化学反应动力学PPT讲稿
合集下载
最新第三章-化学反应动力学基础教学讲义ppt

2)20世纪前叶:反应速率理论的创立 a. 碰撞理论:
把反应看作两个反应球体碰撞的结果;
b. 过渡态理论: 产生中间活化络合物的历程。
3)1950年代后,新的实验手段的利用,微 观反应动力学(分子反应动态学)得到 发展。
• 利用激光、交叉分子束等新实验手段,研究某 一量子态的反应物变化到某一确定量子态的产 物的速率及反应历程(态-态反应的层次);
应,反应速率越高。
过渡状态理论(活化络合物理论)
1930年艾林和佩尔采运用了量子力学方法提出:
碰撞理论把分子看成刚性球体,认为反 应是由于分子间发生突然的、不连续碰撞的 结果,这种形象过于简单化。过渡状态理论 纠正了这种形象,认为当具有足够能量的分 子彼此以适当的空间取向相互靠近到一定程 度时,会引起分子或原子内部结构连续性变 化,使原来以化学键结合的原子间的距离变 长,而没有结合的原子间的距离变短,形成 了过渡状态的构型,称为活化络合物。
化学动力学(chemical kinetics)
是研究化学反应速率(rate of reaction)和 反应机理(mechanism of reaction)的化学分支 学科。
化学动力学的主要内容 ➢确定化学反应的速率以及温度、压力、催化剂、 溶剂和光照等外界因素对反应速率的影响; ➢研究化学反应机理,揭示化学反应速率本质; ➢探求物质结构与反应能力之间的关系和规律。
药物代谢动力学研究内容
• 药物体内过程 : 机体对药物的处置 吸收(absorption) 分布 (distribution) 代谢(metabolism) 排泄 (excretion)
• 体内药物浓度(血药浓度)动力学规律
非管途径给药的药-时曲线
预测制剂中化学活性物质的稳定性 指导设计安全、稳定及有效的制剂处方 提出有关制剂正确的工艺技术及合适的
化学反应动力学-9-第九章-过渡态理论-PPT

Arrhenius活化能定义式:
Ea
RT
2
d ln k dT
据过渡态理论: k kBT K h
故有: ln k ln kB ln T ln K h
Ea
RT 2
1
T
ln K T
(4)
20
1. 恒压过程
ln K T
P
H RT 2
Ea
RT 2
1
T
ln K T
7
大家应该也有点累了,稍作休息 大家有疑问的,可以询
8
dN * eH / kBT dP1 dP3ndq1 dq3n / h3n
N
eH / kBT dP1 dP3ndq1 dq3n / h3n
分母:与反应物相联系的包含所有动量与坐标 值的积分,这个积分为反应物的配分函 数。
若反应物为A 和 B, 分母 QA V QB V ( QA、QB为单位体积配分函数,V为容器体积 )
一、过渡态理论热力学公式
k kBT QAB eE0 / RT (Eyring公式) h QAQB
定义: K QAB eE0 / RT QAQB
K :活化平衡常数。
( 作为不严格的考虑,K近似具有一般
平衡常数的特征。)
则 Eyring公式可写为: k kBT K (1)
h
18
据热力学公式:G RT ln K k kBT K (1)
dt
dt
QA QB
(1)
10
要获得反应的总速率,应对穿越分隔面的所有
空间积分,这个积分应是 P1 的所有正值。
对(1)式积分。得反应的总速率:
dN [A][B]
dt QA QB
{dq1 dt
化学反应动力学1PPT

与实验结果一致。 3、研究物质的结构和反应能力之间的关系。 研究化学反应动力学的最终目的是为了控 制化学反应过程, 以满足生产和科学技术的 要求。
9
四、动力学与热力学的关系
1. 对于一个实际应用的物( R P ) 则反应可实用 则反应不实用 • 若热力学√(rG 0),而且:
17
