1和m2分别是两个物体的质量,r是它们之间的距离。

二、万有引力定律在宇宙学中的应用万有引力定律在宇宙学中起着重要作用。

根据该定律,行星围绕太阳运行,卫星绕地球运行,这是因为太阳和地球对它们产生了引力。

通过牛顿的定律,科学家们能够计算出天体之间的引力,从而预测它们的运动轨迹和相互作用。

世界各个国家的航天探索也依赖于万有引力定律。

比如,计算出行星和卫星的运动轨迹,对航天器进行准确的发射和着陆,都需要准确地应用万有引力定律。

此外,万有引力定律还促进了科学家对宇宙的进一步研究,帮助他们了解天体的形成和宇宙演化的规律。

三、万有引力定律在卫星运行中的应用卫星是应用万有引力定律的典型实例。

通过牛顿定律计算引力,可确定卫星轨道的稳定性和运行所需的速度。

在卫星发射前,科学家需要根据卫星要达到的轨道高度和地球质量计算出所需的发射速度,确保卫星能够稳定地绕地球运行。

此外,卫星之间也需要遵循万有引力定律的规律。

卫星在轨道上的相对位置和轨道调整都受到引力的影响。

科学家利用牛顿定律的公式,预测卫星之间的相对运动,确保卫星不会相互碰撞,从而保证卫星系统的正常运行。

四、万有引力定律在导航系统中的应用导航系统是现代社会不可或缺的一部分,而万有引力定律在导航系统中也发挥着关键作用。

通过利用地球的引力场,导航系统能够计算出接收器的位置和速度。

卫星导航系统如GPS(全球定位系统)就是基于万有引力定律工作的。

万有引力与航天科学知识点总结

万有引力与航天科学知识点总结

万有引力与航天科学知识点总结1. 万有引力的定义和原理- 万有引力是指质点之间的引力相互作用力,由牛顿于17世纪提出的普适物理定律。

- 万有引力的原理是质点间的引力与它们的质量成正比,与它们之间的距离成反比。

2. 万有引力公式- 万有引力公式表达了两个质点间的引力大小与它们质量和距离的关系:`F = G * (m1 * m2) / r^2`。

- 其中,F表示引力的大小,m1和m2分别是两个质点的质量,r是它们之间的距离,G为万有引力常数。

3. 航天科学中的万有引力应用- 万有引力是航天科学中至关重要的概念,对行星运行、地球轨道等都具有重要影响。

- 宇宙飞行器与地球的相对位置和角度,以及运动轨迹的计算都需要考虑万有引力的作用。

- 万有引力也是行星探测任务中的重要影响因素,科学家通过研究行星的引力场,获得行星的质量、结构和组成信息。

4. 航天科学的其他知识点除了万有引力,航天科学还涉及许多其他重要知识点,如:- 轨道力学:研究天体运动的力学原理和方法。

- 航天器设计:包括航天器的结构、推进系统、导航和控制等设计原理与技术。

- 火箭发动机:研究和设计用于航天器推进的火箭发动机。

- 航天器轨道控制:保持航天器在特定轨道上的运动稳定与精确控制。

5. 航天科学的前沿领域- 航天科学作为一个不断发展的领域,目前还有许多前沿研究领域,如:- 卫星导航与定位技术- 空间站和深空探测任务- 火星和月球探测- 太阳风与地球磁层相互作用研究以上是对万有引力与航天科学的知识点进行了简要总结。

了解这些基本概念和相关领域的发展情况,有助于更好地理解和探索航天科学的奥秘与魅力。

万有引力与航天公式总结归纳

万有引力与航天公式总结归纳

万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值都相等。

表达式为:)4(223πGM K K T R ==k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.⑵.数学表达式:r F Mm G 2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离)b.当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c.认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出 ②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1.万有引力提供向心力:F F向万=即:222224n Mm v F G ma m mr mr r r T πω=====万 2.天体对其表面物体的万有引力近似等于重力: 即2gR GM =(又叫黄金代换式)注意:①地面物体的重力加速度:R GM g 2=≈9.8m/s 2 ②高空物体的重力加速度:〈+=2')(h R GM g 9.8m/s 2 ③关系:22')(h R g R g +=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

高中物理万有引力部分知识点总结

高中物理万有引力部分知识点总结

高中物理——万有引力与航天知识点总结一、开普勒行星运动定律(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。

(2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。

(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。

3.适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离。

对于均匀的球体,r是两球心间的距离。

三、万有引力定律的应用1.解决天体(卫星)运动问题的基本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM.2.天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3).(1)若已知天体的半径R,则天体的密度ρ=V(M)=πR3(4)=GT2R3(3πr3)(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π)可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.3.人造卫星(1)研究人造卫星的基本方法看成匀速圆周运动,其所需的向心力由万有引力提供.G r2(Mm)=m r(v2)=mr ω2=m 224T πr^2=ma 向.(2)卫星的线速度、角速度、周期与半径的关系①由GMm/r^2=mv^2/r 得v =GM/r ,故r 越大,v 越小②由GMm/r^2=mr ω2得ω=GMm/r^3,故r 越大,ω越小③由GMm/r^2=m(4π^2/T^2)r 得T =GM 32r 4π,故r 越大,T 越大(3)人造卫星的超重与失重 ①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态。

物理万有引力与航天重点知识归纳

物理万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力与航天公式总结Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公转周期T 的二次方的比值都相等。

