飞机大型覆盖件的数字化成形制造技术

飞机大型覆盖件的数字化成形制造技术
飞机大型覆盖件的数字化成形制造技术

《冲压工艺及模具设计》大作业大型覆盖件成型工艺及模具

姓名:吴显浩

班级:成型072

成绩:

飞机大型覆盖件的数字化成形制造技术

飞机作为一种常见的航空工具,其制造技术复杂,工艺流程多,零件数目巨大,而其最主要的外部构件却是整体成型,然后组装起来成飞机表面的覆盖件,其在飞机制造行业的学名是蒙皮。蒙皮是构成飞机气动外形的外表零件,其尺寸大、品种多、外形复杂、批量小,主要采用拉伸成形工艺,其先进程度是衡量一个国家飞机制造能力和水平的重要标志。

现代制造技术的普及使数字化成形制造技术在航空制造领域不断推广和应用,使飞机蒙皮从传统的经验型向科学型制造模式转变。飞机蒙皮数字化成形工艺是一个综合CAD工艺设计系统、CAE仿真分析、数控柔性工装、数字化测量和CAM数控成形技术等先进制造技术而成的数字化生产制造技术。

基于数字化柔性工装的飞机蒙皮数字化成形制造技术,是基于柔性多点拉形模具、柔性夹持定位和数控切边构成的可重构柔性工装的全数字量传递的蒙皮制造技术。

其主要的工作流程如下所述:

一、模具型面CAD工艺设计系统

在蒙皮的常规制造工艺中,包括设计模具型面、编制工艺流程、制造拉形模具、拉形、测量、切边等工序,其中模具型面的设计是整个工艺流程的关键环节,其需要根据蒙皮零件形状增加工艺补充面,设计模具型面,为拉形模具的制造提供依据。

国内外CAE软件固化了零件模具设计及成形仿真流程,用户能方便地操作从零件几何数据导入、模具生成到成形仿真CAE等固化流程。为了规范化、流程化整体化蒙皮模具的设计流程,提高快速研制、加工和生产的能力,我国科学家综合多年的飞机蒙皮拉形工艺研究工作,构建了蒙皮CAD工艺设计系统框架,继而通过艰苦的努力,基于法国达索公司的CATIA 软件CAA平台,开发了模具型面CAD数字化工艺设计系统。

二、蒙皮拉形CAE仿真及回弹补偿优化技术

蒙皮拉形过程的数值模拟分析,可以方便快速地确定各种参数对金属塑性流动的影响,预测蒙皮零件在成形中是否产生起皱、破裂等缺陷,计算回弹对零件形状、尺寸的影响,为设计者提供了进行工艺分析和模具设计的科学依据,减少或消除试拉和反复调形次数、改善产品质量,为传统制造模式向数字化方向转变奠定了基础。

在蒙皮拉形仿真软件方面,北京航空航天大学的蒙皮拉形仿真软件STRETCHFORM,对蒙皮拉形过程进行有限元数值模拟分析。在可重构柔性模具蒙皮拉形工艺中,利用柔性模具的快速调形和可重构性,优化模具型面,补偿回弹,实现蒙皮零件的精密拉形。北京航空航天大学板料成形研究中心基于现有的向前回弹法和位移调整法开发了基于可重构柔性模具的蒙皮拉形工艺仿真系统,实现了有限元建模过程的自动化和智能化,提高了模拟效率,从而快速地对蒙皮拉形过程中可能出现的成形缺陷进行预测,通过调整柔性模具型面,修正零件回弹,减少或消除试拉和反复调形次数,为飞机蒙皮从传统制造模式向数字化制造模式的转变提供了技术保障。

三、基于可重构柔性模具的飞机蒙皮数控拉形

可重构柔性模具由有限个可调整的单元集组成,通过调整每个调形单元的高度构成所需零件的包络曲面,以此替代实体模具进行成形。柔性多点成形作为一种柔性、高效的全新的板材成形模式,并有减少模具数量,缩短制造周期,减少投资和占地等优点,但其目前有以下关键技术亟需突破:

1)大量密集多点冲头快速精密调整和多轴数字智能伺服集成控制技术;

2)带弹性垫层的柔性多点模具拉形工艺及蒙皮表面质量控制技术;

3)数值模拟、工艺优化和模具型面预测技术;

4)横具型面优化和贴模精度主动控制技术;

5)蒙皮数字化制造系统集成技术。

近年来,我国科学家已突破了飞机蒙皮CAD数模工艺补充面的自动生成技术,实现了钉高调形数据的自动生成,解决了大量密集冲头的实时、并行控制等关键技术,开展了基于弹性垫层、复合垫层的蒙皮拉形工艺研究,建立了—套基于可重构柔性多点模具的飞机蒙皮数字化拉形试验系统。

四、基于离线测量的闭环形状控制模面优化技术

4.1 离线测量技术

基于可重构柔性多点模具成形的蒙皮零件,由于取消了实体模具,传统检测方法不再适用需用非接触光学测量法进行测量。这种测量技术能计算出被测点在视觉坐标系中的空间坐标,获得零件被测区域的密集空间点云,并依此进行曲面重构。

4.2 闭环形状控制技术

CAE仿真分析优化由于没有考虑实际机床和材料等性能的波动,蒙皮拉形所得到的零件外形必然与理论外形存在误差,这就需要用闭环形状控制对成形误差进行自动修正。板材闭环形状控制的基本原理是将自动控制理论中闭环反馈控制的思想引入到板材成形领域,利用先进的控制技术解决板类件精确成形的问题。

将以上两者结合起来,用基于离线测量闭环形状控制的柔性模具型面优化设计方法,构建闭环形状控制系统,通过设计变形传递函数,迭代计算出获得所需零件外形的柔性模具优化型面,实现蒙皮贴模精度的主动控制。

