小学六年级数学竞赛数论专题试卷(含答案)9
小学奥数数论专题--因数与倍数(六年级)竞赛测试.doc

小学奥数数论专题--因数与倍数(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________一、xx 题 (每空xx 分,共xx 分) 【题文】数360的约数有多少个?这些约数的和是多少?【答案】24,1170【解析】360分解质因数;360=2×2×2×3×3×5=23×32×5;360的约数可以且只能是2a×3b×5c,(其中a ,b ,c 均是整数,且a 为0~3,b 为0~2,c 为0~1) . 因为a 、b 、c 的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24. 我们先只改动关于质因数3的约数,可以是1,3,32,它们的和为(1+3+32);所以所有360约数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的约数,可以是1,2,22,23,它们的和为(1+2+22+23);所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5);所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5).现在,我们计算出值了:13×15×6=1170.所以,360所有约数的和为1170.评注:我们在本题中分析了约数个数、约数和的求法.下面我们给出一般结论:Ⅰ.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)Ⅱ.约数的和是在严格分解质因数后,将M 的每个质因数最高次幂的所有约数的和相乘所得到的积.如:21000=23×3×53×7,所以21000所有约数的和为(1+2+22+23)×(1+3)×(1+5+52+53)×(1+7)=74880.【题文】一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?【答案】96【解析】设这个数为A ,有A =25×33×56×7,我们可以一一列出它所有的两位数的约数,有25×3=96为其最大的两位数约数.【题文】写出从360到630的自然数中有奇数个约数的数.【答案】361,400,441,484,529,576,625【解析】一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个,这样它们加1后均是奇数,所得的乘积还能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.【题文】今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆?【答案】14【解析】显然堆数是42的约数,是112的约数,是70的约数.即为42,112,70的公约数,有(42,112,70)=14.所以,最多可以分成14堆.【题文】加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?【答案】10【解析】为了使生产均衡,则每道工序每小时产生的零件个数应相等,设第一、二、三道工序上分别有A、B、C个工人,有6A=10B=15C=k,那么k的最小值为6,10,15的最小公倍数,即[6,10,15]=30.所以A=5,B=3,C=2,则三道工序最少共需要5+3+2=10名工人.【题文】有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚?【答案】30【解析】设在x分钟后3人再次相聚,有甲走了120x米,乙走了100x米,丙走了70x米,有他们3人之间的路程差均是跑道长度的整数倍.即120x-100x,120x-70x,100x-70x均是300的倍数,那么300就是20x,50x,30x的公约数.有(20x,50x,30x)=300,而(20x,50x,30x)=x(20,50,30)=10x,所以x=30.即在30分钟后,3人又可以相聚.【题文】 3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、丙3人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3人都在旗杆的正东方向,里圈跑道长千米,中圈跑道长千米,外圈跑道长千米.甲每小时跑千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点?【答案】6【解析】甲跑完一圈需÷=小时,乙跑一圈需÷4=小时,丙跑一圈需÷5=.则他们同时回到出发点时都跑了整数圈,所以经历的时间为,,的倍数,即它们的公倍数.而===6.所以,6小时后,3人第一次同时回到出发点.评注:求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.【题文】甲数和乙数的最大公约数是6,最小公倍数是90.如果甲数是18,那么乙数是多少?【答案】30【解析】有两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积.有它们的最大公约数与最小公倍数的乘积为6×90=540,则乙数为540÷18=30.【题文】 A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有l0个约数,那么A,B两数的和等于多少?【答案】2550【解析】由题意知A可以写成3×52×a,B可以写成3×52×b,其中a、b为整数且只含质因子3、5.即A=31+x×52+y,B=31+m×52+n,其中x、y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[(2+y)+1]=(2+x)×(3+y)=12,所以,或.对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+1]=(2+m)×(3+n)=10,所以.