2014年《模拟电子线路实验》实验报告

合集下载

模拟电子线路实验

模拟电子线路实验

网络高等教育《模拟电子线路》实验报告学习中心:农垦河西分校层次:高中起点专科专业:电力系统自动化技术年级:年春/秋季学号: 8学生姓名:陈爱明实验一常用电子仪器的使用一、实验目的1、了解并掌握模拟电子技术实验箱的主要功能及使用方法2、了解并掌握数字万用表的主要功能及使用方法3、了解并掌握TDS1002型数字储存示波器和信号源的基本操作方法.二、基本知识1.简述模拟电子技术实验箱布线区的结构及导电机制。

布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的.2.试述NEEL-03A型信号源的主要技术特性。

1、输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号2、输出频率:10Hz~1MHz连续可调3、幅值调节范围:0~10VP-P连续可调4、波形衰减:20dB、40dB;字频率计,既可作为信号源的输出监视仪表,也可以作外侧频率计用5、带有6位数字频率计,既可作为信号源的输出监视仪表,也可以作外侧频率计用3.试述使用万用表时应注意的问题。

使用万用表进行测量时,应先确定所需测量功能和量程。

确定量程的原则已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。

如果被测参数的范围未知,则先选择所需功能的最大量程测量,根据初测结果逐步把量程下调到最接近于被测值的量程,以便测量出更加准确的数值。

如屏幕显示“1”,表明已超过量程范围,须将量程开关转至相应档位上4.试述TDS1002型示波器进行自动测量的方法。

按下“测量”按钮可以进行自动测量。

共有十一种测量类型。

一次最多可显示五种。

按下顶部的选项按钮可以显示“测量1”菜单。

可以在“信源”中选择在其上进行测量的通道。

可以在“类型”中选择测量类型。

测量类型有:频率周期平均值、峰-峰值、均方根值、最小值、最大值、上升时间、下降时间、正频宽、负频宽。

三、预习题1.正弦交流信号的峰-峰值=2×峰值,峰值=√2×有效值。

模拟电子线路multisim仿真实验报告精选文档

模拟电子线路multisim仿真实验报告精选文档

模拟电子线路m u l t i s i m仿真实验报告精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。

2.双击示波器,得到如下波形5.他们的相位相差180度。

27.动态仿真二1.删除负载电阻R62.重启仿真。

28.仿真动态三1.测量输入端电阻。

在输入端串联一个的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。

数据为VL测量数据为VO1.画出如下电路图。

2.元件的翻转4.去掉r7电阻后,波形幅值变大。

实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器 交流毫伏表 数字万用表三、实验步骤1实验电路图如图所示;2.直流工作点的调整。

如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。

7.出现如图的图形。

10.单击工具栏,使出现如下数据。

11.更改电路图如下、17思考与练习。

1.创建整流电路,并仿真,观察波形。

XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。

《模拟电子线路实验》实验报告

《模拟电子线路实验》实验报告

《模拟电子线路实验》实验报告实验报告一、实验目的通过模拟电子线路实验,掌握电子线路的基本原理和实验技巧,加深对电子线路的理论知识的理解。

二、实验设备实验中使用的设备有:示波器、万用表、信号发生器、电阻、电容、二极管等。

三、实验原理电子线路由电源、电阻、电容、电感、二极管等元件组合而成。

在电子线路中,电源提供电流,电流通过线路中的元件实现信号的处理和传递。

电阻限制电流的流动,电容储存电荷,电感储存磁场,二极管具有导通(正向偏置)和截止(反向偏置)的特性。

四、实验内容本次实验的实验内容主要包括以下几个方面:1.电阻的测量和串并联的实验(1)利用示波器和万用表对不同电阻值的电阻进行测量,并分析测量值和标称值之间的差异;(2)在电路中连接不同的电阻,并观察并分析串联和并联对电阻阻抗的影响。

2.电容的充放电实验(1)利用信号发生器输出方波信号,通过一个电阻将方波信号传到一个电容上进行充放电;(2)通过示波器观察电容充放电波形,分析电容的充放电过程。

3.二极管的直流分压和交流放大实验(1)利用电源和电阻构建一个二极管直流分压电路,通过示波器观察电路输出;(2)通过信号发生器产生正弦波信号,通过二极管放大电路增大信号幅度,并通过示波器观察放大后的信号。