五、柔性夹持蒙皮数控切边技术

利用柔性夹持定位工装,在五坐标势控铣切设备上进行切边,是近年来国外发展的飞机会皮数字化切边的一项新技术。柔性夹持蒙皮切边技术,是采用离散的带真空吸盘的立柱阵列调形拟合窒皮的三维外形,即以点代面,精确牢固地夹持蒙皮零件、立体定位,与龙门式五坐标数控蒙皮铣切设备配套使用,实现零件外形边缘的立体精确切边、多台阶化铣刻线等。与传统的利用样板划线剪切切边工艺方法相比,吸盘式柔性夹持蒙皮切变技术具有明显的优点。

飞机蒙皮制造技术是一项全新的高科技技术,该技术的不断深入研究,将大力推进国内飞机制造技术的数字化,精准化,柔性化水平。

参考文献

1 邹方,新一代飞机蒙皮拉伸成形柔性多点模具,航空制造技术,2007年第11期:30~33.

2 李东升,罗红宇,王丽丽,张文阳,李小强,飞机蒙皮的数字化成形制造技术,塑性工程学报,2009年2月第16卷 1期:82~87

3 姜奎华,冲压工艺与模具设计,机械工业出版社,1998年5月第一版:186~190

数字化设计与制造技术大作业

数字化设计与制造技术大作业 1.数字化设计与制造技术的定义和内涵、意义?它的流程是? 定义---通俗地说:数字化就是将许多复杂多变的信息转变为可以度量的数字、数据,再以这些数字、数据建立起适当的数字化模型,把它们转变为一系列二进制代码,引入计算机内部,进行统一处理,这就是数字化的基本过程。计算机技术的发展,使人类第一次可以利用极为简洁的“0”和“1”编码技术,来实现对一切声音、文字、图像和数据的编码、解码。各类信息的采集、处理、贮存和传输实现了标准化和高速处理。数字化制造就是指制造领域的数字化,它是制造技术、计算机技术、网络技术与管理科学的交叉、融和、发展与应用的结果,也是制造企业、制造系统与生产过程、生产系统不断实现数字化的必然趋势,其内涵包括三个层面:以设计为中心的数字化制造技术、以控制为中心的数字化制造技术、以管理为中心的数字化制造技术。 其数字化设计的内涵是支持企业的产品开发全过程、支持企业的产品创新设计、支持产品相关数据管理、支持企业产品开发流程的控制与优化等,归纳起来就是产品建模是基础,优化设计是主体,数控技术是工具,数据管理是核心。 订单确认->概念设计/总体设计->零件设计、部件设计、关键件设计->二维工程图->工艺编制、工装设计->工艺汇总与生产准备->采购清单和生产加工->产品装配->安装维护 2.请简述CAD、CAE、CAPP、CAM的定义、功能、发展趋势,并举例说明它们中几个常用的软件? 1. CAD---计算机辅助设计 CAD在早期是英文Computer Aided Drawing (计算机辅助绘图)的缩写,随着计算机软、硬件技术的发展,人们逐步的认识到单纯使用计算机绘图还不能称之为计算机辅助设计。真正的设计是整个产品的设计,它包括产品的构思、功能设计、结构分析、加工制造等,二维工程图设计只是产品设计中的一小部分。于是CAD的缩写由Computer Aided Drawing改为 Computer Aided Design,CAD也不再仅仅是辅助绘图,而是协助创建、修改、分析和优化的设计技术。 2. CAE---计算机辅助工程分析 CAE (Computer Aided Engineering)通常指有限元分析和机构的运动学及动力学分析。有限元分析可完成力学分析(线性.非线性.静态.动态);场分析(热场、电场、磁场等);频率响应和结构优化等。机构分析能完成机构内零部件的位移、速度、加速度和力的计算,机构的运动模拟及机构参数的优化。 3. CAM---计算机辅助制造 CAM(Computer Aided Manufacture)是计算机辅助制造的缩写,能根据CAD模型自动生成零件加工的数控代码,对加工过程进行动态模拟、同时完成在实现加工时的干涉和碰撞检查。CAM系统和数字化装备结合可以实现无纸化生产,为CIMS(计算机集成制造系统)的实现奠定基础。CAM中最核心的技术是数控技术。通常零件结构采用空间直角坐标系中的点、线、面的数字量表示,CAM就是用数控机床按数字量控制刀具运动,完成零件加工。 4. CAPP---计算机辅助工艺规划 世界上最早研究CAPP的国家是挪威,始于1966年,并于1969年正式推出世界上第一个CAPP系统AutoPros,并于1973年正式推出商品化AutoPros 系统。美国是60年代末开始研究CAPP的,并于1976年由CAM-I公司推出颇具影响力的CAP-I's Automated Process Planning系统。

数字化设计及仿真

数字化设计及仿真 祝楷天 (盐城工学院优集学院江苏盐城224051) 摘要:制造业信息化的发展促使许多企业建立起了相应的CAD/CAM软件环境平台,并应用CAD/CAM软件进行产品的设计、分析、加工仿真与制造,取得了显著的效果。利用计算机辅助设计和制造(CAD/CAM)软件系统来完成机床夹具设计过程是加速夹具设计效率、提高设计质量的一种重要手段。但现有的通用CAD/CAM软件没有针对机床夹具设计的完整技术手册资料和三维标准件图库系统,设计人员仍然需要使用传统的纸质工具手册书籍进行资料查询和标准件三维实体图绘制工作,影响了机床夹具设计的效率和质量。因此,研究机床夹具数字化设计手册软件和三维标准件图库系统对满足数字化时代工程技术人员的需要具有重要的作用。 关键词:机械产品;数字化;设计仿真。 Digital design and simulation ZHU Kai-tian (UGS College,Yancheng Institute of Technology,Yancheng,Jiangsu 224051)Abstract: The development of manufacturing industry has led many enterprises to set up the corresponding CAD/CAM software environment platform, and the application of CAD/CAM software for product design, analysis, processing simulation and manufacturing, has achieved remarkable results. Using computer aided design and manufacturing (CAD/CAM) software system to accomplish machine tool fixture design process is an important means to accelerate fixture design efficiency and improve design quality. But the existing general CAD/CAM software does not have the complete technical manual data and the 3D standard part library system for the machine tool fixture design, the design personnel still need to use the traditional paper tools manual books to inquire and the standard piece three-dimensional entity chart drawing work, has affected the efficiency and the quality of the machine tool jig design. Therefore, it is important to study the software and 3D standard part library system of the digital design of machine tool fixture to meet the needs of engineering and technical personnel in the digital age. Keywords: Mechanical products, Digitization , Design simulation.