同一基元反应中的不同态态反应具有不同的热 力学和动力学性质。 例如, 0 K时: O(3P1) + H2(1Σ +g) OH(2Σ +) + H(2S1/2) Δ H = 380 kJ/mol O (3P1) + H2 ( 1Σ +g) OH (2П ) + H (2S1/2) Δ H = -5 kJ/mol O (1D2) + H2 ( 1Σ +g) OH ( 2Σ +) + H ( 2S1/2 ) Δ H = 200 kJ/mol O (1D2) + H2 (1Σ +g) OH (2П ) + H ( 2S1/2 ) Δ H = 185 kJ/mol
以溴化氢合成反应为例: 总反应 H2 + Br2 = 2 HBr 由以下基元反应所组成: Br2 2 Br Br + H2 HBr + H H + Br2 HBr + Br H + HBr H2 + Br 2 Br Br2
上述5个基元反应构成了溴化氢合成的反应 机理。
8
根据这一反应机理,可以得出其反应速率与 反应物浓度的关系为: (反应速率)∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]}
3
第一章 动力学基本概念 ( Basic Concepts of Kinetics )
9
四、动力学与热力学的关系
1. 对于一个实际应用的物( R P ) 则反应可实用 则反应不实用 • 若热力学√(rG 0),而且:
17
同一基元反应中的不同态态反应具有不同的热 力学和动力学性质。 例如, 0 K时: O(3P1) + H2(1Σ +g) OH(2Σ +) + H(2S1/2) Δ H = 380 kJ/mol O (3P1) + H2 ( 1Σ +g) OH (2П ) + H (2S1/2) Δ H = -5 kJ/mol O (1D2) + H2 ( 1Σ +g) OH ( 2Σ +) + H ( 2S1/2 ) Δ H = 200 kJ/mol O (1D2) + H2 (1Σ +g) OH (2П ) + H ( 2S1/2 ) Δ H = 185 kJ/mol
以溴化氢合成反应为例: 总反应 H2 + Br2 = 2 HBr 由以下基元反应所组成: Br2 2 Br Br + H2 HBr + H H + Br2 HBr + Br H + HBr H2 + Br 2 Br Br2
上述5个基元反应构成了溴化氢合成的反应 机理。
8
根据这一反应机理,可以得出其反应速率与 反应物浓度的关系为: (反应速率)∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]}
3
第一章 动力学基本概念 ( Basic Concepts of Kinetics )
反应动力学基础PPT课件

rkf(XA)kg(XA)
r 0
r (T)xA
f(XA)d dkT g(XA)d dkT
kf(XA)kg(XA)
放热反应
E<E
dk kE dT RT 2
dk kE dT RT 2
1 RT2
kf
(XA)R1T2
kg(XA)
( T r)xAR E2T kf(XA)R E2T kg(XA)
第20页/共85页
dk kE dT RT 2
RE2 T kf(XA)>RE2 T kg(XA)
( T r)xAR E2T kf(XA)R E2T kg(XA)
第19页/共85页
r >0 T X A
2.3 温度对反应速率的影响
Temperature Dependent Term of a Rate Equation
E
k Ae RT
第10页/共85页
2.3 温度对反应速率的影响
Temperature Dependent Term of a Rate Equation
kAexE p/R ( )T
k为反应速率常数,其意义是所有反应组分的浓度均 为1时的反应速率。
Where: E = activation energy (cal/mol) R = gas constant (cal/mol*K) T = temperature (K) A = frequency factor (units of A, and k, depend on overall reaction order)
