第四章金属自由电子理论

合集下载

金属自由电子理论

金属自由电子理论

多尺度模拟与计算
总结词
多尺度模拟与计算是金属自由电子理论的另一个重要 发展方向,能够综合考虑不同尺度的物理效应和相互 作用。
详细描述
金属自由电子理论涉及多个尺度和多个物理效应的相 互作用,因此多尺度模拟与计算在该领域具有重要意 义。通过结合微观尺度和宏观尺度的方法,可以更全 面地理解金属材料的性质和行为,为实际应用提供更 准确的预测和指导。例如,在材料性能模拟、器件设 计和优化等方面,多尺度模拟与计算具有广泛的应用 前景。
应用领域
01
02
03
物理学
金属自由电子理论在物理 学领域中广泛应用于描述 金属的物理性质,如热导 率和电导率等。
材料科学
在材料科学领域,金属自 由电子理论用于研究和理 解金属材料的各种性质, 如合金的组成和性质等。
工程应用
金属自由电子理论在工程 应用中也有广泛的应用, 如电子器件的设计和制造 等。
波函数与电子云
01
波函数是描述电子在空间中分布的函数,它可以用来计算电子 在某一点出现的概率。
02
在金属中,由于存在大量的自由电子,每个电子的波函数都与
其他电子的波函数相互重叠,形成了所谓的“电子云”。
电子云描述了电子在金属中的概率分布,对于理解金属的性质
03
如导电、导热等具有重要意义。
04
金属自由电子理论的计 算方法
无序性
自由电子在金属中的运动是无序的,不受单个原子或 分子的限制。
能量多样性
自由电子具有不同的能量状态,取决于其运动速度和 方向。
自由电子的分布与运动
分布
在金属中,自由电子的分布遵循 费米分布函数,取决于温度和费
米能级。
运动
自由电子在金属晶格中以波矢k描 述的运动状态,可以通过薛定谔方 程描述。

《自由电子论》课件

《自由电子论》课件

自由电子的散射和碰撞
自由电子在固体中的运动受到晶格 振动的影响,会发生散射和碰撞
散射和碰撞也会影响自由电子的传 输和输运性质
添加标题
添加标题
添加标题
添加标题
散射和碰撞会导致自由电子的能级 发生变化,影响其分布
散射和碰撞是自由电子论中重要的 物理过程,对理解固体中的电子行 为具有重要意义
Part Four
金属导电的应用: 金属导电广泛应 用于电力传输、 电子设备等领域
自由电子的应用前景
半导体材料:自由 电子在半导体材料 中的运动和相互作 用,是半导体器件 工作的基础。
超导材料:自由电 子在超导材料中的 运动和相互作用, 是超导现象的基础。
磁性材料:自由电 子在磁性材料中的 运动和相互作用, 是磁性现象的基础 。
子云
自由电子的浓度和能量分布
自由电子的浓度:在金属中,自由电子的浓度与温度和压力有关,温度越高,浓度越大。 自由电子的能量分布:自由电子的能量分布遵循费米-狄拉克分布,能量越高,电子数越少。 自由电子的能级:自由电子的能级由电子的波长和能量决定,能级越高,电子的波长越短。 自由电子的散射:自由电子在金属中会发生散射,散射会导致电子的能级和浓度发生变化。
自由电子在电磁场 中的行为
自由电子在电场中的行为
自由电子在电场中受到电场力的作用,产生加速度,从而改变运动方向和 速度。
自由电子在电场中运动时,会与电磁波相互作用,产生能量交换和散射等 现象。
自由电子在电场中可以表现出波动性和粒子性,其行为与经典粒子不同, 需要用量子力学描述。
自由电子在电场中的行为与材料性质、温度、电磁波频率等因素有关,可 以用于研究物质的光电性质和电子输运等问题。
Part Three