对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=2550.解法二:易知A、B中有一个数质因数中出现了两次5,多于一次3,那么,先假设它出现了N次3,则约数有:(2+1)×(N+1)=3·(N+1)个12与10其中只有12是3的倍数,所以3(N+1)=12,易知N=3,这个数是A,即A=33×52=675.那么B的质数中出现了一次3,多于两次5,则出现了M次5,则有:(1+1)×(M+1)=2(M+1)=10,M=4.B =3×54=1875.那么A,B两数的和为675+1875=2550.【题文】有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?【答案】33【解析】设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2 =(a,b)(q1+q2)=297.…………………①它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=693,且(q1,q2)=1.………②综合①、②知(a,b)是297,693的公约数,而(297,693)=99,所以(a,b)可以是99,33,11,9,3,1.第一种情况:(a,b)=99,则(q1+q2)=3,(q1q2+1)=7,即q1q2=6=2×3,无满足条件的q1,q2;第二种情况:(a,b)=33,则(q1+q2)=9,(q1q2+1)=21,即q1q2=20=22×5,则q1=5,q2=4时满足,a=(a,b)q1=33×5=165,b=(a,b)q2=33×4=132,则a-b=165-132=33;第三种情况:(a,b)=11,则(q1+q2)=27,(q1q2+1)=63,即q1q2=62=2×31,无满足条件的q1,q2;一一验证第四种情况,第五种情况,第六种情况没有满足条件的的q1,q2.所以,这个两个自然数的差为33.【题文】两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组?【答案】10【解析】设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2 =(a,b)(q1+q2)=60.…………………①它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=60,且(q1,q2)=1.………②联立①、②有(q1+q2)= (q1q2+1),即q1+q2-q1q2=1,(q1-1)(1-q2)=0,所以q1=1或q2=1.即说明一个数是另一个数的倍数,不妨记a=kb(k为非零整数),有,即(k+1)b=60,b确定,则k确定,则kb即a确定.60的约数有2,3,4,5,6,10,12,15,20,30,60这11个,b可以等于2,3,4,5,6,10,12,15,20,30这10个数,除了60,因为如果b=60,则(k+1)=1,而k为非零整数.对应的a、b有10组可能的值,即这样的自然数有10组.进一步,列出有(a,b)为(58,2),(57,3),(56,4),(55,5),(54,6),(50,10),(48,12),(45,15),(40,20),(30,30) .评注:如果两个自然数的和等于这两个数最大公约数与最小公倍数的和,那么这两个数存在倍数关系.【题文】3个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少?【答案】81【解析】当三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;当三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.则当a,a+1,a+2中有2个偶数时,a(a+1)(a+2)=9828×2,当a,a+1,a+2中有1个偶数时,a(a+1)(a+2)=9828.对9828分解质因数:9828=2×2×3×3×3×7×13,我们注意,13是其最大的质因数,验证不存在3个连续的自然数的积为9828.则这三个自然数的积只能是9828×2,此时这三个数中存在两个偶数,有9828×2=2×2×2×3×3×3×7×13.13×2=26,有26,27,28三个数的积为9828×2,所以这三个连续的自然数数为26,27,28,其中有两个偶数,满足题意.所以,这三个数的和为26+27+28=81.评注:我们知道两个连续的自然数互质,而两个互质的数的公倍数等于它们的积,即[a,b]=a×b.记这3个连续的自然数为a,a+1,a+2.有[a,a+1,a+2]=[a,a+1,a+1,a+2]=[[a,a+1],[a+1,a+2]]=[a×(a+1),(a+1)×(a+2)]=(a+1)×[a,a+2] .因为a,a+2同奇同偶,当a,a+2均是偶数时,a,a+2的最大公约数为2,则它们的最小公倍数为;当a,a+2均是奇数时,a,a+2互质,则它们的最小公倍数为a×(a+2) .所以(a+1)×[a,a+2]=.即[a,a+1,a+2]为a(a+1)(a+2)或.当三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;当三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.【题文】甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?【答案】18【解析】对90分解质因数:90=2×3×3×5.因为5126,所以5甲,即甲中不含因数5,于是乙必含因数5.因为2105,所以2乙,即乙中不含因数2,于是甲必含因数2×2.因为9105,所以9乙,即乙最多含有一个因数3.第一种情况:当乙只含一个因数3时,乙=3×5=15,由[甲,乙]=90=2×32×5,则甲=2×32=18;第二种情况:当乙不含因数3时,乙=5,由[甲,乙]=90=2×32×5,则甲=2×32=18.综上所需,甲为18.评注:两个数的最小公倍数含有两数的所有质因子,并且这些质因数的个数为两数中此质因数的最大值.