快速成形技术的快速模具制造技术(doc 6)

快速成形技术的快速模具制造技术(doc 6)

基于快速成形技术的快速模具制造技术 一、引言 近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键 快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。 以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。 二、基于RPM的快速模具制造方法 模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。而基于RPM技术的RT直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。 1. 用快速成形机直接制作模具 由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受30 0℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

数字化制造技术在工厂中的应用

数字化制造技术在工厂中的应用 数字化制造是对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及原型制造的技术。文章以宁夏某机床数字化制造工厂为例,简要介绍数字化制造的必要因素,以及数字化制造较之传统制造业的优势。 数字化制造是指将信息技术用于产品设计、制造以及管理等产品全生命周期中,以达到提高制造效率和质量、降低制造成本、实现快速响应市场需求的目的,所涉及的一系列活动的总称。数字化制造的提出是根据虚拟制造的原理,通过提供虚拟产品开发环境,利用计算机技术和网络技术,实现产品生命周期中的设计、制造、装配、质量控制和检测等各个阶段的功能,达到缩短新产品上市的时间、降低成本、优化设计、提高生产效率和产品的质量。 在传统的机械加工过程中,机械的生产往往以流程为核心,不同的加工流程在不同的设备上运行,流程之间区分明确。但在市场经济的新形势与新技术的冲击之下,功能单一的传统设备正在被具有复合加工能力的加工中心逐渐取代。高速化、复合化、自动化、数字化的机械加工是未来加工行业的发展趋势。 我国的数字化制造技术目前处于快速发展阶段,国内一系列较大型数字化工厂已经建成或处于规划建设阶段,如长春奥迪数字化汽车生产中心,成都西门子工业自动化产品生产及研发基地,北京石油机械厂新厂区等。本文以宁夏某机床数字化制造工厂为例,旨在说明数字化制造技术在现代化工厂中的实际应用。 在数字化制造中,通过建模与仿真技术模拟制造、生产和装配过程,设计者可以在计算机中“制造”出产品,通过揭示制造工艺过程的本质,获得知识及进行制造工艺自主设计和优化控制的能力。而数字化制造实现需要四个要素:数字化生产设备,数字化产品数据,网络化工作环境与智能化管理软件。 生产设备的数字化至关重要:即使有再好的环境网络,没有生产设备的实时信息,其信息化管理的程度也会大打折扣。管理者必须尽可能实时掌握生产的动态,并及时做出反应,所以对现场的生产设备进行实时的掌控,就成为了数字化工厂管理的一个前提条件。 数字化的产品数据,并不是简单的将企业产品图纸、工艺文件、技术资料的管理记录转换成电子表格,而是要建立起一个关系型的数学模型,以数据流作为不同模块之间的沟通渠道。从产品的设计开始,就做好与PDM数据管理系统集成、建立数据共享。数字化的产品结构是数字化制造的前端,这部分的核心在于CAD、PDM软件和技术的应用,解决“做什么”的问题,一切的生产经营活动都是围绕其进行的。 整个的生产经营活动是围绕产品展开的,管理的对象自然也是产品,所以产

飞机数字化装配技术发展与应用

龙源期刊网 https://www.360docs.net/doc/7118585234.html, 飞机数字化装配技术发展与应用 作者:赵鹏 来源:《科学与信息化》2017年第33期 摘要数字化技术的应用是飞机研制发展史上的一次重大飞跃。数字化装配技术由数字化装配工艺技术、柔性工装技术、激光检测与补偿技术、数字化钻铆技术、数字化数据管理以及集成技术等组成,是机械、电子、控制、计算机等多学科交叉融合的高新技术。本文就飞机数字化装配技术发展与应用进行了讨论。 关键词飞机;数字化装配技术;发展;应用 1 数字化装配 数字化装配是现代航空制造企业装配技术的发展方向。从20世纪90年代开始,国外的波音、空客等先进航空制造企业陆续开发和应用了三维虚拟制造软件,多以飞机装配典型结构为应用对象,建立飞机装配的数字化设计制造模式和数字化协调技术体系,利用网络技术及数字化技术,建立工艺设计流程,实现3D装配工艺设计及验证、仿真,实现车间、工厂布局数字化及仿真,实现现场工人操作的可视化等[1]。 2 飞机数字化装配技术国内发展现状 国内的飞机装配,虽然在局部上也采用了较为先进的技术,如采用catia技术进行了包括建立型架标准件库和优化型架及参数设计,对工装、工具和产品的装配过程进行了三维仿真等,开始采用激光测量+数控驱动的定位方式,部分机型还采用了自动钻铆技术等,但总体上与发达国家相比还存在较大差距,具体表现在:①飞机设计制造仍主要采用串行模式,工装、工艺设计与产品设计脱节,制造模式未真正实现到并行模式的转换,导致飞机装配协调困难、返工率高;②尚未实现人机交互的装配仿真以及装配路径的优化;③仍然采用以专用工装为主的刚性定位装配方式,导致飞机制造成本居高不下;④数字化装配应用规模有限,尚未实现一个完整型号真正意义上的全面数字化[2]。 3 飞机数字化装配技术应用 3.1 数字化定位技术 以数字化为基础的定位技术包括数字测量定位技术、特征定位技术、柔性定位技术等。数字测量定位技术是指针对飞机产品的结构特点、定位要求,借助数字化测量设备或系统进行飞机零部件的定位;特征定位技术利用数字化定义、数控加工的具有配合关系的配合面、装配孔或工艺凸台、工艺孔等设计或工艺特征,实现零件之间的相互定位,保证装配的一致性和高装配质量;柔性定位技术是指通过采用柔性工装满足不同产品的定位需要。随着飞机装配质量越来越高的要求,数字化定位技术已经成为飞机零部件高效、高精度定位的重要保障。