第四章金属自由电子论

第四章金属自由电子论
第四章 金属自由电子论
4.1 经典自由电子论(Drude-Lorentz) 4.2 量子自由电子论(Sommerfeld ) 4.3 金属的热容和顺磁磁化率 4.4 金属的电导率和热导率 4.5 金属的热电子发射和接触电势 4.6 金属的交流电导率和光学性质 4.7 Hall效应和磁致电阻
参考:阎守胜书 第一章 黄昆 书 6.1,6.2 p275 Kittel 8版第6章
Wiedemann-Franz 定律 : LT
=
κ
σ
或:=L
= κ σT
π2
3
kB e
2
4. 载流子浓度与温度无关; 5. 在可见光谱区有几乎不变的强的光学吸收;反射率大或
说有金属光泽。 6. 有良好的延展性,可以进行轧制和锻压。
关于金属的理论必须以全面和谐的解释上述性质为准。
高纯Cu的热导率和电导 率的温度依赖性:
一.金属中自由电子的运动状态: Sommerfeld认为,电子气应该服从量子力学规律,在保留
独立电子近似和自由电子近似基础上应通过求解薛定愕方程给 出电子本征态和本征能量,从而来解释金属性质。
我们把自由电子气等效为在温度 T=0K,V =L3 的立方体 内运动的 N个自由电子。独立电子近似使我们可以把 N个电子 问题转换为单电子问题处理。
速度为:
u=
1
u1
=
1 aτ
=
−1
el
E
22
2 mv
假定: v >> u1
所以:
j
= −neu
= ne2
l
E
2m v
σ = ne2 l
2mv
平均自由程 l 与温度无关,而公式中的热运动速度, v ∝ T

(完整版)第四章金属自由电子理论

(完整版)第四章金属自由电子理论

第四章 金属自由电子理论1.金属自由电子论作了哪些假设?得到了哪些结果?解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。

根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。

2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关?解:金属自由电子论在k 空间的等能面和费米面都是球形。

费米能量与电子密度和温度有关。

3.在低温度下电子比热容比经典理论给出的结果小得多,为什么?解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

4.驰豫时间的物理意义是什么?它与哪些因素有关?解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。

驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。

5.当2块金属接触时,为什么会产生接触电势差?解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。

试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。

解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 …………………………(2) 又由于 mk E 222η=所以 mkdk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmL E 22)(ηπρ= (4)(2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L ηπ=240FmE L ηπ由此可得: 222208mL N E Fηπ= (7)(3)在0=T K 时,晶体电子的平均能量为: ⎰∞=0)()(1dEE E Ef N E ρ=dE EmL E N FE 2210⎰⋅ηπ=230)(232F E m N L ηπ=022223124F E mL N =ηπ 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E +=η。

自由电子论

自由电子论

ne2 1 0 ' i " m 1 i 1 i
0

ne2
m
其中 0 是直流电导率。以上推导见阎守胜书 p22

'

1
0 2
2
,
"

0 1 2
2
,
实数部分体现了与电压同位相的电流,也就是产生焦耳热
的那个电流,而虚部则体现的是与电压有 2 位相差的电流, 也就是感应电流。

—— Richardson-Dushman公式
其中
A


mekB2
2 2 3
W V0 EF0
在上面的推导中,用到两个积分公式:
exp
mv
2 y
2kBT
dvy

exp

mvz2 2kBT
dvz

2 kBT
i t

H



0
i


E t
故相对介电常数为:r

0

1

i
0

将上面求出的交流电导率代入该式,有:

r r ' ir " 1 0
0 1 2 2
i
0
0 1 2 2
示为: Ey E0 exp i qx t
运动方程的稳态解为:
e 1 v y m 1 it E y
电流密度 jy n e vy
ne2 1 0 ' i " m 1 i 1 i

4金属自由电子论基础

4金属自由电子论基础

第四章金属自由电子论材料科学与程学院材料科学与工程学院凌涛内容提纲内容提1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差内容提纲内容提1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差4.1经典自由电子论-特鲁德模型特鲁特(Drude)模型当金属原子凝聚在一起时,原子封闭壳层内的电子和原子核一起在金属中构成不可移动的离子实;原子封闭壳核起在金中构成移动的离实闭壳层外的电子会脱离原子而在金属中自由地运动。

