ANSYS的船舶轴系振动校核计算案例
ANSYS在船舶轴系校中上的应用

ANSYS在船舶轴系校中上的应用作者:季晨龙来源:《科技与创新》2014年第11期摘要:对于船舶而言,航行的安全性和稳定性尤为重要,而轴系校中是确保船舶稳定运行的重要环节之一。
基于此点,阐述了对船舶轴系校中的必要性,并在基础上研究了ANSYS 在船舶轴系校中上的具体应用,以期能够对提高船舶轴系校中质量有所帮助。
关键词:船舶;ANSYS;轴系校中;质量中图分类号:U664.21 文献标识码:A 文章编号:2095-6835(2014)11-0065-021 对船舶轴系校中的必要性船舶轴系校中要按照一定要求和方法,将需要校中的轴系敷设成为某种状态,使其全部轴承上的负荷和各个轴段内的应力均在允许范围之内,借此来使其达到最佳数值,从而确保轴系正常运转。
如果船舶轴系校中不良,则会产生诸多危害,具体体现在以下几个方面:①增大螺旋桨轴承负荷,特别在轴承后端会出现过大局部负荷,加快轴承的磨损速度,进而造成轴承损坏;②减小前尾管轴承负荷,以产生非正负荷,促使轴承间距发生较大变化,在降低轴系回旋振动固有频率的作用下,极有可能出现回旋振动共振转速;③破坏前尾管轴承密封装置,磨损中间轴轴承,尤其是柴油机后1~3个主轴承有可能遭到损坏;④齿轮箱前轴承与后轴承的负荷差值增大,对建立油膜产生负面影响,造成齿轮啮合不良,严重情况下,还会产生轴承合金烧熔、推力轴承和推力块发热、齿击振动等,进而导致船体尾部振动。
基于上述原因,有必要对船舶轴系进行校中,特别是对超大型船舶,为了确保其正常稳定运转,必须采取科学的计算方法进行校中,避免因轴系校中不良造成严重后果。
2 ANSYS在船舶轴系校中上的具体应用研究2.1 ANSYS的基本假设采用ANSYS法对船舶轴系进行校中时,在具体编程前,需要对船舶轴系进行假设,以满足ANSYS的计算要求,需要进行假设以下几点内容:①连续性。
一般情况下,固体物质的颗粒间会存在一定的空隙,所以其不具备连续性的特征,但这种空隙相对比较微小,所以可忽略不计,因此,假定固体连续存在于整个体积当中。
船舶推进轴系扭转振动计算分析

作者签名: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保 留并向有关学位论文管理部门或机构送交论文的复印件和电子版, 允许论文被查 阅和借阅。 本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容 编入有关数据进行检索, 可以采用影印、缩印或扫描等复制手段保存和汇编本学 位论文。 本学位论文属于 1、保密囗,在 2、不保密囗 。 年解密后适用本授权书
关键词:扭转振动;轴系;霍尔茨法;MATLAB
-2-
武汉理工大学毕业设计(论文)
Abstract
Ship propulsion shafting is a complicated flexible system with multi-masses, whose function is mainly as follows: transferring the power generated by main engine to drive the propeller, so the thrust is born for ship moving. Propulsion shafting torsional vibration is one of the combustion engine power unit malfunction reasons. The torsional vibration aggravated problems can cause crankshaft, intermediate shaft, propeller shaft and other shaft segment fracture can cause gear wear, tooth surface pitting, coupler damage, excessive noise and other issues. These all affect the dynamic property and safety of ship driving, so the propulsion shafting torsional vibration research has very important significance. Having looked up to plenty of information, this paper is taking ship propulsion shafting as a researched object, gives a brief summary of principles and methods for research and study of torsional vibration. The main works are as follows: (1)Establish a lumped parameter model for various parts of the ship shafting to transfer the complex shafting to a simple model: homogeneous rigid disc elements, no inertia damping elements, no inertia torsion spring elements. (2)Do the study or research about the theory of the inherent characteristics of torsion vibration (natural frequencies and mode shape) in ship propulsion shafting torsional vibration calculation. Comparing different characteristics and applicable features by their calculation process. (3) Verify the correctness of the methods used by modeling specific real ship
基于ANSYS的滚装船超长轴系扭转振动仿真计算

基于 ANSYS的滚装船超长轴系扭转振动仿真计算摘要:针对包含调距桨液压控制装置及抱轴式轴发的滚装船超长轴系扭转振动计算的问题,通过ANSYS软件对其进行了模态分析和谐响应分析。
模态分析的结果表明在0-300Hz内OD-BOX轴、轴发转子处以及两根中间轴的连接处容易出现较大的扭转振动变形,所有扭转振动的固有频率均高于其设计频率,在轴频激励下不会出现共振,同时扭转振动的最大振动应力均小于许用应力,满足设计的要求。
谐响应分析的结果表明在整个轴在160Hz处扭转振动最为剧烈。
关键词:滚装船; 扭转振动; ANSYS; 模态分析; 谐响应Simulation of shaft torsional vibration of long shafton Ro-Ro ship based on ANSYSWei Dong-liang,Ge Ji-huanChina Merchants JinLing shipyard (Nanjing) CO.,LTD., JiangsuNanjing 210015Abstract:For the purpose of the torsional vibration calculationof long shaft with controllable-pitch propeller hydraulic controldevice and shaft generator on Ro-Ro ship, the modal and harmonic response analysis were carried out by ANSYS. The modal analysisresults show that the OD-BOX shaft, the shaft generator rotor and the joint of two intermediate shafts are easy to deform in 0-300Hz. All natural frequencies of the torsional vibration are higher than design frequency. There will be no resonance under shaft frequency excitation. The maximum vibration stress of torsional vibration is less than theallowable stress, which meets the design requirements. The harmonic response analysis results show that the shaft has the maximumtorsional vibration at 160Hz.Key words:Ro-Ro ship; Torsional vibration; ANSYS; Modal analysis; Harmonic Response0引言扭转振动是船舶轴系的振动形式之一,由于弹性作用,在其旋转的过程中,各组成部件之间会而产生大小、相位不相同的瞬时旋转速度的差异,从而产生沿旋转方向的来回扭动。
4振动分析ANSYS算例

4振动分析ANSYS算例UNIT 4 振动分析ANSYS应⽤实例【ANSYS应⽤实例4.1】桥梁结构的振动模态分析【ANSYS应⽤实例4.2】卫星结构的振动模态分析学习要点:【ANSYS应⽤实例4.3】⼤型模锻液压机机架的振动模态分析(3梁2⽴柱的3D结构)【ANSYS应⽤实例4.1】桥梁结构的振动模态分析针对静⼒分析ANSYS算例中的⼩型铁路钢桥的桁架结构,进⾏振动模态的分析和计算。