1 RT2
kf
(XA)R1T2
kg(XA)
( T r)xAR E2T kf(XA)R E2T kg(XA)
第21页/共85页
化学动力学-反应机理与速率方程PPT课件

解:
dcO3 dt
k1cO3 cM k1cO2 cOcM k2cO3 cO
2k2cO3 cO
dcO dt
k1cO3 cM
k1cO2 cOcM
k2cO3 cO
0
k2cO3 cO k1cO3 cM k1cO2 cOcM
2O3 3O2
k1
O3 M k1
O + O3
O2 + O + M k2 2O 2
例:
CO Cl2 COCl2
Cl 2
k1 k1
2Cl
(快)
Cl CO M k2 COCl M (快) k2
COCl Cl2 k3 COCl2 Cl (慢)
例:
CO Cl2 COCl2
Cl
Cl 2
CO
k1 2Cl
M k1 k2 COCl
(快) M
(快)
k2
COCl Cl2 k3 COCl2 Cl (慢)
c N2O2
k1 k1
cN2 O
K ccN2 O
v k2KccN2OcO2 kcN2OcO2
k
k2 K c
d lnk
dT
d lnk2
dT
d lnKc
dT
Ea RT 2
E2 RT 2
U RT 2
Ea E2 U
反应机理中至少存在一个能快速达到 平衡的对峙反应;
由“慢反应”建立复合反应的速率方 程表达式(复合反应速率由慢速步骤 的速率决定) ;
由“对峙反应”解出活泼中间物的浓 度表达式;
求出复合反应速率系数和活化能。
平衡态处理法辨析 2O3 3O2
O3
M
k1 k1
反应动力学基础PPT课件

式为:
r dFA dW
8
第八页,课件共140页。
空速与接触时间
空速:单位反应体积所处理的混合物的体积流量。因 次为时间的倒数(1/h)。
VSP
VS 0 VR
计算空速时的体积流量一般使用标态体积,特殊说明时可 使用操作状态流量。也有使用摩尔流量的,称为摩尔空速。
是衡量反应器生产强度的重要操作参数。例如:氨合成反应, 压力为10Mpa时,空速为10000(1/h);而当压力为30Mpa时, 空速则为28000-30000(1/h)。
19
第十九页,课件共140页。
一氧化氮氧化动力学方程建立
由于第二步为速率的控制步骤因此有:
r k2C( NO)2Co2
第一步达到平衡,则 有: C( NO)2 K1CN2O
代入上式得
r k2 K1CN2OCo2 k2CN2OCo2
因此,当得到的速率方程与由质量作用定律得到的形式 相同,不能说明该反应一定是基元反应。但基元反应 的速率方程可用质量作用定律来表示。
20
第二十页,课件共140页。
例:反应机理分析
如果所得动力学实验结果与由所设的反应机理推导得到 的速率方程相符合,绝对不能肯定说所设的反应机理是 正确的。只能说明是一个可能的反应机理,因为不同的反应 机理完全可能推导出形式相同的速率方程 。
例如NO的氧化反应,如果机理为:
NO O2 NO3
例2.2
28
第二十八页,课件共140页。
例题计算结果
29
第二十九页,课件共140页。
2.3 温度对反应速率的影响
在幂函数型速度方程中,以反应速率常数k来体现 温度对反应速率的影响。对于一定的温度,反应 速率k为定值。通常用阿累尼乌斯方程表示反应速率 常数与温度的关系。即:
化学反应动力学基础NPPT课件
2
用热力学预见可以发生的,如在常温下氢气和 氧气反应生成水,但却因为反应速度太慢而事实上 并不发生。这是由于:化学热力学只讨论反应的可 能性、趋势与程度,却不讨论反应的速率。
而化学动力学则从动态的角度去研究化学反应。 研究反应速率及其所遵循的规律和各种因素对反应 速率的影响;研究物质的结构、性质与反应性能的 关系;揭示化学反应的机理,为最优化控制反应提 供理论依据。
r c(H2) / t r' c(N2) / t r'' c(NH3) / t
5
取一般通式:
r (1/n B )cB / t n B 是物质B在配平的化学方程式中的化学计量数。
