圆锥曲线基础知识点 (2)
第二章《圆锥曲线与方程》知识点(精华)

圆锥曲线一.直线.圆(1)过两点1122(,),A x y B x y ,()的直线的斜率公式:)(211212x x x x y y k ≠--=(2)直线方程(3)两直线平行与垂直(两直线斜率都存在) 当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l(4)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB =(5)点到直线距离公式:一点)00,y x P 到直线0:1=++C By Ax l 的距离2200B A CBy Ax d +++=(6) 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.(7)圆的一般方程:022=++++F Ey Dx y x .圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(8)直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-;圆心到直线的距离22B A C Bb Aa d +++=则有中点是,其中点线与.圆相交于(9).直AB M AB222BOMB OM =+唯一让你变得与众不同的天赋是持续不断的忍耐和坚持二.椭圆知识点椭圆的定义:①平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)22(2121F F a a PF PF >=+, ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.②双曲线的定义可用集合语言表示为:{}a MF MF M P 221=+=.注意:若)(2121F F PF PF =+,则动点P 为线段21F F ;若)(2121F F PF PF <+,则动点P 无图形. 2.椭圆的标准方程与几何性质:三双曲线1.双曲线的定义:①平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a()212122F F a a MF MF <=-,的 点的轨迹叫做双曲线. 这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. ②双曲线的定义可用集合语言表示为:{}a MF MF MP 221=-=.注意:当122a F F =时,表示分别以1F 、2F 为端点的两条射线;当122a F F <时,轨迹不存在. 2.双曲线的标准方程与几何性质:注意:a 、b 、c 、e 的几何意义:a 叫做半实轴长;b 叫做半虚轴长;c 叫做半焦距;222c a b =+. e 叫做双曲线的离心率,ce a=且1e >,e 越大,双曲线的张口就越大四抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点, 直线l 叫做抛物线的准线.注意:当定点F 在定直线l 上时,点的轨迹为过点F 与直线l 垂直的直线. 2.抛物线的标准方程与简单几何性质: 注意:1. 若点00(,)M x y 是抛物线22(0)y px p =>上任意一点,则02pMF x =+. 2.若过焦点的直线交抛物线22(0)y px p =>于11(,)A x y 、22(,)B x y 两点,则弦长12AB x x p =++.。
圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结圆锥曲线是平面上的一类曲线,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
其中A、B、C、D、E、F、G、H、I、J是常数,且A、B、C不全为0。
圆锥曲线包括椭圆、双曲线和抛物线等。
1. 椭圆:椭圆是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC < 0,则为椭圆。
椭圆是一个封闭的曲线,其特点是到两个焦点的距离和固定。
椭圆在几何中有重要的应用,如椭圆的焦点在天文学中用于描述行星和卫星的轨道。
2. 双曲线:双曲线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC > 0,则为双曲线。
双曲线有两个分支,其特点是到两个焦点的距离差固定。
双曲线在几何中也有广泛的应用,如描述光线在反射和折射中的路径。
3. 抛物线:抛物线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC = 0,则为抛物线。
抛物线是一个开口向上或向下的曲线,与焦点的距离等于到准线的距离。
抛物线在物理学、工程学和建筑学等领域中有重要的应用,如描述抛物面的形状。
4. 圆锥曲线的性质:(i) 对称性:圆锥曲线可以关于x轴、y轴、z轴和原点对称。
(ii) 焦点:圆锥曲线有1个或2个焦点,焦点是与曲线特定性质相关的重要点。
(iii) 准线:圆锥曲线有1条或2条准线,准线是与曲线特定性质相关的重要线。
(iv) 渐近线:双曲线有两条渐近线,抛物线有一条渐近线。
高考数学知识点圆锥曲线二级结论

圆锥曲线的二级结论一.有关椭圆的经典结论结论1.(1)、与椭圆22221x y a b 共焦点的椭圆的方程可设为 222221,0x y b a b.(2)、与椭圆22221x y a b 有相同的离心率的椭圆可设为2222x y a b , 2222,0x y b a.结论2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立:(1)、第一定义:122PF PF a ;(2)、焦半径的最大值与最小值:1a c PF a c ;(3)、2212b PF PF a ;(4)、焦半径公式10||PF a ex ,20||PF a ex (1(,0)F c ,2(,0)F c 00(,)M x y ).结论4.设P 点是椭圆上异于长轴端点的任一点,12,F F 为其焦点,记12F PF ,则(1)、2122||||1cos b PF PF;(2)、焦点三角形的面积:122||=tan2PF F P S c y b;(4)、当P 点位于短轴顶点处时, 最大,此时12PF F S 也最大;(5)、.21cos 2e (6)、点M 是21F PF 内心,PM 交21F F 于点N ,则caMN PM ||||.