射流泵工作原理
射流泵工作原理

射流泵工作原理射流泵是一种基于射流原理工作的流体传动装置。
它利用高速射流的动能转换为压力能,从而将流体输送到较高的位置或压力下。
射流泵通常由驱动喷嘴、吸入管道、扩散室和出口管道组成。
工作原理:1. 吸入阶段:射流泵的工作开始于喷嘴。
在喷嘴内,高速流体通过收缩的截面积,产生了高速射流。
这个射流在喷嘴出口附近形成一个负压区域,使得外部流体被吸入喷嘴内。
2. 加速阶段:当外部流体被吸入喷嘴内后,射流泵会将其加速,使其速度增加。
这是通过喷嘴的几何形状和射流泵内部的设计来实现的。
加速过程中,射流泵会将动能转换为压力能。
3. 扩散阶段:加速后的流体进入扩散室,扩散室的截面积逐渐增大。
由于连续性方程的要求,流体的速度会减小,而压力会增加。
这个过程是为了将动能转化为压力能,以便将流体输送到更高的位置或压力下。
4. 推出阶段:流体通过扩散室后,进入出口管道。
在出口管道中,流体的速度和压力进一步调整,以适应特定的应用需求。
射流泵的工作原理可以通过伯努利方程来解释。
根据伯努利方程,流体在速度增加的地方压力会降低,而在速度减小的地方压力会增加。
因此,射流泵通过利用流体的速度增加和减小来实现压力的转换。
射流泵的应用范围广泛,可以用于液体输送、气体增压、混合和搅拌等领域。
它具有结构简单、无需机械密封、无泄漏等优点,适用于一些特殊的工况和环境。
总结:射流泵是一种利用射流原理工作的流体传动装置。
它通过高速射流将动能转换为压力能,从而将流体输送到更高的位置或压力下。
射流泵的工作原理包括吸入阶段、加速阶段、扩散阶段和推出阶段。
它的应用范围广泛,具有结构简单、无泄漏等优点。
射流泵的工作原理介绍

射流泵的工作原理介绍射流泵是一种流体机械设备,通过射流原理将高速流体能转换为静压能,从而提供压力和输送流体。
它具有结构简单、体积小、重量轻、维护方便等优点,在工业领域应用广泛。
本文将介绍射流泵的工作原理和基本组成结构。
一、工作原理射流泵的工作原理基于贝努利方程和连续性方程。
当高速流体从射流泵的喷口喷出时,由于喷口处速度增加而压力下降。
同时,喷出的高速流体通过与待泵流体混合,将其动能转移给待泵流体,从而提高其压力。
射流泵的工作原理可简化为以下几个步骤:1. 高速液体通过喷口喷出,形成高速喷流;2. 高速喷流与待泵液体混合,将动能转移给待泵液体;3. 转移后的动能转化为压力能,提高待泵液体的压力;4. 待泵液体在管道中以较高压力流动。
二、基本组成结构射流泵通常由泵体、喷嘴、进口管道和出口管道组成。
1. 泵体:泵体是射流泵的主体部分,通常呈管状结构,由合适的材料制成。
泵体内部有一个转动部件,用于调整喷嘴的位置和角度,以控制喷流的方向和速度。
2. 喷嘴:喷嘴是射流泵实现喷流的关键部件。
它位于泵体的一端,通常是一个圆形或椭圆形的孔。
通过调整喷嘴的大小和角度,可以控制喷流的速度和方向。
3. 进口管道:进口管道是将待泵流体引入射流泵的管道。
进口管道通常位于泵体的侧面或顶部,连接待泵液体的来源。
4. 出口管道:出口管道是将由射流泵产生的高压流体输送到指定位置的管道。
出口管道通常位于泵体的另一端,连接待泵流体的目标位置。
三、应用领域射流泵广泛应用于许多领域,包括工业、农业、化工等。
以下是一些典型的应用领域:1. 工业领域:射流泵常用于工业压力试验和清洗设备。
它可以提供稳定的高压流体,以进行设备的检测和清洗。
2. 农业领域:射流泵可以用于农田灌溉和水利工程中提供压力。
它可以增加水的压力,实现远距离输送。
3. 化学工业:射流泵常用于化学反应过程中提供压力和混合物的搅拌。
它可以使化学反应更加高效,并提高产品质量。
总结:射流泵的工作原理基于贝努利方程和连续性方程,通过喷口将高速喷流与待泵流体混合,并将动能转化为压力能。
射流泵工作原理