五、实验结果1.电阻的测量和串并联的实验经测量,不同电阻的测量值与标称值相差较小,误差在可接受范围内。

串联电阻的总阻抗等于各个电阻之和,而并联电阻的总阻抗等于各个电阻的倒数之和。

2.电容的充放电实验通过示波器观察到电容的充放电过程,放电过程是指电容器通过一个电阻将储存的电荷逐渐释放,电压逐渐下降的过程;充电过程是指电容器内的电压逐渐增加,直到与输入信号的幅度相等,并保持恒定的过程。

3.二极管的直流分压和交流放大实验通过示波器观察到二极管直流分压电路的输出近似为输入信号的一半。

在交流放大实验中,增加了二极管和电容,使得输入信号的幅度得以增大,实现了信号的放大。

六、实验总结通过本次实验,我深入了解了电子线路的基本原理和实验技巧。

《模拟电子线路实验》实验四 RC低频振荡器

《模拟电子线路实验》实验四 RC低频振荡器

模拟电子线路实验 实验四 RC 低频振荡器【实验名称】RC 低频振荡器【实验目的】1. 掌握桥式RC 正弦波振荡器的电路及其工作原理;2. 学习RC 正弦波振荡器的设计、调试方法;3. 观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。

【预习要点】1. 复习课件中有关RC 振荡器结构与工作原理的内容。

2. 若想改变实验电路的振荡频率,可以通过调整电路中的哪些元件的参数来实现?【实验仪器设备】【实验原理】oR f图4-1 RC 正弦波振荡器图4-1为RC 桥式正弦波振荡器。

RC 低频振荡器在一个在没有外接输入信号的条件下,就可以产生正弦波信号的低频放大器。

它由基本放大器、选频网络和稳幅环节组成。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,引入正反馈是为了满足振荡的相位条件,形成振荡。

3R 、w R 及二极管等元件构成负反馈和稳幅环节。

引入负反馈是为了改善振荡器的性能。

调节电位器w R ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形,利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

4R 的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率为:012f RC π=起振的幅值条件为:ff 313R A R =+≥ 式中f w 4d //r R R R =+(),d r ——二极管正向导通电阻。

调整反馈电阻f R (调w R ),使电路起振,且波形失真最小。

如不能起振,说明负反馈太强,应适当加大w R ,使f R 增大;如果电路起振过度,产生非线性失真,则应适当减小w R 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