【建模要点】X采⽤【ANSYS应⽤实例 1.2】中的模型和相应的约束条件,在此基础上采⽤命令< ANTYPE,2>设置模态分析类型、采⽤命令< MODOPT >设置分块Lanczos法进⾏模态分析;Y进⼊后处理,采⽤命令< SET,LIST >列出所计算出的前各阶固有频率,然后采⽤命令< ANMODE >以动画⽅式显⽰每⼀阶固有频率所对应的振型。
解答:以下为基于ANSYS图形界⾯(GUI)的菜单操作流程;注意:符号“→”表⽰针对菜单中选项的⿏标点击操作。
1 基于图形界⾯的交互式操作(step by step)⾸先利⽤【ANSYS应⽤实例1.2】中已建⽴的模型和相应的约束条件,即前8步,在此基础上完成模态分析如下。
(1)~(8)与【ANSYS应⽤实例1.2】完全相同。
(9)设置分析类型为模态分析Main Menu: Solution → Analysis Type → New Analysis → ANTYPE: Modal →OK(10) 采⽤分块Lanczos法提取前10阶模态Main Menu: Solution → Analysis Type → Analysis Options → Mode extraction method: Block Lanczos , No.of modes to extract: 10 → OK → OK(11)求解Main Menu: Solution → Solve → Current LS →(弹出⼀个对话框)OK →(求解完成后,弹出⼀个对话框Solution is done!)Close →(关闭信息⽂件右上⾓的X)/ STATUS Command(12)列出前10阶固有频率Main Menu: General Postproc → List Results → Detailed Summary前10阶固有频率如下:***** INDEX OF DATA SETS ON RESULTS FILE *****SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1 49.674 1 1 12 74.797 1 2 23 156.97 1 3 34 200.44 1 4 45 253.34 1 5 56 280.88 1 6 67 322.24 1 7 78 359.48 1 8 89 382.20 1 9 910 449.79 1 10 10(13)对于线型单元(如杆、梁)按实体效果进⾏显⽰(以3倍⽐例)Utility Menu: PlotCtrls → Style → Size and Shape → ESHAPE: [9]ON, SCALE:3 → OK(14)调⼊第⼀阶固有频率Main Menu: General Postproc → Read Results → First Set(15)在显⽰时将变形形状与原型⼀起显⽰Utility Menu: Plot → Results → Deformed Shape → KUND: Def+undeformed →OK(16)以动画⽅式显⽰对应的阵型Utility Menu: PlotCtrls → Animate → Mode Shape → No. of frames to create: 10 , Time delay(seconds): 0.5 ,Display Type: DOF solution , Def+undeformed → OK(18) 退出系统ANSYS Utility Menu: File → Exit…→ Save Everything → OK桥梁结构的第1阶振型及第10阶振型见图4-1及图4-2。
基于ANSYS的船舶轴系校中优化计算

维普资讯
基于 A S S N Y 的船舶轴系校中优化计算 王金娥 间轴 9 30m, . 支承轴承包括前 、 艉管轴承 , 7 后 中 间轴承, 推力轴承和 5 个主机轴承, 各轴承支承刚
度 5 0 / 。 ×19 m N
文件应该参数化建立模 型, 参数化提取变量并设 定状态变量和目标函数 ;
() 明优化变量 , 4声 选择优化工具或优化计 算方法 , 指定优化循环控制方式 , 进行优化分析 ; () 5 查看设计序列结果和分析结果。 优化设计数据的流 向见 图 2 N Y 优化设 。A S S 计计算方法有零 阶方法 、 一阶方法 、 随机搜索法 、 等步长搜索法 、 乘子计算法 和最优梯度法。一 阶 方法将真实的有限元结果最 小化 , 而不是对其进 行逼近数值操作 , 计算精度高 , 因此这里采用一阶
主要 约束 条件 有
Rfi ≤ R ≤ R a x
i ≤ ≤
化计算方法, 讨论 了船舶轴系合理校 中的最优化 设计 。
随着计算机技术 和有 限元理论的发展及广 泛应
用, 出现 了很多通 用有限元 计算软 件, A SS 如 NY 、 艇℃,A' A N SR N等, I 为工程设计和计算提供 了支持。