三维建模数字化设计与制造

附件4:山西省第九届职业院校技能大赛(高职组) “三维建模数字化设计与制造”赛项规程 一、赛项名称 赛项名称:三维建模数字化设计与制造 赛项组别:高职组 赛项归属产业:加工制造类 二、竞赛目的 本项竞赛旨在考核机械制造、数控技术应用等机械类相关专业的学生,组队完成三维逆向扫描、逆向建模设计、机械创新设计、数控加工技术应用等方面的任务,展现参赛队选手先进技术与设备的应用水平和创新设计等方面的能力,以及跨专业团队协作、现场问题的分析与处理、安全及文明生产等方面的职业素养。引领全省职业院校机械制造类专业将新技术、新工艺、新方法应用于教学,加快校企合作与教学改革,提升人才培养适应我国制造业更新换代快速发展的需要。 三、竞赛内容与方式 (一)竞赛内容 竞赛内容将以任务书形式公布。 针对目前批量化生产的具有鲜明自由曲面的机电类产品(或零部件)进行反求、建模,并对产品(或产品局部)外形进行数控编程与加工,对无自由曲面的结构或零件根据机械制造类专业知识按要求进行局部的创新(或改良)设计。 整个竞赛过程,分为第一阶段“数据采集与再设计”和第二阶段“数控编程与加工”这两个可以分离、前后又相互关联的部分,分别为60%和40%的权重。 1、第一阶段:数据采集与再设计 该阶段竞赛时间为3小时,竞赛队完成三项竞赛任务。

任务1:样品三维数据采集。利用给定三维扫描设备和相应辅助用品,对指定的外观较为复杂的样品进行三维数据采集。该模块主要考核选手利用三维扫描设备进行数据采集的能力; 任务2:三维建模。根据三维扫描所采集的数据,选择合适软件,对上述产品外观面进行三维数据建模。该模块主要考核选手的三维建模能力,特别是曲面建模能力; 任务3:产品创新设计。利用给定样品和已经完成的任务2内容,根据机械制造知识,按给定要求对样品中无自由曲面部分的结构或零件或附属物进行创新设计。该模块主要考核选手应用机械综合知识进行机械创新设计的能力。 2、第二阶段:数控编程与加工 竞赛时间为3小时,竞赛队完成两项竞赛任务。 任务4:数控编程与加工。赛场提供第一阶段被测样品的标准三维数据模型,选手根据这组三维模型数据和赛场提供的机床、毛坯,选择合适软件对该产品进行数控编程和加工。主要考核选手选用刀具,以最佳路径和方法按时高质量完成指定数控加工任务。并考核选手工艺编制、程序编制、机床操作等方面的能力。 任务5:职业素养。主要考核竞赛队在本阶段竞赛过程中的以下方面: (1)设备操作的规范性; (2)工具、量具的使用; (3)现场的安全、文明生产; (4)完成任务的计划性、条理性,以及遇到问题时的应对状况等。 (二)竞赛方式 1、竞赛采用团体赛方式。 2、竞赛队伍组成:每支参赛队由2名正式学生比赛选手组成,其中队长1名。每队设指导教师2名。