这些电子构成自由电子气系统,可以用理想气体的运动学理论进行处理。

该模型有如下假设:(1)电子在没有发生碰撞时,电子与电子、电子与离子之()间的相互作用完全被忽略。

电子的能量只是动能。

4.1经典自由电子论-特鲁德模型(2)电子只与离子实发生弹性碰撞,电子与离子的碰撞过离实碰撞离碰撞程用平均自由时间τ和平均自由程l来描述。

τ表示一个电子与离子实相继作两次碰撞所间隔的平均时间;l是电子在平均两次相继碰撞之间的平均飞行距离。

(3)电子气是通过和离子实的碰撞达到热平衡的,碰撞前后电子速度毫无关联,运动方向是随机的,速度是和碰撞发生处的温度相适应的,其热平衡分布遵从波尔兹曼统计。

内容提纲1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差4.2量子自由电子论索末菲模型金属中自由电子的运动应服从量子力学规律和相应的能量分布规律。

价电子在金属内恒定势场中彼此独立地自由运动,只是在金属表面处被势垒反射。

求解电地自由运动只是在金属表面处被势垒反射子运动的薛定谔方程,得到电子所允许的波函数和能量分布状态。

量分布状态4.2量子自由电子论-电子的波函数周期性边界条件:假设在三维空间有无限多个三维限度都是L 的势井相连接在各个势井的相应位置上电子波函数相等的势井相连接,在各个势井的相应位置上,电子波函数相等。

总的边界条件为:(0,,)(,,)0y z L y z ψψ=⎫⎪(,0,)(,,)(,,0)(,,)x z x L z x y x y L ψψψψ=⎬⎪=⎭空间电子态空间电子态:由波矢K 所代表的自由电子可能的空间运动状态。

金属自由电子经典理论

金属自由电子经典理论

金属自由电子经典理论
• 金属中的正离子形成的电场是均匀的,价电子不被原子所 束缚,可以在整个金属中自由地运动,形成自由电子。这 些电子起着导电和导热的作用,他们的行为像理想气体一 样,故被称作自由电子气体,其运动规律遵循经典力学气 体分子的运动定律。 • 在没有外电场作用时,金属中的自由电子沿着各方向运动 的几率相同,故不产生电流。当施加外电场后,自由电子 获得附加速度,于是便沿外电场方向发生定向迁移,从而 形成电流。自由电子在定向迁移过程中,因不断与正离子 发生碰撞,使电子的迁移受阻,因而产生了电阻。
金属自由电子经典理论的产生背景
18世纪末: 1、人们已熟悉金属导电和导热特性,但是还不具备解释这 些传导电子是如何形成和运动的理论基础。 2、1897年汤姆逊发现金属中存在电子(e/m测定)。
3、分子运动论处理理想气体十分成功。
金属自由电子经典理论的提出
•1900年,特鲁德首先将金属中的价电子与理想气体类比,提 出了金属电子气理论,即认为金属中存在有自由电子气体。 •1904年,洛伦兹将麦克斯韦-玻尔兹曼统计分布规律引入电 子气,据此就可用经典力学定律对金属自由电子气体模型作 出定量计算. •这样就构成了特鲁德-洛伦兹自由电子气理论,称为经典自 由电子理论.
金属中自由电子在电场中的运动
当金属中有电流时,每个自由电子都因受到电场力的作用而 加速,即在无规则的热运动上叠加一个定向运动。
自由电子在运动过程中频繁的与晶格碰撞,碰后电子向各个 方向运动的几率相等,因此可认为每个电子在相邻两次碰撞 间做初速度为零的匀加速直线运动。 大量自由电子的统计平均,就是以平均定向漂移速度逆着电 场线方向漂移。
电导率σ的推导
设导体内的恒定电场为 ,则电子的加速度为
v0 电子两次碰撞的时间间隔为t,上次碰撞后的初速度为

第4章 金属自由电子论

第4章 金属自由电子论

Z
Ae
L
K为波矢,A由归一化条件决定。 3 1 2 A L V 决定这一状态的能量为:
L L
Y
X
2K 2 2 2 2 2 E kx k y kz 2m 2m