如a=2×33×52×7,b=23×32×5×7×11,则A、B的最小公倍数含有质因子2,3,5,7,11,并且它们的个数为a、b中含有此质因子较多的那个数的个数.即依次含有3个,3个,2个,1个,1个,即[a,b]=23×33×52×7×11.【题文】 a>b>c是3个整数.a,b,c的最大公约数是15;a,b的最大公约数是75;a,b的最小公倍数是450;b,c的最小公倍数是1050.那么c是多少?【答案】105【解析】由(a,b)=75=3×52,[a,b]=450=32×2×52=75×3×2,又a>b,所以或.[b,c]=1050=2×3×52×7.当时有,因为两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积,所以(75,c)×[75,c]=75×c=15×1050,得c=210,但是c>b,不满足;当时有,则c=105,c<b,满足,即为满足条件的唯一解.那么c是105.【题文】有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?【答案】101【解析】设这4个不同的自然数为A、B、C、D,有A+B+C+D=1111.将1111分解质因数:1111=11×101,显然A、B、C、D的最大公约数最大可能为101,记此时A=101a,B =101b,C=101c,D=101d,有a+b+c+d=11,当a+b+c+d=1+2+3+5时满足,即这4个数的公约数可以取到101.综上所述,这4个不同的自然数,它们的最大公约数最大能是101.【题文】把一张长1米3分米5厘米、宽1米5厘米的纸裁成同样大小的正方形纸块,而没有剩余,问:能裁成最大的正方形纸块的边长是多少?共可裁成几块?【答案】63【解析】要把一张长方形的纸裁成同样大小的正方形纸块,还不能有剩余,这个正方形纸块的边长应该是长方形的长和宽的公约数.由于题目要求的是最大的正方形纸块,所以正方形纸块的边长是长方形的长和宽的最大公约数.1米3分米5厘米=135厘米,1米5厘米=105厘米,,长方形纸块的面积为 (平方厘米),正方形纸块的面积为 (平方厘米),共可裁成正方形纸块 (张).【题文】一个房间长450厘米,宽330厘米.现计划用方砖铺地,问需要用边长最大为多少厘米的方砖多少块(整块),才能正好把房间地面铺满?【答案】165【解析】要使方砖正好铺满地面,房间的长和宽都应是方砖边长的倍数,也就是方砖边长厘米数必须是房间长、宽厘米数的公约数.由于题中要求方砖边长尽可能大,所以方砖边长应为房间长与宽的最大公约数.450和330的最大公约数是30.,,共需 (块).【题文】有336个苹果,252个桔子,210个梨,用这些水果最多可以分成多少份同样的礼物?在每份礼物中,三样水果各多少?【答案】苹果8 个,桔子6个,梨5个.【解析】此题本质上也是要求出这三种水果的最大公约数,有, 即可以分42份,每份中有苹果8 个,桔子6个,梨5个.【题文】把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?【答案】9【解析】此题相当于梨的总数是人数的整数倍还多2个,苹果数是人数的整数倍还缺2个,所以减掉2个梨,补充2个苹果后,18个梨和27个苹果就都是人数的整数倍了,即人数是18和27的公约数,要求最多的人数,即是18和27的最大公约数9了.【题文】教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工,问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?【答案】8,6,5【解析】因为,,,,所以最多可分40份,每份中有8个苹果6个桔子,5个鸭梨.【题文】现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?【答案】101【解析】只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数.只能从唯一的条件“它们的和是1111”入手分析.三个数的和是1111,它们的公约数一定是1111的约数.因为,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909.所以所求数是101.【题文】用这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数.【答案】9【解析】,是9的倍数,因而9是这些数的公约数.又123456789和123456798这两个数只差9,这两个数的最大公约数是它们的差的约数,即是9的约数,所以9是这两个数的最大公约数.从而9是这362880个数的最大公约数.【题文】用2、3、4、5、6、7这六个数码组成两个三位数A和B,那么A、B、540这三个数的最大公约数最大可能是___________.【答案】108【解析】,A、B、540这三个数的最大公约数是540的约数,而540的约数从大到小排列依次为:540、270、180、135、108、90……由于A和B都不能被10整除,所以540、270、180都不是A和B 的约数.由于A和B不能同时被5整除,所以135也不是A和B的公约数.540的约数除去这些数后最大的为108,考虑108的三位数倍数,有108、216、324、432、540、648、756、864、972,其中由2、3、4、5、6、7这六个数码组成的有324、432和756,易知当A和B一个为756、另一个为324或432时,A、B、540这三个数的最大公约数为108,所以A、B、540这三个数的最大公约数最大可能是108.【题文】两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.【答案】40或20【解析】设这两个自然数为:,其中与互质,,,经检验,容易得到两组符合条件的数:9与1或者7与3.于是,所要求的两个自然数也有两组:45与5,35与15.它们的差分别是:45-5=40,35-15=20.所以,所求这两个数的差是40或者20.【题文】一个两位数有6个约数,且这个数最小的3个约数之和为10,那么此数为几?【答案】98【解析】最小的三个约数中必然包括约数1,除去1以外另外两个约数之和为9,由于9是奇数,所以这两个约数的奇偶性一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数。