大飞机数字化设计制造技术

2011年第30 期 ● 当前飞机数字化设计制造技术正在全球航空业展开,软件设计与开发、全数字化环境的建立、产品数据管理技术、数据交换技术、飞机构形定义及控制等相关技术的发展,将带给航空制造业一次革命性的大变革。现代飞机产品制造过程的实质,是对一个产品进行并行协同的数字化建模、模拟仿真和产品定义,然后对产品的定义数据从设计的上游向零件制造、部件装配、产品总装和测量检验的下游进行传递、拓延和加工处理的过程。最终形成的飞机产品可以看作是数据的物质表现。 1.数字化制造的概念 数字化设计与制造是在虚拟显示、计算机网络、快速原形、数据库和多媒体支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真和原形制造,进而快速生产出达到用户要求性能的产品的整个制造过程。 所谓数字设计与制造实际上就是对设计与制造过程进行数字化的描述中建立数字空间,并在其中完成产品制造的过程。数字化环境建立在计算机数字技术、网络信息技术和制造技术不断融合、发展和应用的过程里,也是制造企业、制造系统和生产系统不断实现数字化的必然。个人、企业、车间、设备、经销商和市场成为数字化环境的若干节点,而产品在设计、制造、销售过程中所赋予的数字信息则成为数字化环境中的变化因素。 飞机设计与制造业的数字化表现为采用计算机软、硬件技术,以网络为基础,以数据库为平台;在飞机产品从采办一研制一设计一制造一交付一培训一维护一报废的全生命周期中,以CAD/CAM/CAE 为节均涉及飞机设计、实验的数字化生产流程建立在制造信息支持系统和数字控制制造技术体系之上。 波音777飞机开发、研制、制造一次试飞成功的根本途径就是采用数字化技术和并行工程。飞机设计制造过程中,零部件采用三维数字化定义、数字化预装配,以精益制造思想为指导。例如波音747-400液压管路系统、767-200RB211三维数字样机及制造、737-500三维生产过程、V-22管路电缆协调验证、767-200飞行舱三维制造过程、767-20043段三维设计和制造过程、77741段驾驶舱100%三维设计过程等生动说明了数字化飞机设计与制造的优越性。 2.数控加工的技术需求 2.1典型零件的数控加工技术 飞机对接部位和活动面处的多体接头类零件加工要求比较高,而新型材料技术的发展和飞机整体强度重量比技术要求的不断提高,对数控加工技术要求不断提高。如典型的整体零件包括机翼蒙皮壁板、机身蒙皮壁板、机翼大梁、翼肋等,零件除轮廓尺寸外,还呈现多槽腔、单侧或多侧理论外形等结构特点。大型整体零件的数控加工必须同时考虑五坐标加工技术、高速高效加工技术、数控加工变形控制等技术的综合应用。而接头类零件具有高度尺寸大,槽腔深,空间孔精度位置要求高的特点,对加工变形控制、深槽腔转角表面质量控制、空间精度孔的数字化加工技术要求较高,应注重转角插铣技术、数控膛铣复合加工技术的综合应用。 2.2综合应用多种集成技术 数控加工技术集成化应用,简化了工艺流程,发挥了数控设备和数控技术的优势,有效降低了制造成本和零件加工周期。飞机加工数控技术实现建立在具有大行程、高转速、高进给、高精度和五轴联动数控设备和具有高动平衡等级、高刚性、高耐磨性数控刀具基础之上。高速加一工对提高切削效率、抑制加工变形、提高表面加工质量具有重要意义。CAD/CAPP/CAM集成系统、ERP系统、DNC技术等现代先进制造系统和技术在飞机制造过程中的应用,对飞机经济性指标具有深刻影响。 3.数字化制造特点 3.1产品研制方法发生改变 传统样机研制过程和方法大体分为概念设计、初步设计和生产设计阶段,各设计阶段均需绘制模线和制作物理样机来帮助技术人员准确地设计飞机和配置飞机的内部空间,研制过程为串行,产品定义信息传递不连续。而在数字化环境下,其模线和物理样机均由产品的数字化定义或数字样机所替代,研制过程为并行表现形式,便于实现多学科的协同设计。具有以业务过程为中心,具有跨地域/多企业的、动态的研制特征。从协同研制全局目标看,产品数字化协同研制中有横向(多学科协同研制MDO)和纵向(产品全生命周期的协同),即使制造商分布在世界各地,也可以通过网络进行协同设计,交换产品相关设计信息。使得设计制造的数据、设备、实施、人员、成果和时间变得更为透明、柔性,实现真正意义上的共享。 3.2数字化技术与其他先进技术相融合 数字化技术与其他先进理念(精益生产、并行工程)以及先进技术(数控加工及成形技术、数字化测量技术、飞机装配技术和质量保证技术等)相结合,使它们能集成在一起、融合在一起,发挥先进技术的整体效益。美国联合攻击战斗机(JSF)项目以洛克希德、马丁公司为首的由30个国家的50家公司组成的团队,采用数字化的设计制造管理方式,以跨越航空工业的全球性虚拟企业为表现形式。其集成平台采用产品全生命周期管理软件,包括网络平台采用VPN,LAN,WAN,Internet和各种应用系统组成的应用平台;业务平台由各种应用软件构成,如:文档管理,虚拟现实,材料管理,零件管理,CAD设计软件及相关接口,数字化工厂的设计仿真软件包,企业资源计划和工厂管理软件;商务平台包括为用户提供访问其他系统数据的各类接口。 4.结束语 中国的航空制造业在数字化建设与应用中稳步成长,但研制大飞机毕竟是前所未有的庞大而复杂的工程,在实施过程中必将会遭遇来自数字化协同的各种挑战。数字化飞机设计制造技术加快了现代飞机研制的整体进程。数字化技术迅速发展和广泛应用,使传统飞机产品的研制过程发生了根本性的变革,将对工厂的技术改造、技术和生产管理、人才的培养产生深远的影响。科 【参考文献】 [1]周祖德,余文勇,陈幼平.数字制造的概念与科学问题[J].中国机械工程,2001,(01).[2]首届上海国际数字制造展成功举办[J].制造技术与机床,2004,(12). [3]上海国际数字制造展最新情况[J].制造技术与机床,2004,(06). [4]陈子辰,唐任仲.数字制造[J].机电工程,2001,(01). [5]阎晓彦.第六届上海国际工博会—数字制造展剪影[J].机械工人.冷加工,2004, (12). [6]江征风,吴华春.以数字制造为基础的先进制造技术[J].组合机床与自动化加工技术,2005,(06). 大飞机数字化设计制造技术 高怀宁 (上海飞机设计研究院中国上海200232) 【摘要】目前,世界先进的飞机制造商已经利用数字化技术实现飞机的“无纸化”设计和生产,而我国的航空企业虽然也在进行相应的摸索和实践,但与发达国家相比,飞机数字化设计与制造领域仍然有很长一段路要走。本文阐述了数字化制造概念和特点,从项目管理方式、构建数字化协同工作平台,开展精益生产研究、建设多种计算机辅助设计环境融合软件等方面进行了分析,并提出构想性建议。 【关键词】飞机;数字化设计;制造 ◇科技论坛◇200