化学计量数的数符规定反应物负值,生成物正值。
6
二、瞬时速率
时间间隔Δt 趋于无限小时的平均速率的极限。
rlimcB dcB t0 t dt
总反应级数——速率方程中各物质浓度的指数的 代数和。
17
如,对于速率方程:r kcA cB
若: =1,对反应物A为一级反应;
β=2,对反应物B为二级反应;
则 +β=3,总反应级数为3。 ,β必须通过实验确定。通常 ≠ a,β≠ b。
18
反应级数可以是整数,也可以是分数,也可以为零 (个别甚至可以是负数)。
1200 3.61104 5400
r:cN2O 5/s1
3.64104 3.62104 3.69104 3.61104 3.68104
13
N2O5的分解速率与N2O5浓度的比值是恒定的, 即反应速率 r 与 c(N2O5) 成正比。
即: rkc(N2O5)
14
对于一般的化学反应:
a A b B yY zZ
例: CO+Cl2===COCl2 r=kc(CO)c3/2(Cl2) 为2.5级 反应级数不同,k的单位不同。 k的单位:零级反应 mol·L-1 ·s-1;一级反应 s-1; 二级反应 (mol·L -1)-1 ·s-1。
《化学反应动力学》课件
反应活化能
反应活化能是使反应物通过反应过渡态的能垒。 它的高低决定了反应的速率和温度对反应速率 的影响程度。
反应级数与反应机理
反应级数指的是反应速率对各反应物浓度的指数。通过实验测定速率随浓度的变化规律,可以确 定反应级数并推断反应机理。
化学平衡和动力学的关系
化学平衡是指在闭合系统中,反应物与生成物浓度达到一定比例,反应速率 相等的状态。动力学研究反应速率,而平衡研究反应终点。两者密切相关, 但研究的角度不同。
反应程是描述反应速率与反应物
浓度之间关系的数学表达式。它的
形式由实验数据决定,允许我们推
断反应的机理和确定反应物底数。
3
反应速率
反应速率是单位时间内反应物消失 或生成的物质的数量的变化量。它 可以通过实验测量,并用数学模型 表示。
反应级数
反应级数是描述反应速率与反应物 浓度之间关系的指数。通过测定速 率对浓度的实验数据,可以确定反 应级数并推断反应机理。
应用和实例
化学反应动力学的研究对于了解和优化化学过程具有重要意义。它被广泛应 用于药物合成、环境保护、能源开发等领域。实例包括酶催化反应、催化剂 设计和反应动力学模拟等。
影响化学反应速率的因素
反应物浓度
反应物浓度的增加会增加 碰撞频率,从而提高反应 速率。
温度
提高温度会增加分子的平 均动能,促使反应物分子 更容易发生有效碰撞,从 而加快反应速率。
催化剂
催化剂通过提供新的反应 路径,降低反应活化能, 从而加速反应速率。
动力学常数与反应活化能
动力学常数
动力学常数是速率方程中的常数,代表了反应 速率与反应物浓度之间的比例关系。它的值由 实验测定。
《化学反应动力学》PPT 课件
《反应动力学基础》课件
实验结果。
B
C
D
结果应用与展望
探讨实验结果在实际生产和科研中的应用 前景和价值,同时提出进一步的研究方向 和展望。
结果比较与验证
将实验结果与已有的研究结果进行比较和 分析,验证实验结果的可靠性和准确性。
06
反应动力学的应用
在化学工业中的应用
化学反应过程优化
反应动力学基础能够帮助我们理解化学反应过程,从而优化反应 条件,提高产物的收率和选择性。
动力学的微分方程。
质量作用定律
02 根据质量作用定律,推导出反应速率与反应物质浓度
的关系式,进而得到微分方程。
平衡常数的影响
03
考虑平衡常数对反应速率的影响,将平衡常数纳入微
分方程的推导过程中。
微分方程的解法
分离变量法
通过分离变量法,将微分方程转化为多个常微分方程,简化求解 过程。
积分因子法
利用积分因子法,消除微分方程中的积分项,从而得到方程的解。
反应速率常数
总结词
反应速率常数是反应速率方程中的比例系数,表示反应速率 的大小。
详细描述
反应速率常数是化学动力学中的一个重要参数,它是反应速 率方程中的比例系数。它表示了在一定条件下,反应速率的 大小。反应速率常数越大,反应速率越快;反之,则越慢。