结论5.有关22b a的经典结论(1)、AB 是椭圆22221x y a b 的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a .(2)、椭圆的方程为22221x y a b(a >b >0),12,A A 为椭圆的长轴顶点,P 点是椭圆上异于长轴顶点的任一点,则有1222PA PA b K K a(3)、椭圆的方程为22221x y a b(a >b >0),12,B B 为椭圆的短轴顶点,P 点是椭圆上异于短轴顶点的任一点,则有1222PB PB b K K a(4)、椭圆的方程为22221x y a b(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆上异于,A B两点的任一点,则有22PA PBb K K a结论6.若000(,)P x y 在椭圆22221x y a b 上,则(1)、以000(,)P x y 为切点的切线斜率为2020b x k a y ;(2)、过0P 的椭圆的切线方程是00221x x y ya b.结论7.若000(,)P x y 在椭圆22221x y a b外,则过000(,)P x y 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b.结论8.椭圆的两个顶点为1(,0)A a ,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b.结论9.过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y (常数).结论10.若P 为椭圆上异于长轴端点的任一点,F 1,F 2是焦点,12PF F ,21PF F ,则sin sin sin c e a.结论11.P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF ,当且仅当2,,A F P 三点共线时,等号成立.结论12.O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ .(1)、22221111||||OP OQ a b;(2)、22||+|OQ|OP 的最大值为22224a b a b ;(3)、OPQ S 的最小值是2222a b a b .结论15.过焦点且垂直于长轴的弦叫通经,其长度为ab 22结论16.从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.结论17.过椭圆22221(0)x y a b a b左焦点的焦点弦为AB ,则)(221x x e a AB ;过右焦点的弦)(221x x e a AB .结论18.椭圆内接矩形最大面积:2ab .结论19.若椭圆方程为22221(0)x y a b a b,半焦距为c ,焦点 12,0,,0F c F c ,设(1)、过1F 的直线l 的倾斜角为 ,交椭圆于A、B 两点,则有①2211,cos cos b b AF BF a c a c;②2cos ab AB a c2222(2)、若椭圆方程为22221(0)x y a b a b,半焦距为c ,焦点 12,0,,0F c F c ,设过F 2的直线l 的倾斜角为 ,交椭圆于A、B 两点,则有:①22,cos cos b b AF BF a c a c22+-;②22cos ab AB a c222结论:椭圆过焦点弦长公式: 222cos 2sin ab x a c AB ab y a c222222焦点在轴上焦点在轴上结论20.若AB 是过焦点F 的弦,设,AF m BF n ,则2112amnb二.有关双曲线的经典结论结论21.(1)、与22221x y a b 共轭的双曲线方程为22221x y a b,①它们有公共的渐近线;②四个焦点都在以原点为圆心,C 为半径的圆上;③2212111e e 。
圆锥曲线知识点总结(基础)

圆锥曲线的方程与性质1椭圆 (1)椭圆概念x 0,得y b ,则BdO, b) , B 2(0,b)是椭圆与y 轴的两个交点。
同理令 y 0得xa ,即A( a,0),A>(a,0)是椭圆与x 轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段 AA 、B 1B 2分别叫做椭圆的长轴和短轴,它们的长分别为 2a 和2b , a 和b 分别叫做椭圆的长半轴长和短半轴长。
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在Rt OB 2F 2中,|OB 2 |b , |0F 2 |c , | B 2F 2 | a ,222222且 |0F 2 I 2I B 2F 2I 2|0B 2 |2,即 c 2 a 2 b 2 ;c④离心率:椭圆的焦距与长轴的比 e 叫椭圆的离心率。
••• a c 0 ,••• 0 e 1,且e 越接近1, c 就a越接近a ,从而b 就越小,对应的椭圆越扁;反之, e 越接近于0 , c 就越接近于0,从而b 越接近于a ,这时 椭圆越接近于圆。
当且仅当 a b 时,c 0,两焦点重合,图形变为圆,方程为 x 2 y 2 a 2。
2•双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(|| PF 1 | | PF 2 || 2a )。
注意:①式中是差的绝对值,在0 2a | F 1F 2 |条件下;|PF 1 | | PF 2 | 2a 时为双曲线的一支; |PF 2| |PF 1| 2a 时为双曲线的另一支(含 F 1的一支);②当2a 厅汀2丨时,|| PF 11 |PF 2〔| 2a 表示两条射 线;③当2a | F 1F 21时,||卩已| |PF 2|| 2a 不表示任何图形;④两定点 斤丁2叫做双曲线的焦点,| F 1F 2 |叫做 焦距。
平面内与两个定点 F 1、 的焦点,两焦点的距离椭圆的标准方程为: F 2的距离的和等于常数2c 叫椭圆的焦距。
圆锥曲线常用知识归类

圆锥曲线常用知识归类1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。
(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