六年级下学期数学竞赛试题(含答案)

六年级下学期数学竞赛试题(含答案)一、拓展提优试题1.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.2.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.3.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.4.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.5.图中的三角形的个数是.6.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.7.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.8.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.9.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?10.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?11.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)12.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)13.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.14.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.2.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.3.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.4.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.5.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.6.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.7.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.8.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:99.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.10.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.11.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.12.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.13.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.14.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案本文为小学六年级数学竞赛试题及详细答案,旨在提供有关数学竞赛的示范题目以及解答方法。
以下将按照试题的难易程度进行排列。
一、选择题1. 下面哪个数是1的百分之十?A. 0.001B. 1.001C. 0.01D. 10.001答案:C. 0.01解析:百分之十可以用小数表示为十分之一,即0.1。
转化为十进制数则为0.01。
2. 将下列数写成整数:$2 \times 10^{-5}$A. 0B. 0.0002C. 200D. 0.02答案:D. 0.02解析:$2 \times 10^{-5}$的意思是将小数点向左移动五位,因此为0.00002,可以简化为0.02。
3. 一个正整数加上自身的倒数等于19,这个正整数是多少?A. 7B. 8C. 9D. 10答案:C. 9解析:设该正整数为$x$,则$x + \frac{1}{x} = 19$。
将等式两边乘以$x$得到$x^2 + 1 = 19x$,整理得到$x^2 - 19x + 1 = 0$。
通过解一元二次方程可得$x = 9$或$x = 10$,因为$x$为正整数,所以答案为9。
二、填空题1. 用1、1、5、6四个数能组成多少个两位数?答案:11个解析:根据排列组合的原理,首位可以选取1、5或6,个位有3个数可选。
所以总共可以组成3个两位数。
2. 在三角形ABC中,顶角A的平分线和底边BC相交于点D,若BD=4 cm,DC=6 cm,那么AC的长度是多少?答案:10 cm解析:根据平分线的性质,AD:DC = AB:BC。
设AC的长度为x,则由题意可得$\frac{x}{6} = \frac{4}{10}$,通过交叉相乘解得x = 10。
三、解答题1. 已知三角形ABC中,∠ACB = 90°,CD是AB的中线,若AB =8 cm,那么CD的长度是多少?答案:4 cm解析:由题意可知AC = BC = $\frac{AB}{2}$ = 4 cm,AD =$\frac{AB}{2}$ = 4 cm。
小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ 厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得__ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。
六年级数学竞赛试题及答案