RC 振荡器的设计步骤:1.根据已知的指标,选择电路形式;2.计算并确定电路中的元件参数,选择器件;3.安装调试电路,使电路满足指标要求。

模拟电子线路实验报告

模拟电子线路实验报告

模拟电子线路实验报告模拟电子线路实验报告引言:模拟电子线路是电子工程领域中的重要基础课程,通过实验可以帮助学生理解电子器件的工作原理和电路的设计方法。

本实验报告将介绍我在模拟电子线路实验中所进行的一系列实验,包括放大器电路、滤波器电路和振荡器电路。

实验一:放大器电路在放大器电路实验中,我们使用了两个常见的放大器电路:共射极放大器和共基极放大器。

共射极放大器具有较高的电压增益和输入阻抗,适用于信号放大应用。

共基极放大器则具有较低的电压增益和输出阻抗,适用于驱动低阻抗负载。

通过实验,我们验证了这两种放大器电路的性能,并观察到了它们在不同频率下的响应特性。

实验二:滤波器电路滤波器电路是电子系统中常见的电路,用于去除或选择特定频率的信号。

在实验中,我们研究了三种常见的滤波器电路:低通滤波器、高通滤波器和带通滤波器。

通过调整电路参数和元件值,我们观察到了这些滤波器在不同频率下的截止特性和幅频响应。

此外,我们还讨论了滤波器的阶数和频率响应对电路性能的影响。

实验三:振荡器电路振荡器电路是一种能够产生稳定振荡信号的电路,常用于时钟发生器、射频发射和接收等应用中。

在实验中,我们设计和搭建了两种常见的振荡器电路:RC 相移振荡器和LC谐振振荡器。

通过调整电路参数和元件值,我们观察到了振荡器的频率稳定性和波形特性。

此外,我们还讨论了振荡器的起振条件和频率稳定性的影响因素。

实验结果与分析:通过实验,我们对放大器、滤波器和振荡器电路的性能进行了验证和分析。

我们观察到了不同电路参数和元件值对电路性能的影响,例如放大器的电压增益、滤波器的截止频率和振荡器的频率稳定性。

我们还学习到了如何根据电路需求选择合适的电路结构和元件数值,以满足特定的电路设计要求。

结论:通过模拟电子线路实验,我们深入了解了放大器、滤波器和振荡器电路的原理和性能。

我们通过实验验证了这些电路的工作特性,并学会了根据设计要求选择合适的电路结构和元件数值。

这些实验为我们今后在电子工程领域的学习和研究奠定了坚实的基础。

《模拟电子线路实验》实验三 集成运算放大器的线性应用

《模拟电子线路实验》实验三 集成运算放大器的线性应用

模拟电子线路实验实验三集成运算放大器的线性应用【实验名称】集成运算放大器的线性应用【实验目的】1.熟悉集成运算放大器的使用方法,进一步了解其主要特性参数意义;2.掌握由集成运算放大器构成的各种基本运算电路的调试和测试方法;3.了解运算放大器在实际应用时应考虑的一些问题。

【预习要点】1.复习课件中集成运放线性应用部分内容。

2.在由集成运放组成的各种运算电路中,为什么要进行调零?【实验仪器设备】【实验原理】集成运算放大器是一种高放大倍数、高输入阻抗、低输出阻抗的直接耦合多级放大电路,具有两个输入端和一个输出端,可对直流信号和交流信号进行放大。

外接负反馈电路后,运放工作在线性状态,其输出电压V o与输入电压V i的运算关系仅取决于外接反馈网络与输入端阻抗的连接方式,而与运算放大器本身无关。

改变反馈网络与输入端外接阻抗的形式和参数,即能对V i进行各种数字运算。

本实验采用的集成运放型号为HA17741,引脚排列如图3-1(a)所示。

它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K 的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

(a ) (b )图3-1为了补偿运放自身失调量的影响,提高运算精度,在运算前,应首先对运放进行调零,即保证输入为零时,输出也为零。

图3-1(b )是调零电位器连接示意图,使用时必须正确使用引脚才能确保电路正常工作。

所谓调零并不是对独立运放进行调零,而是对运放的应用电路调零,即将运放应用电路输入端接地(使输入为零),调节调零电位器,使输出电压等于零。

如图3-2所示。

+-△+R 2v i2oR 1v i1+12V-12VR wR1542367+-△+R 2v i2oR 1v i1+12V-12VR wR1542367图3-2集成运算放大器按照输入方式可分为同相、反相、差动三种接法。

按照运算关系可分为比例、加法、减法、积分、微分等,利用输入方式与运算关系的组合,可接成各种运算电路。

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图V110mVrms 1kHz0°R1100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V4521R75.1kΩ9XMM16E级对地电压25.静态数据仿真记录数据,填入下表仿真数据(对地数据)单位;V计算数据单位;V基级集电极发射级Vbe Vce RP10k 26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。

V110mVrms 1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52R75.1kΩXSC1A BExt Trig++__+_6192.双击示波器,得到如下波形5.他们的相位相差180度。

27.动态仿真二1.删除负载电阻R6V110mVrms1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52XSC1A BExt Trig++__+_6192.重启仿真。

记录数据.仿真数据(注意填写单位)计算Vi有效值Vo有效值Av3.分别加上,300欧的电阻,并填表填表.4.其他不变,增大和减少滑动变阻器的值,观察VO的变化,并记录波形28.仿真动态三1.测量输入端电阻。

模拟电路实训报告

实验一常用电子仪器的使用一、实验目的1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。

2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。

二、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。

它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。

实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。

接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。

信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。

图1-1 模拟电子电路中常用电子仪器布局图1、示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。

现着重指出下列几点:1)、寻找扫描光迹将示波器y轴显示方式置“y1”或“y2”,输入耦合方式置“gnd”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。

②触发方式开关置“自动”。

③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。

(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。

)2)、双踪示波器一般有五种显示方式,即“y1”、“y2”、“y1+y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。

“交替”显示一般适宜于输入信号频率较高时使用。

“断续”显示一般适宜于输入信号频率较底时使用。

3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的y通道。

4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。

模拟电路实训报告总结(3篇)