圆锥曲线与方程 (2)双曲线知识点

圆锥曲线与方程 (2)双曲线1.双曲线定义:在平面内,到两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|) a PF PF 221=-(a 为常数c a <<0)的点的轨迹叫做双曲线. ⑴若2a <21F F ,则动点P 的轨迹是双曲线.⑵若2a =21F F ,则动点P 的轨迹是以F 1,F 2为端点的两条射线(在直线F 1,F 2上). ⑶若2a >21F F ,则动点P 无轨迹.双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l:x =c a2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b2,与椭圆相同.2.双曲线的标准方程: 焦点在x 轴上时,方程为12222=-b y a x )00(>>b a , 焦点)0,(1c F -)0,(2c F焦点在y 轴上时,方程为12222=-bx ay )00(>>b a , 焦点),0(1c F -),0(2c F 注:222b a c +=(类比勾股定理)双曲线的一般方程:)0(122<=+mn ny mx注:方程C By Ax =+22(C B A ,,均不为0)表示双曲线的条件:方程变形:122=+BC yAC x,考察二次项系数的正负,若AC 与B C 异号,表示双曲线;若C B A ,,同号且B A ≠,则表示椭圆;若C B A ,,同号且AC =BC ,则表示圆.3.双曲线22221(0,0)x y a b ab-=>>的性质:(1)范围:a x ≥或a x -≤,y R ∈. (2)对称性:关于x 轴、y 轴、原点对称.(3)顶点坐标:双曲线和x 轴有两个交点)0,(),0,(21a A a A -,焦点坐标是)0(,c ±. (4)实轴长2a 、虚轴长2b 、焦距2c ;实半轴a 、虚半轴b 、半焦距c . (5)双曲线12222=-by ax 的准线方程是cax 2±=,准线到中心的距离为2ac,或令双曲线标准方程22ax -22by =1中1为零即得渐近线方程.焦准距:(焦点到对应准线的距离)cb2.通径的长是ab 22,通径的一半(半通径):2ba.(6) 渐近线方程是x ab y ±=① 双曲线22221(0,0)x y a b ab-=>>渐近线方程:令02222=-by ax )0,0(>>b a ,即x ab y ±=;② 渐近线是02222=-bya x(或x a by ±=⇔0=±by a x)的双曲线设为λ=-2222by ax .(λ≠0),k 是待定系数.③(焦渐距)焦点到渐近线的距离恒为b .(7) 等轴双曲线:实轴和虚轴等长的双曲线叫做等轴双曲线. 定义式:a b =. 注:①等轴双曲线的渐近线方程为:x y ±= .②渐近线互相垂直.③等轴双曲线可设为:)0(22≠=-λλy x .(0>λ时焦点在x 轴,0<λ时焦点在y 轴上)(8) 离心率是22221ab ac ac e +=== (1>e )e 越大,开口越开阔;e 越小,开口越扁狭. (9) 半径:若点),(00y x P 是双曲线22221(0,0)x y a b ab-=>>上一点,21F F 、是其左、右焦点,|||)(|||0201ex a cax e PF +=+=, |||)(|||0022ex a x cae PF -=-=即焦半径:点),(00y x p 在左支上 01ex a PF --=和02ex a PF -=.点),(00y x p 在右支上 01ex a PF +=和02ex a PF +-=.4.双曲线的内外部(1) 00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2) 00(,)P x y 在双曲线22221(0,0)x y a b ab-=>>的外部22221x y a b ⇔-<.5.双曲线系方程(1) 双曲线12222=-b y a x 共焦点的双曲线系方程是12222=--+λλb ya x(22b a <<-λ)(2) 双曲线12222=-b ya x共渐近线的双曲线系方程可设为λ=-2222bya x)0(≠λ. (当0>λ时焦点在x 轴,当0<λ时焦点在y 轴上).本节学习要求:学习双曲线的几何性质,可以用类比思想,即象讨论椭圆的几何性质一样去研究双曲线的标准方程,从而得出双曲线的几何性质,将双曲线的两种标准方程、图形、几何性质列表对比,便于掌握.双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式.三角函数中的相关知识,是高考的主要内容.通过本节内容的学习,培养同学们良好的个性品质和科学态度,培养同学们的良好的学习习惯和创新精神,进行辩证唯物主义世界观教育.【重点难点解析】1.学习双曲线的几何性质,也可以与椭圆的几何性质对比进行,着重指出它们的联系和区别.2.本节重点是双曲线的几何性质,双曲线的第二定义及其应用,难点是双曲线的渐近线方程,第二定义,几何性质的应用.。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。
圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。
本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。
一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。
2. 定点:圆锥曲线的两个定点分别称为焦点。
3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。
4. 准线:通过两个焦点的直线段称为准线。
二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。
2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
3. 性质:椭圆具有对称性、渐近线和切线性质等。
4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。
三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。
2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。