六年级数学竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 2B. 4C. 9D. 10答案:A2. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A3. 一个数的1/4加上它的1/2,等于这个数的:A. 3/4B. 5/6C. 7/12D. 1答案:B4. 如果一个圆的半径是5厘米,那么它的周长是多少厘米?A. 31.4B. 15.7C. 62.8D. 50答案:C5. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 20C. 24D. 32答案:B二、填空题(每题2分,共10分)6. 一个数的平方是36,这个数是______。
答案:6或-67. 一个数的3/4比它的1/2多1,这个数是______。
答案:48. 如果一个三角形的底是10厘米,高是6厘米,那么它的面积是______平方厘米。
答案:309. 一个数的5倍加上8等于38,这个数是______。
答案:610. 如果一个分数的分子是9,分母是12,化简后是______。
答案:3/4三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) 36 ÷ 6 + 4 × 2(2) (5 - 3) × 8 ÷ 2答案:(1) 12(2) 812. 解下列方程:(1) 2x + 5 = 13(2) 3x - 7 = 14答案:(1) x = 4(2) x = 713. 一个长方形的长是宽的2倍,如果长增加10厘米,宽增加5厘米,面积变为原来的2倍,求原长方形的长和宽。
答案:设原宽为x,则原长为2x。
根据题意,(2x + 10) * (x + 5) = 2 * (2x * x),解得x = 5,所以原长为10厘米,宽为5厘米。
四、解答题(每题10分,共20分)14. 一个农场有鸡和兔子共35只,它们的腿总共有94条。
六年级数学竞赛试卷及答案【含答案】

六年级数学竞赛试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 1千米等于多少米?A. 100B. 1000C. 10000D. 1000003. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 下列哪个数是奇数?A. 10B. 11C. 12D. 135. 下列哪个数是合数?A. 11B. 13C. 17D. 19二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
()2. 0是最小的自然数。
()3. 1是质数。
()4. 1是合数。
()5. 2的倍数的个位数一定是0。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 最大的两位数是______。
3. 两个质数相乘,它们的积是______。
4. 0除以任何非0的数都得______。
5. 1是______最小的倍数。
四、简答题(每题2分,共10分)1. 请写出5个偶数。
2. 请写出5个奇数。
3. 请写出5个质数。
4. 请写出5个合数。
5. 请写出1到10的平方。
五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
3. 小华有5个橘子,小刚有3个橘子,小华和小刚一共有多少个橘子?4. 一辆汽车每小时行驶60千米,行驶了3小时,这辆汽车一共行驶了多少千米?5. 一个正方形的边长是5厘米,求这个正方形的面积。
六、分析题(每题5分,共10分)1. 请分析偶数和奇数的区别。
2. 请分析质数和合数的区别。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。
2. 请用直尺和圆规画一个半径为3厘米的圆。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在斜面上滑动的加速度与斜面角度的关系。
2. 设计一个电路,实现两个输入信号的逻辑与操作。
小学数学思维训练--数论(六年级)竞赛测试.doc
小学数学思维训练--数论(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________一、xx 题 (每空xx 分,共xx 分) 【题文】一个三位数能被9整除,去掉它的末位数后,所得的两位数是17的倍数。
这样的三位数中,最大是几?【答案】855【解析】解:根据题意,这个数的前两位是17的倍数中最大两位数,就是17×5=85,则所求两位数的前两位是85,又根据能被9整除,可以知道8+5=13,18-13=5,因此个位上为5,这个三位数是855。
17×5=85(前两位上的数)8+5=1318-13=5(个位上的数)答:这样的三位数中,最大是855。
【题文】两个数的最大公因数是25,最小公倍数是375,求这两个数。
【答案】75和125【解析】解:因为两个数的最小公倍数是这两个数的最大因数的倍数。
这个倍数就是这两个数分别除以它们的最大公因数后,所得的两个商的积,而且这两个商必须互质。
375÷25=1515=3×53×25=755×25=125答:这两个数分别是75和125。
【题文】学校组织六年级学生去郊游,如果3人一队余2人,7人一队余2人,11人一队也余2人,六年级去郊游的学生一共有多少人?【答案】233人【解析】解:根据题意六年级去郊游的学生数比3、7、11的最小公倍数还多2人。
[3,7,11]=231231+2=233(人)答:六年级去郊游的学生一共有233人。
【题文】王老师有一盒糖果分给一组小朋友,每人7颗则余4颗,每人5颗则少3颗,每人3颗则正好分完。
这盒糖果一共有多少颗?【答案】102颗【解析】解:这盒糖果的数量是3的倍数,同时又比3、5、7的最小公倍数少3的数。
[3,5,7]=105105-3=102(颗)答:这盒糖果一共有102颗。
【题文】一个小于200的自然数,它的每个数字都是奇数,并且它是两个两位数的乘积。
小学奥数数论专题--数位与进制(六年级)竞赛测试.doc