第1篇一、引言随着科技的飞速发展,模拟电路在电子技术领域的应用越来越广泛。

为了提高我们的实践能力,加深对模拟电路理论知识的理解,我们进行了模拟电路实训。

通过本次实训,我们对模拟电路有了更深入的认识,以下是对本次实训的总结。

二、实训目的1. 掌握模拟电路的基本概念、原理和常用分析方法。

2. 熟悉常用模拟电路元件的特性及电路设计方法。

3. 培养动手能力,提高电路实验技能。

4. 提高团队合作意识,锻炼沟通与协作能力。

三、实训内容1. 模拟电路基本概念和原理的学习本次实训首先对模拟电路的基本概念、原理进行了学习,包括模拟信号、模拟电路元件、放大电路、反馈电路、滤波电路等。

2. 常用模拟电路元件的特性及电路设计方法我们学习了常用模拟电路元件的特性,如电阻、电容、电感、二极管、晶体管等。

同时,了解了电路设计方法,如共射极放大电路、共集电极放大电路、差分放大电路等。

3. 电路实验操作在掌握了理论知识后,我们进行了电路实验操作。

实验内容包括:(1)搭建共射极放大电路,观察电路的放大效果;(2)搭建共集电极放大电路,观察电路的输入阻抗和输出阻抗;(3)搭建差分放大电路,观察电路的差模和共模抑制效果;(4)搭建滤波电路,观察电路的滤波效果。

4. 电路故障排查在实验过程中,我们遇到了一些故障,如电路不工作、输出信号异常等。

通过分析故障原因,我们学会了如何排查电路故障,提高了电路实验技能。

四、实训过程及结果1. 实训过程本次实训分为三个阶段:理论学习、实验操作和故障排查。

在理论学习阶段,我们认真学习了模拟电路的基本概念、原理和常用分析方法,为后续实验操作打下了基础。

在实验操作阶段,我们按照实验步骤搭建电路,观察电路的输出效果,并与理论分析进行对比,验证了所学知识的正确性。

在故障排查阶段,我们遇到了一些故障,通过分析故障原因,我们成功解决了这些问题,提高了电路实验技能。

2. 实训结果通过本次实训,我们掌握了以下成果:(1)熟悉了模拟电路的基本概念、原理和常用分析方法;(2)掌握了常用模拟电路元件的特性及电路设计方法;(3)提高了动手能力,提高了电路实验技能;(4)培养了团队合作意识,锻炼了沟通与协作能力。

模拟电子线路实验实验报告

模拟电子线路实验实验报告WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】网络高等教育《模拟电子线路》实验报告学习中心:浙江建设职业技术学院奥鹏学习中心层次:高中起点专科专业:电力系统自动化技术年级: 12 年秋季学号:学生姓名:实验一常用电子仪器的使用一、实验目的1.了解并掌握模拟电子技术实验箱的主要功能及使用方法。

2.了解并掌握数字万用表的主要功能及使用方法。

3.学习并掌握TDS1002型数字存储示波器和信号源的基本操作方法。

二、基本知识1.简述模拟电子技术实验箱布线区的结构及导电机制。

布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。

2.试述NEEL-03A型信号源的主要技术特性。

①输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号;②输出频率:10Hz~1MHz连续可调;③幅值调节范围:0~10V P-P连续可调;④波形衰减:20dB、40dB;⑤带有6位数字频率计,既可作为信号源的输出监视仪表,也可以作外侧频率计用。

注意:信号源输出端不能短路。

3.试述使用万用表时应注意的问题。

使用万用表进行测量时,应先确定所需测量功能和量程。

确定量程的原则:①若已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。

②如果被测参数的范围未知,则先选择所需功能的最大量程测量,根据初测结果逐步把量程下调到最接近于被测值的量程,以便测量出更加准确的数值。

如屏幕显示“1”,表明已超过量程范围,须将量程开关转至相应档位上。

4.试述TDS1002型示波器进行自动测量的方法。

按下“测量”按钮可以进行自动测量。

共有十一种测量类型。

一次最多可显示五种。

按下顶部的选项按钮可以显示“测量1”菜单。

可以在“信源”中选择在其上进行测量的通道。

可以在“类型”中选择测量类型。

测量类型有:频率、周期、平均值、峰-峰值、均方根值、最小值、最大值、上升时间、下降时间、正频宽、负频宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络高等教育《模拟电子线路》实验报告学习中心:辽宁鞍山奥鹏学习中心层次:高起专专业:电力系统自动化技术年级: 2013 年秋季学号: 201308669804学生姓名:张厚军实验一常用电子仪器的使用一、实验目的1、了解并掌握模拟电子技术实验箱的主要功能及使用方法;2、了解并掌握数字万用表的主要功能及使用方法;3、了解并掌握TDS1002型数字储存示波器和信号源的基本操作方法;二、基本知识1.简述模拟电子技术实验箱布线区的结构及导电机制。