反应机理
总结词
反应机理是描述化学反应过程中各步骤的详细过程的模型。
详细描述
反应速率描述了化学反应的快慢程度,通常用单位时间内反应物或生成物的浓 度变化来表示。在单位时间内,反应物浓度的减少或生成物浓度的增加量即为 该反应的反应速率。
反应速率方程
总结词
反应速率方程是用来描述反应速率与反应物浓度的关系的数学表达式。
详细描述
B
C
D
结果应用与展望
探讨实验结果在实际生产和科研中的应用 前景和价值,同时提出进一步的研究方向 和展望。
结果比较与验证
将实验结果与已有的研究结果进行比较和 分析,验证实验结果的可靠性和准确性。
06
反应动力学的应用
在化学工业中的应用
化学反应过程优化
反应动力学基础能够帮助我们理解化学反应过程,从而优化反应 条件,提高产物的收率和选择性。
动力学的微分方程。
质量作用定律
02 根据质量作用定律,推导出反应速率与反应物质浓度
的关系式,进而得到微分方程。
平衡常数的影响
03
考虑平衡常数对反应速率的影响,将平衡常数纳入微
分方程的推导过程中。
微分方程的解法
分离变量法
通过分离变量法,将微分方程转化为多个常微分方程,简化求解 过程。
积分因子法
利用积分因子法,消除微分方程中的积分项,从而得到方程的解。
反应速率常数
总结词
反应速率常数是反应速率方程中的比例系数,表示反应速率 的大小。
详细描述
反应速率常数是化学动力学中的一个重要参数,它是反应速 率方程中的比例系数。它表示了在一定条件下,反应速率的 大小。反应速率常数越大,反应速率越快;反之,则越慢。
反应机理
总结词
反应机理是描述化学反应过程中各步骤的详细过程的模型。
详细描述
反应速率描述了化学反应的快慢程度,通常用单位时间内反应物或生成物的浓 度变化来表示。在单位时间内,反应物浓度的减少或生成物浓度的增加量即为 该反应的反应速率。
反应速率方程
总结词
反应速率方程是用来描述反应速率与反应物浓度的关系的数学表达式。
详细描述
最新第2章化学反应动力学ppt课件
当吸附和脱附达到动态平衡时有:rrard0
按照理想吸附层模型,净吸附速率为
r k ap A (1 rA ) rak d rA d0
上式称为Langmuir吸附(模型)速率方程, ka和kd 为吸附速 率常数和脱附速率常数。
A ka A
kd
化学吸附理论
rApAfAex p R E T kfAexpR EdT
理想吸附层模型
真实吸附层模型
r k ap A (1 A ) k dAr k r a a p A r e d x p ( gA ) k d e x p (hA )
气固相催化反应本征动力学
理想吸附层等温方程
当吸附达到平衡时
r r a r d 0 r a r d k a p A ( 1 A ) k d A
(2)双曲型动力学方程
如:氢气与溴反应生成溴化氢
(rHB)rk2k1C CH H2C B/B 1rC /22rB2r
实验得知 H2+Br2
2HBr
此反应系由以下几个基元反应组成:
实验得知H2和Br2反应生成溴化氢反应由几个基元反应组成
反应历程 (机理)
化学计量式仅表示参与反应的各物质间的量的变化关系,与实 际反应历程(反应机理无关)。
( 2 ) k 410 k 400
100000 10
e 8 .314 400 410
2 .1
( b ) E 2 150 kJ / mol
(1 ) k 310 k 300
E 21
k 0 e 310 R E2 k 0 e 300 R
E 2 300 310
e 7 R 300 310
气固相催化反应本征动力学
例如:有如下一A反应 B R
A ArA kaApAV kdAA B BrB kaBpBV kdBB A B R r kSAB kSRV R RrR kdRR kaRpRV 其中V为表面空白活性位,且 V=1-A B R
按照理想吸附层模型,净吸附速率为
r k ap A (1 rA ) rak d rA d0