小学奥数数论专题--数位与进制(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)【题文】某三位数和它的反序数的差被99除,商等于______与______的差;【答案】a-c【解析】本题属于基础型题型。
我们不妨设a>b>c。
(-)÷99=[(100a+10b+c)-(100c+10b+a)]÷99=(99a-99c)÷99=a-c;【题文】与的差被9除,商等于______与______的差;【答案】a-b【解析】(-)÷9=[(10a+b)-(10b+a)]÷9=(9a-9b)÷9=a-b;【题文】与的和被11除,商等于______与______的和。
【答案】a+b【解析】 (+)÷11=[(10a+b)+(10b+a)]÷11=(11a+11b)÷11=a+b。
【题文】(美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【答案】94【解析】设原来的两位数为,交换后的新的两位数为,根据题意,,,原两位数最大时,十位数字至多为9,即,,原来的两位数中最大的是94.【题文】将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【答案】1099【解析】设原数为,则新数为,.根据题意,有,.推知,,得到,,,,原数为1099.【题文】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”。
例如,99就是一个巧数,因为9×9+(9+9)=99。
小学数学竞赛(数论)试题
小学数学竞赛(数论)试题1、数的整除:a是一个三位数。
它的百位数字是4,a+9能被7整除,a-7能被9整除,那么a是多少?2、约数倍数:在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成10等份,第二种刻度线把木棍分成12等份,第三种刻度线把木棍分成15等份,如果沿每条刻度线把木棍锯断,木棍总共被锯成多少段?3、余数问题有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?4、质数合数分解质因数已知3☆7×2□△4是891的倍数,其中☆、□、△各代表一个不同的数字,那么三位数☆□△代表的是多少?5、奇偶分析在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a=5+3=8.问:填入的81个数字中是奇数多还是偶数多?6、中国剩余定理一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数7、位值原理把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?1、六年级数的整除习题答案:解答:a+9能被7整除,说明a+9-7=a+2能被7整除;a-7能被9整除,说明a-7+9=a+2能被9整除;7⨯9=63,则63-2=61符合上述两个条件。
(因63-2=61,则a可以写成这样的形式:a=63⨯?+61)。
又a是一个百位数字是4的三位数,估算知,a=63⨯6+61=439。
2、五年级约数倍数习题答案:解答:1)木棍锯成的段数,比锯的次数大1。
2)锯的次数并不一定是三种刻线的总和。
两种刻度线重合在一起的时候,就少锯了一次。
着眼点:计算出有多少两种刻度线或者三种刻度线重叠在一起的位置。
把木棍看成是10、12、15的最小公倍数个单位,那么每个等分线将表示的数都是整数,而且重合位置表示的数都是等分线段长度的最小公倍数,利用求最小公倍数的方法计算出重合部分的个数。
2024年希望杯六年级竞赛数学试卷培训题+答案
2024年希望杯竞赛六年级数学培训题1 .计算: .2 . 计算: .3 .计算: .4 .计算:.5 .等式中的和都是自然数,.6 . .7 .的积不到,里最大填 .8 .以表示不超过的最大整数,若要,则自然数的最小值是 .9 .如果正整数使得,则为 .(其中表示不超过的最大整数) 10 .的整数部分是 .11 .不等式,时的解为 ,时的解为 ,时的解为 .12 .甲、乙两个两位数,甲数的等于乙数的,这两个数的和最大是 . 13 .一个三位数加或者乘的结果都是完全平方数,这个三位数是 . (注:一个自然数与自身相乘的积叫做完全平方数.) 14 .已知是数字到中的一个,若循环小数,则.15 .下面竖式中,相同的图标表示相同的数字,不同的图标表示不同的数字.那么,., .17 .将至填入右图的网格中,要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,已知左右格子已经填有数字和,问:标有字母的格子所填的数字最大是 .18 .各位数字均不大于,且能被整除的六位数共有 个. 19 .八位数(中的数字可重复出现)是的倍数,这样的八位数共有 个.20 .把的所有自然数连写在一起,可以得到这样的一个多位数,它是 位数.21 .某日,可可到动物园里去观赏动物,他看了猴子,熊猫和狮子三种动物,这三种动物的总量在到只之间,根据下面的情况: ①猴子和狮子的总数要比熊猫的数量多, ②熊猫和狮子的总数要比猴子的两倍还多, ③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.22 .儿童节的早上,方玲去图书馆看了一会儿书后到游泳馆游泳.她每天去一次图书馆,每天去游泳一次.方玲下一次既到图书馆看书,又到游泳馆游泳的时间是 月 日.23 .五名选手在一次数学竞赛中共得分,每人得分互不相等且都是整数,并且得分最高的选手得了分,那么得分最低的选手至少得 分,至多得 分. 24 .被除余,被除余,被除余的最小两位数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学竞赛数论专题试卷(含答案)9 学校:___________姓名:___________班级:___________考号:___________
一、解答题
1.王老师家的电话号码是一个七位数,把它前四位组成的数与后三位组成的数相加得9063,把它前三位数组成的数与后四位数组成的数相加得2529.求王老师家的电话号码.