布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的链接形式,每个大焊孔与它周围的小孔都是相通的。

2.试述NEEL-03A型信号源的主要技术特性。

(1)输出波形:三角波、正弘波、方波、二脉、四脉、八脉、单次脉冲信号;(2)输出频率:10Hz~1MHz连续可调;(3)幅值调节范围:0~10VP-P连续可调;(4)波形衰减:20dB、40dB;(5)带有6位数字频率计,既可做为信号源的输出监视仪表,也可以也可以做外侧频率计用注意:信号源输出端不能短路。

3.试述使用万用表时应注意的问题。

使用万用表进行测量时,应先确定所需测量功能和量程。

确定量程的原则:(1)知被测参数大致范围,所选量程应大于被测值,且最接近被测值。

(2)如果被测参数的范围未知,则先选择所需功能的最大量程测量,根据初测结果逐步把量程下调到最接近于被测值得量程,以便量出最准确的数值。

如果屏幕显示“1”,表明超过量程范围,须将量程开关转至相应档位上。

三、预习题1.正弦交流信号的峰-峰值=2×峰值,峰值=2.交流信号的周期和频率是什么关系?互为倒数,f=1/T,T=1/f四、实验内容1.电阻阻值的测量表一2.直流电压和交流电压的测量表二3.测试9V交流电压的波形及参数表三4.测量信号源输出信号的波形及参数表四五、实验仪器设备六、问题与思考1.使用数字万用表时,如果已知被测参数的大致范围,量程应如何选定?使用数字万用表时,应先确定测量功能和量程,确定量程的原则是:若已知被测参数的大致范围,所选量程应“大于被测值,且最接近被测值”。

2.使用TDS1002型示波器时,按什么功能键可以使波形显示得更便于观测?使用TDS1002型示波器时,可能经常用到的功能:自动设置和测量。

按“自动设置”按钮,自动设置功能都会获得稳定显示的波形,它可以自动调整垂直刻度、水平刻度和触发设置,便于观测。

按下“测量”按钮可以进行自动测量。

共有十一种测量类型,一次最多可以显示五种。

3.实验的体会和建议通过本实验,了解了并掌握模拟电子技术实验箱的主要功能及使用方法.,了解了并掌握数字万用表的主要功能及使用方法.,了解了并掌握TDS1002 型数字储存示波器和信号源的基本操作方法。

建议更多的进行此类实验。

实验二晶体管共射极单管放大器一、实验目的1、学习单管放大器静态工作点的测量方法。

2、学习单管放大电路交流放大倍数的测量方法。

3、了解放大电路的静态工作点对动态特性的影响。

4、熟悉常用电子仪器及电子技术实验台的使用。

二、实验电路三、实验原理(简述分压偏置共射极放大电路如何稳定静态工作点)R和图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用1BR组成的分压电路,并在发射极中接有电阻E R,以稳定放大器的静态工作点。

当在放大2B器的输入端加入输入信号i u后,在放大器的输出端便可得到一个与i u相位相反,幅值被放u,从而实现了电压放大。

大了的输出信号0四、预习题在实验电路中,C1、C2和C E的作用分别是什么?在实验电路中电容C1、C2有隔直通交的作用,C1滤除输入信号的直流成份,C2滤除输出信号的直流成份五、实验内容1.静态工作点的测试表一I=2mAC2.交流放大倍数的测试表二3.动态失真的测试表三六、实验仪器设备七、问题与思考1.哪些电路参数会影响电路的静态工作点?实际工作中,一般采取什么措施来调整工作点?改变电路参数CC V 、C R 、B1R 、B2R 、E R 都会引起静态工作点的变化。