数字化制造技术

数字化制造技术课程设计说明书 姓名 学号 班级 起讫时间2016.1.3—2016.1.13 指导老师 南通大学机械工程学院

目录 1、课程设计任务及要求 (2) 2、零件2的Solidworks三维建模 (2) 2.1 底座拉伸建模 (2) 2.2 上部拉伸 (4) 2.3 上部半圆孔拉伸切除 (4) 2.4 零件2三维图 (5) 3、零件2的Mastercam模拟仿真加工 (6) 3.1 铣削底座 (6) 3.2 上部凸台铣削 (7) 3.3 凸台轮廓铣削 (8) 3.4 铣削半圆孔 (8) 3.5 铣削底面 (9) 3.6 钻直径15mm孔 (9) 4、零件1的SolidWorks三维建模 (10) 4.1 零件1旋转拉伸 (10) 4.2 倒圆角 (11) 4.3 拉伸切除孔 (11) 4.4零件1三维建模 (12) 5、零件1的Mastercam模拟仿真加工 (13) 5.1 铣削直径240mm外圆 (13) 5.2 铣上平面 (14) 5.3 铣直径100mm外圆 (15) 5.4 铣第二台阶外圆 (15) 5.5 铣环形槽 (16) 5.6 倒直径240mm外圆和直径100mm外圆圆角 (16) 5.7 加工对称面 (17) 5.8 钻孔M20×4孔 (17) 5.9 钻M50中心孔 (18) 参考文献 (19) 附录1 (20) 附录2 (21)

1、课程设计任务要求 学习并熟练掌握SolidWorks和Mastercam两个软件,并对所给零件图中任选两个零件。对所选的零件应进行SolidWorks三维建模以及Mastercam模拟仿真加工,对于关键步骤应当适应截图并标以文字说明,文字说明应包含所选方法和参数。 2、零件2的Solidworks三维建模 零件2相关尺寸如图(图2.1 零件2图纸),然后进行零件的SolidWorks 三维建模。 图2.1 零件2图纸 2.1底座拉伸建模 采用拉伸造型的方法对零件底座进行拉伸造型。按照尺寸绘制草图(图 2.2 底座拉伸草图),然后拉伸完成底座建模(图2.3 底座三维图)。

数字化设计与制造

数字化设计与制造 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数字化设计与制造 一、背景 在计算机技术出现之前,机械产品的设计与加工的方式一直都是图纸设计和手工加工的方式,这种传统的产品设计与制造方式,这使得产品在质量上完全依赖于产品设计人员与加工人员的专业技术水平,而数量上则完全依赖于产品加工人员的熟练程度,而随着工业社会的不断发展,人们对机械产品的质量提出了更高要求,同时数量上的需求也不断增长。为了适应社会对机械产品在质量与数量上的需求,同时也为了能进一步降低机械产品的生产成本,人们在努力寻求一种全新的机械产品设计与加工方式,而二十世纪四五十年代以来计算机技术的出现及其发展,特别是计算机图形学的出现,让人们看到了变革传统机械产品设计与生产方式的曙光。于是,数字化设计与制作方式应运而生,人们逐步将机械产品的设计与加工任务交给计算机来做,这一方面使得机械产品的设计周期大大缩短,另一方面也使得产品的质量与数量基本摆脱了对于设计与加工人员的依赖,从而大大提升了产品的质量,降低了产品的生产成本,同时也使得产品更加适合批量化生产。 二、概念 数字化设计:就是通过数字化的手段来改造传统的产品设计方法,旨在建立一套基于计算机技术和网络信息技术,支持产品开发与生产全过程的设计方法。 数字化设计的内涵:支持产品开发全过程、支持产品创新设计、支持产品相关数据管理、支持产品开发流程的控制与优化等。 其基础是产品建模,主体是优化设计,核心是数据管理。 数字化制造:是指对制造过程进行数字化描述而在数字空间中完成产品的制造过程。 数字化制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。

快速成型技术与试题---答案

试卷 2. 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表

数字化设计与制造的现状和关键技术讲解学习

数字化设计与制造的现状和关键技术 一、数字化设计与制造的发展现状 数字化设计与制造主要包括用于企业的计算机辅助设计(CAD)、制造(CAM)、工艺设计(CAPP)、工程分析(CAE)、产品数据管理(PDM)等内容。其数字化设计的内涵是支持企业的产品开发全过程、支持企业的产品创新设计、支持产品相关数据管理、支持企业产品开发流程的控制与优化等,归纳起来就是产品建模是基础,优化设计是主体,数控技术是工具,数据管理是核心。 由于通过CAM及其与CAD等集成技术与工具的研究,在产品加工方面逐渐得到解决,具体是制造状态与过程的数字化描述、非符号化制造知识的表述、制造信息的可靠获取与传递、制造信息的定量化、质量、分类与评价的确定以及生产过程的全面数字化控制等关键技术得到了解决,促使数字制造技术得以迅速发展。 作为制造业的一个分支,船舶行业要实现跨越式发展,必须以信息技术为基础。世界造船强国从CAX开始,逐步由实施CIMS、应用敏捷制造技术向组建“虚拟企业”方向发展,形成船舶产品开发、设计、建造、验收、使用、维护于一体的船舶产品全生命周期的数字化支持系统,实现船舶设计全数字化、船舶制造精益化和敏捷化、船舶管理精细化、船舶制造装备自动化和智能化、船舶制造企业虚拟化、从而大幅度提高生产效率和降低成本。所谓数字化设计就是运用虚拟现实、可视化仿真等技术,在计算机里先设计一条“完整的数字的船”。不仅可以点击鼠标进入船体内部参观一番,还可以在虚拟的大海中看它的速度、强度、抗风浪能力。这样一来船舶设计的各个阶段和船、机、舾、涂等多个专业模块在同一数据库中进行设计。 船舶是巨大而复杂的系统,由数以万计的零部件和数以千计的配套设备构成,包括数十个功能各异的子系统,通过船体平台组合成一个有机的整体。造船周期一般在10个月以上,既要加工制造大量的零部件,又要进行繁杂的逐级装配,涉及物资、经营、设计、计划、成本、制造、质量、安全等各个方面。这样的一个复杂的系统需要非常强大的信息处理能力。我国船舶行业今年来虽有很大的发展,但与国际造船强国相比,无论在产量,还是在造船技术上差距甚大,信息化水平落后是直接原因。其中,集成化设计系统与生产进程联系不紧密、船舶零部