3. 性质:双曲线具有渐近线和切线性质,且有两个分支。
4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。
四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。
2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。
3. 性质:抛物线具有对称性、渐近线和切线性质等。
4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。
五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。
2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。
3. 性质:圆具有对称性、切线性质和切圆定理等。
4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。
总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结一、椭圆1.平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点, 两焦点的距离称为椭圆的焦距.2.椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<二、双曲线1.平面内与两个定点 , 的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线. 即: 。
这两个定点称为双曲线的焦点, 两焦点的距离称为双曲线的焦距.2.双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 或 ,或 ,顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于 轴、 轴对称, 关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±3.等轴双曲线: 双曲线 称为等轴双曲线, 其渐近线方程为 , 离心率 . 4、共渐近线的双曲线系方程:三、抛物线1.平面内与一个定点 和一条定直线 的距离相等的点的轨迹称为抛物线. 定点 称为抛物线的焦点, 定直线 称为抛物线的准线.2.抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤3.过抛物线的焦点作垂直于对称轴且交抛物线于 、 两点的线段 , 称为抛物线的“通径”, 即 .4.焦半径公式:若点 在抛物线 上, 焦点为 , 则 ; 若点 在抛物线 上, 焦点为 , 则 ; 5、焦点弦: = +p四、圆1.定义: 点集{M ||OM |=r }, 其中定点O 为圆心, 定长r 为半径.2.方程: (1)标准方程: 圆心在c(a,b), 半径为r 的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点, 半径为r 的圆方程是x2+y2=r2(2)一般方程: ①当D2+E2-4F >0时, 一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程, 圆心为 半径是 。
(完整版)《圆锥曲线》主要知识点
圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。
高中数学中的圆锥曲线知识点总结
高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。
在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。
一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
椭圆的离心率小于1。
- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。
3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。
- 焦点坐标公式:F1(-c,0),F2(c,0)。
- 离心率公式:e = c/a。
- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。
二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
双曲线的离心率大于1。
- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。
- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。
3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。
(2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。
解:(1)(2,2)连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时AF即 y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为(2,21-),它为直线AF 与抛物线的另一交点,舍去)(2)(1,41) 过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q 点的纵坐标为1,代入y 2=4x 得x=41,∴Q(1,41) 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。
例2、F 是椭圆13422=+y x 的右焦点,A(1,1)为椭圆内一定点,(1)PF PA +的最小值为 (2)PF PA 2+的最小值为分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '虑问题。
解:(1)4-5设另一焦点为F ',则F '(-1,0)连A F ',P F '542)(22-='-≥-'-='-+=+F A a PA F P a F P a PA PF PA当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。