表达式为:)4(223πGM K K TR== k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.⑵.数学表达式:rF MmG 2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:FF 向万= 即:222224n Mm v F G ma m mr mr r r Tπω=====万 2.天体对其表面物体的万有引力近似等于重力:即 2gR GM =(又叫黄金代换式)注意:②高空物体的重力加速度:〈+=2')(h R GM g 9.8m/s 2③关系:22')(h R g Rg+=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

a.线速度:rGMv =b.角速度:rGM3=ωc.周期:GMT r32π= d.向心加速度:ra GM2=向2.计算中心天体的质量:方法一:根据转动天体运动周期T 和转动半径r 计算:Tr G M 2324π=(适合于有行星、卫星转动的中心天体)方法二:根据中心天体半径R 和其表面的重力加速度g 计算:Gg M R2=(适合于没有行星、卫星转动的中心天体)注意:转动天体的质量是求不出来的。

只能求中心天体的质量。

3.计算中心天体的密度:方法一:根据转动天体运动周期T 、转动半径r 和中心天体半径R 计算:RTr G 3233πρ=(适合于有行星、卫星转动的中心天体)方法二:根据中心天体半径R 和其表面的重力加速度g 计算:GRgπρ43=(适合于没有行星、卫星转动的天体) 4.计算第一宇宙速度(环绕速度)简单说就是卫星或行星贴近中心天体表面的飞行速度,这时卫星或行星高度忽略r ≈R方法一。

根据中心天体质量M 和半径R 计算:由→=Rm MmGv R22RGMv =方法二。

根据中心天体半径R 和表面重力加速度计算:由→==Rm mg v F 2万gR v =5.预测未知天体:6.研究天体运动,发射人造卫星(1)分类:主要有:侦察卫星、通信卫星、导航卫星、气象卫星、地球资源卫星、勘测科学研究卫星、预警卫星、测地卫星等种类。

(2)轨道:由于是万有引力提供向心力,所以所有卫星都是围绕地心在转。

轨道有三种:a.赤道平面内(如同步卫星)叫赤道轨道。

b.与赤道平面垂直,通过地球两极,叫极地轨道。

c.可以和赤道平面成任一角度,叫一般轨道。

注意:没有跟某一经度或某一纬度重合的轨道(除赤道平面)(3)发射:由于卫星运动的分析是针对地心这个参考系的,故火箭发射时的初速度不等于零(自转速度),要充分利用地球的自转的惯性,就必须自西向东发射。

这样可以更多地节省燃料和推力。

发射可分为三个阶段: ①发射长空阶段 ②漂移进入轨道阶段③在预定轨道上绕地球运行阶段 (4)运行:稳定运行时,由万有引力提供向心力。

①由公式:线速度:r GM v =角速度:rGM3=ω 周期:GMT r32π= 向心加速度:ra GM2=向分析可知:在同一中心天体做匀速圆周运动的所有卫星的v 、ω、T 、a 各量都只与轨道半径r 有关。

②离地面越高即r 越大,则卫星的v 、ω、a 、越小, T 越大。

(5)变轨:卫星的变轨实质是通过短时间内启动加速或减速火箭以改变卫星的速度,而使万有引力与所需向心力不再相等。

当F F 向引〉,卫星将做近心运动,轨道半径将减小;当F F 向引〈时,卫星将做离心运动,轨道半径将增大。

(6)对接:交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一个整体.它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,而对接则为两个航天器相会后在结构上连成一个整体. 注意:同轨道上对接应先让后者减速使其在低轨道运行,然后再加速速度增大去跟高轨道上的对接。

不能在同轨道上加速对接,跟地面上同一直线上的运动不同。

(7)超重和失重:①“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同.②“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用. 如天平、水银气压计、单摆、密度计等。

(8)返回:当卫星返回时,只要推进器向前喷气即可使人造卫星减速,卫星即可从圆形轨道落入椭圆轨道向地球靠近,当卫星运行到椭圆轨道的近地点时推进器再次火箭发动机点火减速,即可从椭圆轨道运行到较低的圆形轨道。

(9)两种特殊的卫星ⅰ.近地卫星:卫星轨道半径约为地球半径,受到的万有引力等于重力.速度为第一宇宙速度.ⅱ.同步卫星(又叫通信卫星):(四定)①定周期:等于地球自转周期T=24小时②定轨道:在赤道的正上方即赤道平面③定高度:h=×107(m)④定线速度:v=3.1km/s注意:三颗同步卫星就能覆盖地球,实现全球通讯。

六.三个宇宙速度:①第一宇宙速度:v1 =7.9km/s,它是地球卫星的最大环绕速度,也是卫星的最小发射速度.②第二宇宙速度(脱离速度):v 2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度.③第三宇宙速度(逃逸速度):v 3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度.七.双星、三星、多星1.双星:(1)定义:将两颗彼此距离较近的恒星称为双星(2)向心力来源:在它们之间的万有引力作用下,绕两球连线上某点做匀速圆周运动. (3).特点:①周期、角速度相同②表达式:222121221r m r m Lm m Gωω==; 21r r L += ③质量与半径成反比:rr m m 1221=2.三星及多星:分析方法同双星问题一样,关键是分析它们万有引力的合力提供向心力。

八.容易混淆的几个问题: 1.万有引力与重力2.随地球自转的向心加速度和环绕运行的向心加速度 3.运行速度和发射速度4.两个半径:天体半径和卫星轨道半径 5.两种周期:自转周期和公转周期 6.丙类运行:稳定运行和变轨运行 7.同步卫星和一般卫星 8.赤道上物体和近地卫星九.月球的特点:1.离地距离一定,轨道半径r=38万千米 2.周期约为27天 3.速度约为1 km/s。

相关文档
最新文档