11
《固体物理学》 微电子与固体电子学院
4.2 量子自由电子论
Z
由周期性边界条件:
L
(0, y, z ) ( L, y, z ) ( x, o, z ) ( x, L, z ) ( x, y , o ) ( x, y , L)
《固体物理学》 微电子与固体电子学院
28
4.2 量子自由电子论
电子平均能量为:
K BT 3 0 2 E EF K BT 0 E 5 4 F
第一项为绝对零度时的电子平均能 量;第二项为热激发能.每个电子获 得的热能为KBT 。
《固体物理学》 微电子与固体电子学院
2
2 (r ) [ E V (r )] (r ) 0 2m
《固体物理学》 微电子与固体电子学院 9
4.2 量子自由电子论
用近自由电子近似来处理金属电子,作为零级近似,可以
把金属看成是一个边长为L的立方体,根据金属自由电子理
论的基本观点。由于电子被限定在金属中,所以,可以认 为金属中的电子是在一个无限深方势井中运动,势能函数为:
29
4.2 量子自由电子论
4.2.4 费米面
k空间中,能量为EF ,即半径为
面,kF就是费米半径。 T = 0 时,费米面内,都被电子填满。面外为空态;T > 0 时, 有部分电子从 EF内 kT范围激发到EF外 kT 范围内。
3/ 2
《固体物理学》 微电子与固体电子学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dE
之间时,
k
空间中,在半径为
k

k

dk的两球
面之间所含的状态数为:
dZ '

4k 2dk k

Vc 8 3
4k 2dk

1 2
(
2m 2
)
3
2
E
1 2
dE
考虑自旋的二重简并dZ 2dZ '
(E)
所以: ( E )

Vc 2 2
(
2m
)
3
2
E
1 2

1
CE 2
其中
C

及其缺陷。
1)由Drude模型导出了欧姆定律,并得到电导的定量表达式,在 解释碱金属的导电性上取得了完全的成功
但是,按Drude模型,碱土金属(二价)的自由电子密度n为碱金属 (一价)的两倍,由式(1-6),电导率σ也应高一倍。但实际上, 碱土金属的导电性不及碱金属,说明Drede模型的局限性。
1
3 维德曼一夫兰兹定律 Wiedemann-Franz Law
k
0 F

3n 2
3
由电子动量
k
0 F
mvF0
得绝对零度时的费米速度矢为: vF0

k
0 F
m
与费米能量对应的热运动温度称为费米温度,记为
所以绝对零度时的费米温度为:
TF0

EF0 kB
TF
.有: kBTF0

EF0
例如铜:铜是面心立方晶体,晶格常数 a 3.611010 m .
每个铜原子电离时放出一个自由电子,所以铜的电子浓度为:
1 E EF
f
(E)

1 02
E EF E EF
费米分布曲 线
kBT 0 kBT 1 kBT 2.5
绝对零度下

E
0 F
N f (E)(E)dE (E)dE
0
0
EF0
CE
1
2 dE
0

2 3
C(EF0
3
)2
2
EF0

(3 2
N C
2
) 3
2 2m

3N Vc
2
3


2 2m
(3n
2
)
2 3
E 1 N

EdN

0
1 N
EF0
E (E)dE
0

1 N
E
0 F
0
3
CE 2dE

3 5
E
0 F
在绝对零度下,电子的平均动能与费米能有相同的数量级(经典理
论得到的结果为零),原因在于电子服从泡利不相容原理,绝对零 度时,不可能发生所有电子都集中在最低能态上的情况.
作定向加速运动,加速度
a eE / me (1-3)
驰豫时间
平均定向速度
e V E
2me
(1-4)
设电子密度为n,则电流密度j为
电导率 电阻率
j neV ne2 E 2me
(1-5)
ne2 (1-6)
2me
1/
(1-7)
、 是材料常数,只取决于n和 ,n取决于价电子结构, 取决于晶体结构
dE
E
|0

2 3

C
0
3
E2
f
(E)dE

0
I 0 g (EF
)

I1g(EF
)

I 2 g ( EF
)


g(EF
)

2 6
(kBT
)2
g(EF
)
f (E)
I0
dE 1 E
0
I1



f (E) E
(E

EF
)dE
0
令 E EF
kBT
则 f (E) E
4.2.2 费米面
费米面:波矢空间中,被电子占据的状态与未被电子占据的状态的
分界面(E=EF ).
对于自由电子,费米面为球面.费米面上的电子的能量称为费米能,对应的波矢为 费米波矢,对应的电子的速度为费米速度.
2