飞机数字化装配技术

FORUM 48 航空制造技术·2008 年第14 期 20世纪80年代后期以来,随着计算机信息技术和网络技术的发展,以美国为首的西方发达国家开始研究飞机产品数字化设计制造技术。这项技术以全面采用数字化产品定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志,从根本上改变了飞机传统的设计与制造方式,大幅度地提高了飞机设计 制造技术水平。 我国的飞机数字化装配技术尚处于起步阶段,与发达国家相比还存在较大差距,主要表现在: (1)飞机的研制过程仍采用串行模式; (2)虽然部分环节已经实现数字量传递,但仍存在信息孤岛现象,尚未打通飞机数字化设计、制造生产的整个流程; (3)工艺、工装设计在时间、空间与产品设计上存在滞后,造成飞机装配协调困难; (4)装配工人在现场工作需要仔细翻阅大量的图纸、工艺文件等,会出现工作上的失误,造成装配质量问题,影响装配周期。 飞机数字化装配技术 1 数字化装配协调技术 数字化协调方法也可称数字化标准工装协调方法,是一种先进的基于数字化标准工装定义的协调互换技术,将保证生产用工艺装备之间、生产工艺装备与产品之间、产品部件与组件之间的尺寸和形状协调互换。 数字量传递协调路线如下: (1) 飞机大型结构件(与飞机外形及定位相关)如框、梁、桁、肋、接头等用NC 方式加工; (2) 在飞机坐标系下,工装设计人员以产品工程数模为原始依据,进行工装的数字化设计,并且在工装与产品定位相关的零件上用N C 方式加工出所有的定位元素; (3) 工装在装配时利用数字标工(数据)协调,采用激光自动跟踪测量系统测量,通过坐标系拟合,定位出零件的安装位置,满足安装基准的空间坐标及精度要求;(4) 飞机钣金件模具数字化设计以及用N C 方式加工,钣金零件数控加工。 2 数字化装配容差分配技术 容差数值直接影响产品的质量与成本,因而根据产品技术要求,进行零、组件的容差分析和设置,可以经济合理地决定零部件的尺寸容差,保证加工精度,提高产品质量,在满足最终设计要求的同时使产品获得最佳的技术水平和经济效益。 在产品装配前仅凭以往的经验 飞机数字化装配技术 成都飞机工业(集团)有限责任公司 许旭东 陈 嵩 毕利文 杨红宇 Digital Assembly Technology for Aircraft 飞机产品数字化设计制造技术以全面采用数字化产品 定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志,从根本上改变了飞机传统的设计与制造方式,大幅度地提高了飞机设计制造技术水平。 许旭东 1991年从南京航空学院飞行器制造工程专业毕业进入一航成飞,2005年获北京航空航天大学航空工程专业工程硕士学位。长期从事飞机制造工艺技术工作,历任工艺员、副组长、副科长、副总工艺师,总工艺师,现任首席工艺师,主要负责飞机制造数字化工作台。2001、 2004、2006年连续三届被一航成飞评为技术带头人。曾获国防科工委科技进步奖4次,中国一航科技进步奖3次。

浅谈数字化制造技术的发展及应用

浅谈数字化制造技术的发展及应用* 钟明灯张颜艳 (闽南理工学院,福建石狮 362700) 摘要:数字化制造技术作为一项专业技术,与传统的制造业有很大 的不同,能极大地提升企业的创新能力。文中从数字化制造技术的定义出发,分析了数字化制造技术国内外的研究现状,阐明了数字化制造技术的关键技术和核心技术,最后对数字化制造技术应用进行实例展示。 关键词:数字化制造技术;关键技术;核心技术;应用实例 中图分类号:TH164 文献标识码:A 文章编 号:1672-4801(2012)06-169-03 数字化时代来临的标志是信息技术的越来越普及,现在信息技术应 用于我们生活的方方面面,特别是在智能领域的应用越来越多。数字化技术是软件和智能技术的基础,是高科技公司赖以生存的核心技术。先进制造技术的应用,拓展了许多制造的新方法和新工艺。数字化技术和先进制造技术的结合,给中国的制造业带来巨大的冲击,前景无限光明。本文从数字化制造技术的定义出发,分析了数字化制造技术国内外的研究现状。 制造装备?电子制造装备?军工制造装备?轻工制造装备等等; 3) 管理数字化。制造?工程?用户和供应商的集成。 2 国内外数字化制造相关技术的应用现状[2~4] 最早开始应用数字化制造技术是美国,19世纪50年代,MIT发明了NC 机床和CAM处理系统APT系统,K&T公司研制成功了带ATC的加工中心和

UT公司研制成功了带自动换刀方式的世界上第一台加工中心。60?70年代,CAD软件(二维绘图和三维造型)的出现和FMS(柔性化制造系统)系统的出现,以及CAD/CAM系统的发展。进入80年代,出现了CIMS(计算机集成制造系统),使波音公司的飞机在设计?制造和管理的时间由原先的八年缩短到三年。从80年代末期到现在,出现了在机械?航空航天?汽车?造船等领域广泛应用的CAD/CAM一体化三维软件(包括现在所熟知的软件:CATIA,I-DEAS,Por/E,MASTERCAM,等等)。90年代发展起来的RP(快速成型技术),可以对产品进行快速评价?修改及功能试验,有效地缩短了开发产品的时间。数字化制造技术不断发展,造成了现代制造业的繁荣。 伴随着2008年经济危机的余波,我国制造业面临巨大的挑战,数字化将是其中一个重要的突破口。曾经人是作为制造业的主导因素,而在未来信息化将成为制造业的决定因素。从图1中可以看出进入信息时代后,信息在制造过程中所起的作用非常巨大。 由于支撑数字化制造技术的软硬件主要来源于美国?欧洲和日本,与国外相比,国内在数字化制 1 数字化制造技术的定义 相对于传统的制造业,有人会把它和先进制造业相混淆,认为数字化制造就是NC(数控)或CNC(计算机数控),更有甚者,有人会说数字化制造就是CAD(计算机辅助设计)/CAM(计算机辅助制造)的集成?FMS(柔性化制造系统)?CIMS(计算机集成制造系统)等等。