上式称为Langmuir吸附(模型)速率方程, ka和kd 为吸附速 率常数和脱附速率常数。
A ka A
kd
化学吸附理论
rApAfAex p R E T kfAexpR EdT
理想吸附层模型
真实吸附层模型
r k ap A (1 A ) k dAr k r a a p A r e d x p ( gA ) k d e x p (hA )
气固相催化反应本征动力学
理想吸附层等温方程
当吸附达到平衡时
r r a r d 0 r a r d k a p A ( 1 A ) k d A
(2)双曲型动力学方程
如:氢气与溴反应生成溴化氢
(rHB)rk2k1C CH H2C B/B 1rC /22rB2r
实验得知 H2+Br2
2HBr
此反应系由以下几个基元反应组成:
实验得知H2和Br2反应生成溴化氢反应由几个基元反应组成
反应历程 (机理)
化学计量式仅表示参与反应的各物质间的量的变化关系,与实 际反应历程(反应机理无关)。
( 2 ) k 410 k 400
100000 10
e 8 .314 400 410
2 .1
( b ) E 2 150 kJ / mol
(1 ) k 310 k 300
E 21
k 0 e 310 R E2 k 0 e 300 R
E 2 300 310
e 7 R 300 310
气固相催化反应本征动力学
例如:有如下一A反应 B R
A ArA kaApAV kdAA B BrB kaBpBV kdBB A B R r kSAB kSRV R RrR kdRR kaRpRV 其中V为表面空白活性位,且 V=1-A B R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑴ 气-液相反应、流—固相反应
ri 1 dni S dt
S--反应表面积
a.对气---液相反应,S为相界面积
b.对流固相非催化反应,S为固体反应物表面积
c.对流固相催化反应,S为固体催化剂内表面积
4
(2)流---固相反应
ri 1 dni W dt
5
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
C C (1)基元反应
k
动力学平衡时: 1
k
C C 1
3 3
L
1 1
A
4 4
M
2 2
B
热力学平衡时:
CC CC Kc
L
M
L
M
A
B
A
B
12
等价比较得:
Kc
1
k1
1 k1
A,,2
2
B
3 3 L,, 4 4 M
(2)非基元反应
C C k
动力学平衡时: 1 k
C C 1
3 3
3
r 1 dnA A V dt
r 1 dnL L V dt
r 1 dnB B V dt
r 1 dnM M V dt
dnA : dnB : dnL : dnM A : B : L : M
因
rA rB rL rM
_
r
1
dni
故有: A B L M
iV dt
i
2. 多相反应速率表示方式
即R:i
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
P
对特定反应,且 P
10%
时可忽略P对ri的影
响 ri f T、C
则: 型)
(反应动力学模
型式: a. 幂函数型----经验模型
9
一、单一反应动力学方程
10
简单反应、并列反应、自催化反应
1.不可逆反应
例 1A1 2A2 3A3
C C C ri f T、C f 1T f 2C k
1 A1
2 A2
3 A3
通式: ri kim 1Ci i
对基元反应:i反 i反,i产 0
对非基元反应:i由试验测定
11
2.可逆反应
例 : AA BB LL MM
ri ri1 ri1
k1CA1CB2 CL3 CM4 k 1CA1CB2 CL3 CM4
Ri
Kg/m3 ---固体反应物或固体催化剂R的i 堆密r度i ,
8
2.复合反应
例
入Ri
对Q、P有rQ、rP 对 A、S 用 ri 无 法 描 述 , 引
对献复,合某反一应组需分R考i的虑 每m一组ij 分r_j 在整体反应中的贡 j 1