支反力 、 最大支反力 ; f P 、 P f ~ 分别为轴 承 i 的最小 比压 、 比压 、 最大 比压 ; 、一 分别为尾管 0 后轴承支点处的转角 、 最大允许转角。
1 轴 系校 中优化 计算模 型
1 1 目标 函数 .
2 轴 系校 中有 限元模型
以一大型船舶的推进轴 系为研究对象 , 系 轴
了详细 的建摸过程 和优化计算 步骤 , 通过 工程 实例 验证 了该 方法 的适用 性 , 并 对工 程设计 具 有一 定 的指 导
ANSYS环境中的船舶推进轴系冲击动力学仿真计算

ANSYS环境中的船舶推进轴系冲击动力学仿真计算许庆新1沈荣瀛1臧述升2(1. 上海交通大学振动冲击噪声国家重点实验室,上海,200030,2.上海交通大学动力机械与工程实验室,上海,200030)摘要:本文提出了一种基于ANSYS环境的船舶推进轴系冲击动力学计算的方法。
首先采用有限元方法,把连续轴系离散成由二维梁单元构成的离散质量系统,轴承座处理成弹性约束的边界条件,螺旋桨简化为集中质量,求得轴系弯曲振动的固有频率和固有振型。
然后在垂向加速度冲击输入条件下,求解轴系任意点处的位移响应,以及轴承支承处的冲击应力。
通过一个工程计算实例,说明该方法的适用性。
关键词:推进轴系、冲击响应、仿真计算Simulation of Shock Dynamics of Ship Propulsive Shafting UsingANSYSXU Qingxin1 SHEN Rongying1 ZANG Shusheng2(1.Shanghai Jiaotong University State Key Laboratory of Vibration Shock Noise, Shanghai,200030 2.Shanghai Jiaotong University Power Mechanical Engineering Laboratory,Shanghai, 200030)Abstract : This paper discusses the method of simulation of shock dynamics of ship propulsive shafting by use of ANSYS. According to Finite Element Method, continuous shafting is considered as a discrete mass system in terms of 2D beam element, bearing block is considered as elastic constraint condition, and the propeller is simplified lumped mass, so the natural frequency and natural mode of flexural vibration of shafting can be calculated. Then, shock response of propulsive shafting and shock stress of bearing block under vertical acceleration shock can be computed. Finally, the practical engineering calculation example illustrates the availability of the proposed method.Keywords : propulsive shafting, shock response, simulation computing1 前言:船舶推进轴系是船舶动力系统的一个重要组成部分,它包括从主机输出端推力轴承直到螺旋桨之间的传动轴及轴上附件。
基于ANSYS的80FT游艇结构强度校核分解

青 岛 科 技 大 学 本 科 毕 业 设 计 (论 文)题 目 ____________________________________________________________________指导教师__________________________辅导教师__________________________学生姓名__________________________学生学号________________________________________________________学院 ____________________________专业________________班______年 ___月 ___日基于ANSYS 的80FT 游艇结构强度分析 辛峻峰 赵悦 1205080225 机电工程 船舶与海洋工程 船舶122 2016 6 61绪论1.1研究背景纵观全世界,在游艇行业有着一个多元化而且广阔的市场前景,而游艇的价格也是不等的,可根据人们需要进行设计建造,其价值也是根据人们需求所赋予的。