飞机数字化产品的过去、现在和未来

数字化产品的过去、现在和未来 宁振波 (中航第一飞机设计研究院,西安,710089) 摘要:本文简要分析了国内外飞机数字化设计、制造、管理方面的发展历程, 并以JSF的数字化应用体系为样板,设想了未来我们飞机数字化的发展方向。 关键词:飞机数字化产品数字样机 1.引言 数字化产品指采用计算机软、硬件技术,以网络为基础,以数据库为平台;在产品从采办—研制—设计—制造—交付—培训—维护—报废的全生命周期中,以三维CAD设计为核心,将CAE/CAT/CAPP/CAM/CALS/PDM等计算机技术全面应用到产品的设计、制造、管理、售后服务等环节,所形成的用户需要的产品。 数字化产品和传统产品的最大区别就是改模拟量传递为数字量传递;把串行工作模式变为并行工作模式。其带来的必然结果是缩短产品研制周期,提高产品质量,降低研制成本。 由于飞机制造业在数字化产品设计、制造领域的领先地位,以下就以国内外飞机制造业的数字化产品设计、制造为例;说明数字化产品的发展历程。 国外在飞机制造业应用三维数字化技术大至可分为三个阶段:部件数字样机阶段(1986-1992),全机数字样机阶段(1990-1995),数字化生产方式阶段(1996-2003)。 2.国内外飞机数字化产品发展历程分析 2.1.国外飞机数字化产品发展历程 2.1.1.部件数字样机阶段 波音公司于1986年开始采用三维数字化技术分别对747-400液压管路系统、PD41段三维概念设计和空间布置、767-200 RB211三维数字样机及制造、737-500三维生产过程、V-22管路电缆协调验证、767-200飞行舱三维制造过程、757-46段数字化预装配、767-200 43段三维设计和制造过程、777 41段驾驶舱100%三维设计过程等进行了应用验证。 在此过程中获得了大量经验与教训,制订了一系列有关数字化设计制造的规范、手册、说明等技术文件,同时按精益生产思想不断改进研制过程,基本上建立起数字化设计制造技术体系,为全面应用数字化技术奠定了组织和管理方面的基础。

数字化设计与制造技术

江南大学现代远程教育课程考试大作业 考试科目:《数字化设计与制造技术》 一、大作业题目(内容): 一、参照一般系统的性能,对数字化设计制造来说,其主要性能及能力要求有哪些?(10分) 答:1)、稳定性。是指在正常情况下,系统保持其很定状态的能力。 2)、集成性。是指系统内各子系统相互关联,能协同工作。 3)、敏捷性。是指系统对环境或输入条件变化及不确定性的适应能力,对内外各种变化能快速响应、快速重组的能力。单件、多品种、小批量是市场对现代产品研制的基本生产要求。 4)、制造工程信息的主动共享能力。数字化设计制造中零件设计、工艺设计和工装设计等过程的集成和并行协同要求能同步传递,这种信息共享方式称为“信息主动共享”。 5)、数字仿真能力。是指系统对产品制造中涉及的诸多问题进行虚拟仿真的能力。 6)、支持异构分布式环境的能力。无论从不同类型设备联网还是从数据管理考虑,或是从面向全生命周期的零件信息模型考虑,均需对系统的结构体系和数据结构进行合理的综合规划与设计,实现系统分布性与统一性的协调。 7)、扩展能力。系统的扩展是通过软件工具集的扩展来实现的。 二、什么是参数化设计?请说明参数化设计在产品设计中的意义。(10分) 答:参数化设计一般是指设计对象的结构形状基本不变,而用一组参数来约定尺寸关系。参数与设计对象在控制尺寸有显式对应关系,设计结果的修改受尺寸驱动,因此参数的求较简单。 意义:在产品设计中,设计实质上是一个约束满足问题,即由给定的功能、结构、材料及制造等方面的约束描述,经过反复迭代、不断修改从而求得满足设计要求的解的过程。除此之外,设计人员经常碰到这样的情况:1、许多零件的形状具有相似性,区别仅是尺寸的不同;2、在原有罕件的基础上做一些小的改动来产生新零件;3、设计经常需要修改。这些需求采用传统的造型方法是难以满足的,一般只重新建模。参数化方法是提供了设计修改的可能性。 三、CAPP系统由哪些基本部分组成?(10分) 答:传统的CAPP系统通常包括三个基本组成部分,即产品设计信息输入、工艺决策、产品工艺信息输出。 1、产品设计信息输入:工艺规划所需要的最原始信息是产品设计信息。 2、工艺决策:指根据产品、零件设计信息,利用工艺知识和经验,参考具体的制造资源条件,确定产品的工艺过程。 3、产品工艺信息输出 四、数字化制造体系下的制造计划系统有哪些?(10分) 答:主要有MRP计划系统、JIT(Just In Time)计划系统、TOC(Theory of Constraint)计划系统和APS (Advanced Planning System)计划系统四个主要流派,各处蕴含的原理和方法均有所不同。 1、MRP计划系统:物料需求计划系统是一种将库存管理和生产进度计划结合在一起的计算机辅助生产计划管理系统。 2、JIT计划系统:顾名思义,JIT计划系统的核心思想是在需要的时候才去生产所需要的品种和数量,不要多生产,也不要提前生产。 3、TOC计划系统:约束理论(TOC)的指导思想实质是寻求系统的关键约束点,集中精力优先解决主

相关文档
最新文档