2.A、B两地相距24千米,甲和乙两人分别由A、B两地同时相向而行,往返一次,甲比乙早返回原地。
途中两人第一次相遇于C点,第二次相遇于点D。
CD相距6千米,则甲、乙两人的速度比是为多少?
3.小乐步行去学校的路上注意到每隔4分钟就遇到一辆迎面开来的公交车,到了学校小乐发现自己忘记把一件重要的东西带来了,只好借了同学的自行车以原来步行三倍的速度回家,这时小乐发现每隔12分钟有一辆公交车从后面超过他,如果小乐步行、骑车以及公交车的速度都是匀速的话,那么公交车站发车的时间间隔到底为多少?4.从电车总站每隔一定时间开出一辆电车。
甲与乙两人在一条街上沿着同一方向步行。
甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
那么电车总站每隔多少分钟开出一辆电车?5.一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?
6.一个六位数,个位数字是2,如果把2移到最高位,那么原数就是新数的3倍。
求原来的六位数。
7.水果店运来的西瓜的个数是白兰瓜的个数的2倍。
如果每天卖白兰瓜40个,西瓜50个,若干天后卖完白兰瓜时,西瓜还剩360个。
水果店运来的西瓜和白兰瓜共多少个?
8.有四个小朋友,他们的年龄刚好一个比一个大1岁,又知它们年龄的乘积是360.问:其中年龄最大的小朋友是多少岁?
9.同学们在操场上列队做体操,要求每行站的人数相等,当他们站成10行、15行、18行、24行时,都能刚好站成一个长方形队伍,操场上同学最少是多少人?
10.从0、7、5、3四个数字中选三个数字组成一个三位数,使组成的数能同时被2、3
和5整除.这样的三位数有几个?
11.一块长方形木板长20分米,宽16分米.要锯成相同的正方形木板,要求正方形木板的面积尽量大,而且原来木板没有剩余,可以锯成多少块?每块正方形木板的面积是多少平方分米?
12.汽车站有开住甲、乙、丙三地的汽车,到甲地的汽车每隔15分钟开出一辆;到乙地的汽车每隔27分钟开出一辆;到丙地的汽车每隔36分钟开出一辆.三路汽车在同一时刻发车以后,至少需要经过多少时间,才能又在同一时刻发车?
13.有一堆苹果,如果3个3个的数,最后余2个,如果5个5个的数,最后余4个,如果7个7个的数,最后余6个,这堆苹果最少有多少个?
14.78个小朋友围成一圈,从某个小朋友开始进行1﹣18报数.如果报数一圈一圈地循环下去.问:至少有多少个小朋友报过数字1?有没有人同时报过5和10?
15.如果n减58是一个完全平方数,n加31也是一个完全平方数,那么n是多少?16.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.
二、填空题
17.1~10000的自然数中,能被5或7整除的数共有_____个;不能被5也不能被7整除的数共有_____个.