世界众多富豪钟与超级豪华游艇,而普通的钓鱼船,休闲艇则是大多数中层社会人士喜欢的。
北美占世界游艇市场份额的55.9%,大多数游艇销售单价在1.5万-5万美元之间,豪华游艇的销量只占 2.5%;欧洲市场是较为广泛的游艇销售市场,其中主要销售的也只是豪华类游艇,平均的销售价格大约为10万美元,合70万人民币。
目前,欧美游艇价格已经进一步滑落。
在美洲,大约有1700万家庭有游艇,但是这之间大多数都是帆船,所占比例为70%,中小型游艇占80%,这些中小型游艇都是5万美元左右的。
这几年美洲的游艇销售平均价格为3万美元,折合人民币不到20万,而欧洲的中小型游艇以及帆船也占了84%的比例。
1.2研究方向在本文中,参照《游艇入级与建造规范(2012)》对所需要校核的船体进行校核检验,主要涉及的是船体物理强度的验证。
船舶轴系扭转振动校核及案例分析

99/0
4
1
0.123
2.539E-07
99/0
5
1
0.153
2.491E-07
99/0
6
1
0.153
2.539E-07
99/0
7
1
0.123
2.539E-07
99/0
8
1
0.153
1.474E-07
99/0
9
1
2.348
1.493E-05
0/0
10
1
0.038
1.143E-06
52/0
11
1
0.117
46
中国水运
第 21 卷
根据《钢质内河船舶建造规范》(2016),案例船有 6 缸, 应计算航行工况和离合器脱开工况及在这两种工况下每一缸 熄火工况的扭振计算。通过 COMPASS 软件的计算,得出上 述工况下的曲轴扭转振动应力、中间轴扭转振动应力、螺旋 桨轴扭转振动应力、齿轮啮合处振动扭矩、弹性联轴器振动 扭矩。
3.704E-07
82/71.5
12
1
0.041
0
0/0
13
1
0.077
1.585E-07
73/0
14
1
0.013
0
0/0
15
1.733
0.022
1.608E-06
70/0
16
1.733
0.021
1.315E-06
75/0
17
1.733
0.032
4.957E-06
100/0
18
1.733
0.040
5.364E-05
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文尝试对轴系元件进行简化,并进行轴系振动的校合计算。
通过和以往计算方法的比较,我们认为运用ANSYS进行船舶轴系振动计算,方法简单、方便、迅速,计算结果和分布趋势是合理的,误差也在工程允许的范围以内。
运用ANSYS进行船舶轴系的振动校合计算在工程上是完全适用的。
本文介绍了ANSYS的船舶轴系振动校核计算案例
摘要:本文利用大型商用有限元计算软件ANSYS,进行船舶轴系的振动校合计算。
首先通过适当简化各种轴系元件,对船舶轴系部分进行几何建模,对轴系本体部分采用三维B EAM188梁单元模拟,对弹性支承的轴承部分采用COMBINE14弹簧单元模拟,对螺旋桨部分采用MASS21质量单元模拟。
然后确定出轴系计算的边界条件,进行模态分析,就可以得到轴系振动的各阶固有频率和固有振型(包括横向振动、纵向振动和扭转振动),以及模态参与因子。
通过一个实际船舶轴系振动的计算,说明该方法的适用性。
关键词:船舶轴系、振动校合计算
1 概述
船舶轴系是由推力轴、中间轴、艉轴、推力轴承、滑动轴承、联轴节、螺旋桨等组成的复杂系统,在船舶运行过程中,它会发生弯曲振动现象,对船舶正常运行产生不利影响。
船舶轴系振动有三种类型:由旋转轴不平衡引起的横向振动,可以是垂直方向的,也可以是水平方向的,会造成艉管密封漏水或漏油,轴承座松动,甚至破裂;由螺旋桨推力不均匀引起的纵向振动,情况严重时可以造成推力轴承敲击,曲柄箱破裂,有齿轮传动时,还会损坏齿轮;此外,从主机通过轴系传递功率至螺旋桨造成轴段来回摆动,各轴段间的扭角不相同,从而产生扭转振动,破坏的结果是轴系断裂,有齿轮传动时,会造成齿轮敲击。
因此,在船舶设计过程中,有必要对船舶轴系进行振动校合计算。
对于轴系这样的复杂结构,运用有限元方法进行振动计算具有明显的优越性。
本文针对上海交通大学和某造船厂共同设计开发的46000吨集装箱船,应用ANSYS有限元软件6. 0版本对其传动轴系进行振动校合计算,为进一步的设计提供参考。
ANSYS是美国ANSYS公司开发的大型通用有限元分析软件,它具有结构静力分析、结构动力分析、瞬态分析、模态分析、流体动力学分析、电磁场分析等多种功能。
本文即是利用ANSYS软件的模态分析功能,完成对船舶轴系这一复杂结构的建模和有限元分析。
实践证明,这种方法可以有效的提高工作效率,缩短分析周期,对工程实际是非常有效的。
2 轴系计算的有限元模型
进行校合计算的46000吨集装箱船,采用的是瓦西兰公司的32缸柴油发动机组,发动机输出法兰通过齿轮箱变速后,和中间轴连接,中间轴和艉轴之间有联轴节。
中间轴长3. 68m,外径0.4m,无轴承支承。
艉轴长5.3m,外径0.48m,前后分别有两个轴承,前轴承宽0.48m,后轴承宽1.08m,轴承刚度由轴承说明书给出。