EF0

2 2m

3N Vc
2
3


2k
2 F
2m
1
得绝对零度时的费米波矢为:

(2 )3 8 3
k kxk ykz Lx Ly Lz Vc
3
能量
E

2
22
( nx2

n
2 y

nz2 )
m L2x L2y L2z

2 22 mL2
(nx2

ny2

nz2 )
电子的状态密度:单位能量间隔内电子状态数目.
(E)

dZ dE
电子能量在
E与E

系统中电子总数:N

f (E)(E)dE
0
4.2.1 绝对零度时的费米能EF0
a. kBT 0 b. kBT 1 c. kBT 2.5
f (E)
1

陡变
E EF E EF
0 E EF
1 E EF
f
(
E
)

1 02
E EF E EF
个金属中象理想气体分子一样自由运动,能量 连续分布,遵循M-B统计规律。 • 忽略点阵上正离子电场的细节,而当作一 个均匀的正电场,但电子可与阵点上的离子发 生碰撞。 • 这个模型成功地解释了金属的导电性、导热性、 电导与热导之间的关系等。
2 欧姆定律

j E
(1-1)
在电场中,电子受电场力 f eE (1-2)
三维无限深势阱中

V
x,
y,
x



0 当0 x, y, z L 当x, y, z 0及x, y, z L
薛定谔方程:
2 2 E
平面波形式的解
:
2m

(r
)


eikr
0


其中 r 为电子的位置矢量,k 为波矢量.

E 2k 2
p

k
1853年G.Wiedmann和R.Franz从大量实验中总结出: 在不太低的温度下, 金属的热导率K与电导率σ之比与温度成正比,比例系数是一个与具体金属 无关的常数,称为Wiedemann-Franz定律。
K CT
(1-8)

3
在温度T,每个电子具有的能量 2 kbT
dT
—,如果沿金属中某方向,例如x方向,存在温度梯度
碰撞才失去这种“定向”运动。设驰豫时间为 ,则电子在此热
力学力作用下的平均定向速度为:
V 3 kb dT 4 me dx
(1-9)
负号表示运动速度指向温度降低的方向。
则金属中的热流密度 q 为:
q

n

3 2
kbT
V


n 2
(
3 2
)
2
kb2T
dT dx
/ me
K dT dx

(r (r

Lx Ly
) )


(r ) (r )



(1) (2)
(r Lz ) (r ) (3)
将周期性边界条件(1)式代入金属电子的波函数得:
e 1 (1同)在i理k波x有L矢x:kk空zy 间 每22LLyz个nn(yz波,,knn矢zyx )状002,,态Lx11代,,n表22x,点,,n占x 有的0体,积1,为2:,
T e
1 12
1905年Lorentz讨论气体中两种分子质量相差很大的情形,将它用于金属( 由电子——轻分子;离子——重分子),得到
K

2
kb
2
T e
(1-12“)
等式右边具体的数值并不重要,重要的是它是与具体金属无关的常数,这 就解释了Wiedemann-Franz定律。
注意:费米温度并不是电子系统的真正温度,只是与费米能相当的热运动温度.
4.2.3 低温时的费米能EF
当 T 0K ,但 kBT EF 时,分布在各个能级上的电子总数可表示为:

1
N CE 2
0
先求积分I:I (EF )
f
(E)dE

2
3
CE 2
f
(E)
3

f (E)
g(E)
Vc 2
2
(
2m
)
3
2
O
E 自由电子的状态密度曲线
4.2 自由电子的能量和比热容
电子气中的粒子满足泡利不相容原理,服从费米—狄拉克
统计,在平衡时,能量为E的能级被电子占据的几率为:
f (E)
1
EEF
——费米分布
e kBT 1
EF 费米能量或化学势,物理意义:体积不变时,系统 增加一个电子所需的自由能.它是温度和电子数的函数.
第四章 金属自由电子理论
4. 0 经典电子理论 4.1 电子气状态的描述 4.2 自由电子的能量和比热容 4.3 电子气的电导和热导 4.4 电子热发射和接触电势差 4.5 霍耳效应和自由电子气模型的局限性
相关文档
最新文档