18.已知一个三位数能被45整除,它的各位上的数字都不相同.这样的三位数有_______个.
19.要使6位数15 6能够被36整除而且所得的商最大, 内应填______. 20.设1,3,9,27,81,243是6个给定的数,从这6个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数,如果把它们从小到大依次排列起来是1,3,4,9,10,12…,那么第60个数是_____.
21.有一个数除以5余数是3,除以7余数是2,这个数除以35的余数是_____.
22.两个自然数,差是98,各自的各位数字之和都能被19整除.那么满足要求的最小的一对数之和是_____.
23.A、B分解质因数后分别是:A=2×3×7,B=2×5×7.A、B最大公因数是(_____),最小公倍数是(_______).
24.四位数8□5□同时是2,3,5的倍数,则这个四位数为(__________).
25.两个质数的和是2001,这两个质数的积是(_______).
26.12的约数有(______________),从中选出4个数组成一个比例是(____________).
27.从0、5、8、7中选择三个数字组成一个同时能被2、3、5整除的最大三位数,这个三位数是(_______),把它分解质因数是:(_______________).
28.把84分解质因数:84=(_______________).72和54的最大公约数是(_____).29.公因数只有(_____)的两个数,叫做互质数,自然数a和(______)一定是互质数.
30.a、b都是非零自然数,且a÷b=c,c是自然数,(_______)是(_______)的因数,a、b的最大公因数是(_______),最小公倍数是(_______).
31.一个五位数7□35△,如果这个数能同时被2、3、5整除,那么□代表的数字是
(__________),△代表的数字是(_________).
32.A=2×2×3,B=2×C×5,已知A、B两数的最大公约数是6,那么C是(_______),A、B的最小公倍数是(_______).
33.已知两个互质数的最小公倍数是153,这两个互质数是(_______)和(______).34.在括号里填上合适的质数:(_______)+(_______)=21=(______)×(_______).35.45与某数的最大公因数是15,最小公倍数是180,某数是(_______).
36.一个数,如果用2、3、5去除,正好都能整除,这个数最小是(_______),用一个数去除30、40、60正好都能整除,这个数最大是(________).
三、计算题
37.解方程:13x-4(2x+5)=17(x-2)-4(2x-1)
38.解方程.
4(x-2)+15=7x-20
39.解方程.
x÷2=(3x-10)÷5
40.解方程
①12-2(x-1)=4 ②5x+19=3(x+4)+15
41.解方程:17(2-3x)-5(12-x)=8(1-7x)
42.解方程:(x-5)=3-(x-5)
43.解方程
①2
5
(x+10)=6 ②8-4.5x=3
1
2
44.解方程
①x+1
2
—
5
6
x=
4
5
②x+7.4=x+9.2
45.解方程
①7(x-3)=3(x+5)+4 ②x+x÷3+2x-30=180 46.解方程
①3
20
:18%=②=
15
0.8
47.解方程
360÷x-360÷1.5x=6
48.解方程:-=2
49.解方程
①(2x+4)÷18=28 ②(5.3x-5)÷7=x-8 50.解下列一元一次方程:
⑴ 20+4x=32-2x ⑵15-3x=19-4x
参考答案1.8371692
2.9︰7
3.4.8分钟
4.11分钟
5.675
6.857142
7.1440个
8.6岁
9.360人
10.两个:570或750
11.20块16平方分米
12.9小时
13.104个
14.13个没有
15.1994
16.319
17.3143 6857
18.15
19.987
20.360
21.23
22.60096
23.14 210
24.8250或8550或8850
25.3998
26.1、2、3、4、6、12 1:3=2:6(答案不唯一)27.870 870=2×3×5×29
28.2×2×3×7 18
29.1 a+1
30.b、c a b a 31.0、3、6或9 0 32.3 60
33.9 17
34.2 19 3 7 35.60
36.30 10
37.x=2.5
38.x=9
39.x=20
40.①x=5 ②x=4 41.x=3.4
42.x=8
43.①x=5 ②x=1
44.①x=9
5
②x=2
45.①x=10 ②x=63 46.①x=7.8 ②x=45 47.x=20
48.x=8
49.①x=250 ②x=30 50.(1)x=2;(2)x=4。