Ri的应代等数_于ij和按该组分计算的各个反应的反应速率
rj
L
1 1
A
4 4
M
2 2
B
L
M
K C C 热力学平衡时:
1
r
r
r
c
L
A
M
B
C Cr
r
A
B
13
等价比较得:
K 1/ r C
k1 k 1
1 1 2 2 3 3 4 4 1
A
B
L
M
r
3.控制步骤的化学计算数 r:
14
(1) r 概念:
例: N2 3H2 Fe 2NH3
反应步骤
7
对多相反应:
ri d Ni ;ri d Ni;ri d Ni
三者之关系: d VR
dS
dW
因 d W ρbd VR dS SrdVR
d Ni d VR
S r
d Ni dS
ρb
d Ni dW
Sr
式中:b ---单位堆体积固体或催化剂中反应的
表面积, m2/m3
复杂可逆反应中控制步骤的那个基元反应
所
进行的r次数
i
①1 M与反应机理和化学计量系数
有关
r
②
(活化分子数)
K1
r
K1 ;
(2)动力学参数和热力学K参数1 之间的关系:
1 E 1 E1 Qr MQr
r 15
二、复合反应动力学方程
16
1、平行(竞争)反应
r k A B 1 U
A1
B1
u
u
C C r r 1
a A
b
B;
1
u
u
r k C C r r A B 2 Q
A2
B2
Q
; Q
Q
2AB2
A转化速率R:A
“-”
mห้องสมุดไป่ตู้
j1
Aj
rj
A1
ru u
A 2
rQ Q
Q
m
R r r r B j1
Bj j
u
B1 u
Q
B2 Q
B转化速率R:u
“-”
m
j1
rUj j
u
ru u
二、连续流动系统反应速率表示方式 6
流动系统:
反应物料处于连续稳定流动状态,物料在反应器
内没有积累,物系参数随空间位置变化
表示方式: ri
dNi dVR
ri r 1 dNi
i
i dVR
V a、对气相反应,
R为反应器体积
b、对液相反应,VR为液相所占体积
V c、对气固相催化反应,
R
为催化剂堆体积
化学反应动力学课件
§1 化学反应速率的工程表示
一、间歇系统反应速率表示方式
间歇系统:非定态过程,反应器内物系参数随t变化
1.均相反应速率表示方式
例:均相反应 A A BB LL M M
r 定义:
1 dni i V dt
对等容过程: ri dCi dt
2
以不同组分为准表示的反应速率:
Aj j
A
A
1A
j 1
A
m
R r r r k C Q生成速率:
Q
Qj j
j 1
Q
Q
Q
Q
2
u
U转化速率m 或生成速率:
R r r
A Q U
U
r k C k C U
Uj j
U
U
1A
2U
j1
A
Q
A
Q
3.复杂反应
例:
18
r k C r
A1
1 A1
1
r k C r
基元反应
基元反应进行次数
I 1N 2 1 2K 1 2NK
1
II 3H2 3 2K 3 2HK
3
III 2NK 2HK 2NHK 2K
2
IV
2NHK 2HK 2NH2K 2K
2
V
2NH2K 2HK 2NH3 2 2K
2
N 2 3H 2 2NH3
r 的物理意义:
A2
3 A2
2
r k C r
A3
2 A1
3
r k C r
A4
4 A2
4
r k C r
A5
5 A5
5
m
R υ r r r k k C A1
A1
j 1
1 1
3 (
1
)
2 A1
j1
m
R υ r r r r k C k k C A2
A2
j 1
1 1
2 1
4
1
A 1 (
3
)
4 A2
j1
m
R r r r r k C k C k C
ru
k C C a b 1AB
m
R r
Q
r r k C C Q
Qj j
Q
Q
2AB
j1
Q
2.连串(串级)反应
17
例:
A 1
A
U 2
u
Q
Q
rA
r
,,, A
k C r 1
1A
1
A
rQ
2
k C 2U
,,,r2
rQ
Q
R r r r k C A转化速率:
m
A
A