在实际工作中,一般是通过改变上偏置电阻B1R (调节电位器W R )调节静态工作点的。

W R 调大,工作点降低(C I 减小);W R 调小,工作点升高(C I 增大)。

2.静态工作点设置是否合适,对放大器的输出波形有何影响?静态工作点是否合适,对放大器的性能和输出波形都有很大影响。

工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时o v 的负半周将被削底。

工作点偏低则易产生截止失真,即o v 的正半周被缩顶。

3.实验的体会和建议通过本实验,学习了单管放大器静态工作点的测量方法,学习了单管放大电路交流放大倍数的测量方法,了解了放大电路的静态工作点对动态特性的影响,熟悉了常用电子仪器及电子技术实验台的使用。

建议进行更深入的实验和研究。

实验三集成运算放大器的线性应用一、实验目的1、熟悉集成运算放大器的使用方法,进一步了解其主要特性参数意义;2、掌握由集成运算放大器构成的各种基本运算电路的调试和测试方法;3、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理1.反相比例器电路与原理由于V o未达饱和前,反向输入端Vi与同向输入端的电压V相等(都是零),因此I=Vi/R1,,再由于流入反向端的电流为零,因此V2=I ×R2 =(Vi ×R2)/R1 ,因此V o=-V2=-(R2/R1) ×Vi。

R2如改为可变电阻,可任意调整电压放大的倍数,但输出波形和输入反相2.反相加法器电路与原理根据虚地的概念,即根据虚地的概念,即:vI=0→vN-vP=0, iI=03.减法器电路与原理由1e 输入的信号,放大倍数为31/R R ,并与输出端0e 相位相反,所以3011R e e R =-由2e 输入的信号,放大倍数为413241,R R R R R R ++ 与输出端e0相位相,所以41302241[,]R R R e e R R R +=+当R1=R2=R3=R4时 e0=e2-e1 三、预习题在由集成运放组成的各种运算电路中,为什么要进行调零?为了补偿运放自身失调量的影响,提高运算精度,在运算前,应首先对运放进行调零,即保证输入为零时,输出也为零。

四、实验内容 1.反相比例运算电路表一2.反相加法运算电路表二3.减法运算电路表三五、实验仪器设备六、问题与思考1.试述集成运放的调零方法。

为了补偿运放自身失调量的影响,提高运算精度,在运算前,应首先对运放进行调零,即保证输入为零时,输出也为零。

2.为了不损坏集成块,实验中应注意什么问题?实验前要看清运放组件各管脚的位置,切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

3.实验的体会和建议通过本实验,熟悉了集成运算放大器的使用方法,进一步了解其主要特性参数意义,掌握了由集成运算放大器构成的各种基本运算电路的调试和测试方法,了解了运算放大器在实际应用时应考虑的一些问题。

建议进行更多相关的研究。

实验四 RC 低频振荡器一、实验目的1.掌握桥式RC 正弦波振荡器的电路及其工作原理;2.学习RC 正弦波振荡器的设计、调试方法;3.观察RC 参数对振荡频率的影响,学习振荡频率的测定方法 二、实验电路三、振荡条件与振荡频率(写出RC 正弦波电路的振荡条件以及振荡频率公式) RC 正弦波电路的振荡条件它的起振条件为 :11f f R A R =+应略大于3,f R 应略大于12R ,其中2//fw D R R R R =+震荡频率:012f RCπ=四、预习题在RC 正弦波振荡电路中, R 、C 构成什么电路?起什么作用?3R 、w R 、4R 构成什么电路?起什么作用?RC 串、并联电路构成正反馈支路,同时兼作选频网络,引入正反馈是为了满足振荡的相位条件,形成振荡3R 、w R 及二极管等元件构成负反馈和稳幅环节。

引入负反馈是为了改善振荡器的性能。

调节电位器w R ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形,利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。

D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

4R 的接入是为了削弱二极管非线性的影响,以改善波形失真。

五、安装测试表一六、实验仪器设备七、问题与思考1.如何改变RC 正弦波振荡电路的振荡频率?改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

2.RC 正弦波振荡器如果不起振或者输出波形失真,应调节那个参数?如何调?调整反馈电阻f R (调w R ),使电路起振,且波形失真最小。

如不能起振, 说明负反馈太强,应适当加大w R ,使f R 增大;如果电路起振过度,产生非线性失真,则应适当减小w R 。

3.实验的体会和建议通过本实验,掌握了桥式RC正弦波振荡器的电路及其工作原理,学习了RC 正弦波振荡器的设计、调试方法,.观察了RC参数对振荡频率的影响,学习振荡频率的测定方法。

建议进行更多相关实验。

相关文档
最新文档