(2)3作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=21, ∴PH PF PH PF ==2,21即 ∴PH PA PF PA +=+2当A 、P 、H 三点共线时,其和最小,最小值为3142=-=-A x ca例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4分析:作图时,要注意相切时的“图形特征”共线(如图中的A 、M 、C 共线,B 、D 、M 共线)圆的“半径等于半径”(如图中的MD MC =)。
解:如图,MD MC =,∴26-=--=-MB MA DB MB MA AC 即 ∴8=+MB MA (*)∴点M 的轨迹为椭圆,2a=8,a=4,c=1,b 2=15轨迹方程为1151622=+y x点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出4)1()1(2222=+-+++y x y x ,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程。
分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系。
解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。
分析:(1)可直接利用抛物线设点,如设A(x 1,x 12),B(x 2,X 22),又设AB 中点为M(x 0y 0)用弦长公式及中点公式得出y 0关于x 0的函数表达式,再用函数思想求出最短距离。
(2)M 到x 轴的距离是一种“点线距离”,可先考虑M 到准线的距离,想到用定义法。
解法一:设A(x 1,x 12),B(x 2,x 22),AB 中点M(x 0,y 0)则⎪⎩⎪⎨⎧=+=+=-+-0222102122221221229)()(y x x x x x x x x x 由①得(x 1-x 2)2[1+(x 1+x 2)2]=9即[(x 1+x 2)2-4x 1x 2]·[1+(x 1+x 2)2]=9 ④① ② ③由②、③得2x 1x 2=(2x 0)2-2y 0=4x 02-2y 0 代入④得 [(2x 0)2-(8x 02-4y 0)]·[1+(2x 0)2]=9∴220041944x x y +=-, 1149)14(4944202020200-+++=+=x x x x y ≥,5192=- 450≥y 当4x 02+1=3 即 220±=x 时,45)(min 0=y 此时)45,22(±M法二:如图,32222=≥+=+=AB BF AF BB AA MM∴232≥MM , 即∴451≥MM , 当∴M 到x 点评:而不求”的方法。
证AB 是否能经过焦点F 例6、已知椭圆)52(1122≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A 、B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。
分析:此题初看很复杂,对f(m)的结构不知如何运算,因A 、B 来源于“不同系统”,A 在准线上,B 在椭圆上,同样C 在椭圆上,D 在准线上,可见直接求解较繁,将这些线段“投影”到x 轴上,立即可得防得(m-1)x 2+m(x+1)2-m 2+m=0 ∴(2m-1)x 2+2mx+2m-m 2=0设B(x 1,y 1),C(x 2,y 2),则x 1+x 2=-)52(122≤≤-m m m12222)()(2)()(2)(2121-⋅=+=+-+=---=-=m m x x x x x x x x x x CD AB m f C A C D A B(2))1211(2121122)(-+=-+-=m m m m f∴当m=5时,9210)(min =m f 当m=2时,324)(max =m f 点评:此题因最终需求C B x x +,而BC 斜率已知为1,故可也用“点差法”设BC 中点为M(x 0,y 0),通过将B 、C 坐标代入作差,得0100=⋅-+k m y m x ,将y 0=x 0+1,k=1代入得01100=-++m x m x ,∴120--=m m x ,可见122--=+m mx x C B当然,解本题的关键在于对CD AB m f -=)(的认识,通过线段在x 轴的“投影”发现C B x x m f +=)(是解此题的要点。
【同步练习】1、已知:F 1,F 2是双曲线12222=-by a x 的左、右焦点,过F 1作直线交双曲线左支于点A 、B ,若m AB =,△ABF 2的周长为( )A 、4aB 、4a+mC 、4a+2mD 、4a-m2、若点P 到点F(4,0)的距离比它到直线x+5=0的距离小1,则P 点的轨迹方程是 ( )A 、y 2=-16xB 、y 2=-32xC 、y 2=16xD 、y 2=32x3、已知△ABC 的三边AB 、BC 、AC 的长依次成等差数列,且AC AB >,点B 、C 的坐标分别为(-1,0),(1,0),则顶点A 的轨迹方程是( )A 、13422=+y x B 、)0(13422>=+x y x C 、)0(13422<=+x y x D 、)00(13422≠>=+y x y x 且 4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是 ( ) A 、)1(49)21(22-≠=+-x y x B 、)1(49)21(22-≠=++x y x C 、)1(49)21(22-≠=-+x y x D 、)1(49)21(22-≠=++x y x 5、已知双曲线116922=-y x 上一点M 的横坐标为4,则点M 到左焦点的距离是 6、抛物线y=2x 2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y 2=2x 的弦AB 所在直线过定点p(-2,0),则弦AB 中点的轨迹方程是8、过双曲线x 2-y 2=4的焦点且平行于虚轴的弦长为9、直线y=kx+1与双曲线x 2-y 2=1的交点个数只有一个,则k=10、设点P 是椭圆192522=+y x 上的动点,F 1,F 2是椭圆的两个焦点,求sin ∠F 1PF 2的最大值。