中间轴和艉轴中都布置有润滑系统。
螺旋桨是变距螺旋桨,总重14500kg。
根据实际需要,只需对船舶轴系的自由振动情况进行
校合计算,不考虑受迫振动情况。
所以在轴系的有限元建模中,只保留从齿轮箱输出法兰到螺旋桨部分的轴系。
根据轴系的实际结构,建模过程中进行了以下简化:
对轴系本体部分采用BEAM188梁单元模拟。
BEAM188单元是三维梁单元,每个节点具有六个自由度:UX、UY、UZ、ROTX、ROTY、ROTZ,可以满足各种振动计算的要求。
设置不同的梁截面,可以模拟不同直径的轴结构。
考虑到润滑系统的布置,这里都设置为内径100外径不同的环形截面。
对弹性支承的轴承部分采用COMBINE14弹簧单元模拟。
COMBINE14通常是一维线性弹簧单元,可以分别有三个方向的自由度UX、UY、UZ,只沿弹簧方向传递力。
由于轴承有一定的宽度,可以有力矩作用,所以考虑在轴承部分的每个节点上都设置弹簧单元,来模拟力矩对轴承的影响。
由于是一维弹簧单元,所以考虑在轴的水平和垂直方向分别设置两个弹簧,来分别模拟轴承部分在Y向和Z向的弹性。
所以最后是在轴承部分的每个节点上有两个弹簧单元,弹簧单元一端直接连接在轴的节点上,一端设置为固定端。
在轴系和齿轮箱法兰的连接处,考虑存在弹性连接,所以在纵向上设置一个弹簧单元来模拟纵向的弹性连接,弹簧的刚度由经验数据给出。
在水平和垂直方向上也设置两个弹簧,来模拟齿轮箱法兰对轴系的支承作用。
对联轴节部分,为了计算方便将其同样简化为梁单元,梁单元的内径不变,只是将梁单元的外径适当放大,来模拟这部分的强度。
对螺旋桨部分,将艉轴部分适当延长来模拟螺旋桨部分的长度,将螺旋桨的质量加上附水质量(变距桨按30%的螺旋桨干质量计算)简化为集中质量,集中质量直接加在螺旋桨的几何中心位置。
经过以上简化处理,可以建立轴系的有限元计算模型,见图1。
轴系共有节点63个,其中方向节点27个,BEAM188梁单元27个,采用了5种不同的截面形状,COMBINE14弹簧单元15个,MASS21质量单元1个。
材料的弹性常数为:弹性模量E=2.1 x 1011 N/m2,泊松比μ=0.3,密度ρ=7.8 x 10 3g/m3。
图1 船舶轴系的有限元计算模型
3 轴系横向振动的计算
轴系横向弯曲振动计算中,假设轴承的刚度在各个方向上是相同的,轴系在水平和垂直方向上的振动是相同的,所以只计算垂直方向的振动。
ANSYS模态分析中,BEAM188单元只保留UY、ROTZ自由度,其他自由度都去掉。
模态分析后可以得出各阶固有频率,各节点的相对位移值、转角值,各单元的弯矩值、剪力值。
如果在模态分析的结果上,作垂直方向上的谐响应分析,就可以得到各阶模态对应的模态参与因子。
横向振动的固有频率见表1。
第一阶固有频率14.286Hz下的参数值见表2。
前两阶的计算结果图示如下,见图2-9。
表1 横向振动的固有频率
表2 横振频率f=12.83494 Hz时的参数值
4 轴系纵向振动的计算
轴系纵向振动计算中,BEAM188单元只保留UX自由度,其他自由度都去掉。
和横向振动类似,进行模态分析,就可以得到各阶固有频率和模态参与因子,各节点的相对振幅,各单元的轴向力。
5 轴系扭转振动的计算
轴系扭转振动计算中,BEAM188单元只保留ROTX自由度,其他自由度都去掉。
和横向振动类似,进行模态分析,就可以得到各阶固有频率,各节点的扭转角、扭角力矩。
6 计算结果的分析和小结
ANSYS软件为船舶轴系振动计算结果分析提供了强有力的后处理功能。
一方面,可以用列表方式查询各阶频率下节点和单元的参数值,这对考察轴系在某一频率下的强度和安全性很有帮助。
另一方面,可以用彩色云图的方式显示计算结果的分布情况,这对于船舶结构的进一步设计具有重要的指导意义。
从轴系的振动有限元分析过程可以知道,几何建模是整个分析的关键环节,建立的模型是否合适,是否和实际情况一致,特别是模型简化,必须符合实际情况,不应该改变整个结构的物理特性,否则就会造成比较大的误差。
在以上轴系振动计算中,进行了很多简化和假设,可能会影响计算结果。
例如,假设轴承的刚度在各个方向是相同的,但实际上船舶上的滑动轴承的刚度在水平和垂直方向是不相同的,轴的中心环绕旋转中心的轨迹是椭圆而不是圆形;假设轴是简支在轴承支座上,轴承支座是绝对刚性的,但是如果轴的直径相当粗,轴和支座的刚度就可能是一个数量级,
这样系统的总刚度就降低了;轴承间隙会降低固有频率;由于船的航速变化及吃水深度的不同,附水质量实际上也是一个变数;对艉轴轴承,特别是靠近螺旋桨的最后一道轴承,由于受到较大的螺旋桨悬臂的力矩,受力不均匀,所以是倾侧的,轴承和轴不可能均匀的全部接触,这也影响了固有频率计算的准确。
因此,轴系元件的合理简化是轴系振动计算中最为困难的事。
本文尝试对轴系元件进行简化,并进行轴系振动的校合计算。
通过和以往计算方法的比较,我们认为运用ANSYS进行船舶轴系振动计算,方法简单、方便、迅速,计算结果和分布趋势是合理的,误差也在工程允许的范围以内。
运用ANSYS进行船舶轴系的振动校合计算在工程上是完全适用的。