射流泵工作原理引言概述:射流泵是一种常用的流体传动设备,广泛应用于工业生产和实验室等领域。
本文将详细介绍射流泵的工作原理,包括射流泵的基本构造、工作原理、优点和应用等方面。
一、射流泵的基本构造1.1 射流泵的外部结构射流泵一般由进口管道、射流管、喷嘴、扩散器、出口管道等组成。
其中,进口管道用于引入工作介质,喷嘴用于将高速流体喷射到射流管中,而扩散器则用于将高速流体转化为低速流体,最后通过出口管道排出。
1.2 射流泵的内部结构射流泵内部主要由喷嘴、射流管和扩散器构成。
喷嘴是射流泵的核心部件,它通过喷射高速流体来产生负压,从而实现泵送工作介质。
射流管起到引导流体流动的作用,而扩散器则用于将高速流体转化为低速流体,增加流体的压力。
1.3 射流泵的材料选择射流泵的材料选择非常重要,通常根据工作介质的性质和工作条件来确定。
常见的材料有不锈钢、铜、铸铁等。
此外,还需要考虑材料的耐腐蚀性、耐磨性和耐高温性能,以确保射流泵的长期稳定运行。
二、射流泵的工作原理2.1 负压原理射流泵利用喷嘴的高速喷射作用产生负压,使工作介质被吸入射流管中。
当喷嘴喷射的高速流体通过射流管时,会产生负压效应,从而使工作介质被吸入射流管中,形成流体的连续泵送。
2.2 动能转换原理射流泵中的高速流体具有较大的动能,通过扩散器的作用,将高速流体转化为低速流体,同时增加了流体的压力。
这种动能转换原理使得射流泵能够将工作介质以较高的压力泵送出去。
2.3 能量损失原理射流泵在工作过程中会产生一定的能量损失,主要包括摩擦损失、压力损失和热损失等。
这些能量损失会降低射流泵的效率,因此在设计和使用射流泵时,需要尽量减小能量损失,提高泵的效率。
三、射流泵的优点3.1 结构简单射流泵的结构相对简单,只需要喷嘴、射流管和扩散器等基本部件,不需要复杂的机械传动装置,因此维护和维修相对容易。
3.2 运行可靠射流泵没有旋转部件,不易受到杂质的影响,因此运行可靠性较高。
射流泵工作原理

射流泵工作原理射流泵是一种利用射流原理进行液体输送的装置。
它主要由喷嘴、进口管道、扩散室和出口管道组成。
通过高速流体射出喷嘴,产生的动能转化为静压能,从而产生负压,使液体被吸入进口管道,经过扩散室扩大流道面积,降低流速,最终通过出口管道排出。
射流泵的工作原理可以分为三个阶段:吸入阶段、加速阶段和排出阶段。
1. 吸入阶段:射流泵的喷嘴通过高速流体射出,产生的动能转化为静压能,形成负压区域。
当负压区域与液体接触时,液体被吸入进口管道。
这个过程类似于吸管吸水的原理。
2. 加速阶段:液体进入扩散室后,由于扩散室内的流道面积增大,液体流速减小,从而使液体的静压能增加。
这个过程类似于水流通过河床变宽,流速减小,水位升高的现象。
3. 排出阶段:当液体通过扩散室后,流速减小,静压能增加,液体被推向出口管道。
由于出口管道的截面积较小,液体流速增加,静压能减小,最终排出射流泵。
射流泵的工作原理基于连续质量守恒和能量守恒定律。
通过喷嘴产生的高速流体射出,使液体产生负压,从而实现液体的吸入和排出。
射流泵具有结构简单、无机械运动部件、无泵轴密封等优点,适用于输送低粘度液体和悬浮颗粒。
射流泵的应用广泛,例如污水处理、化工生产、冶金工业等领域。
在污水处理中,射流泵可以用于提升污水、混合污水和搅拌池的循环。
在化工生产中,射流泵可以用于输送化工液体、混合反应物料。
在冶金工业中,射流泵可以用于冷却、喷淋和清洗设备。
总之,射流泵是一种基于射流原理的液体输送装置,通过喷嘴产生的高速流体射出,形成负压区域,实现液体的吸入和排出。
它具有结构简单、无机械运动部件等优点,广泛应用于污水处理、化工生产、冶金工业等领域。
射流泵工作原理

射流泵工作原理射流泵是一种利用流体动能将液体或者气体抽送到较高压力的装置。
它通过高速射流的动能转化为压力能,从而实现液体或者气体的输送。
射流泵通常由喷嘴、扩散器和吸收器等部件组成。
工作原理如下:1. 喷嘴:射流泵的喷嘴是一种特殊设计的装置,用于加速流体并将其转换为高速射流。
喷嘴内部通道的几何形状和尺寸对射流泵的性能有重要影响。
当流体通过喷嘴时,由于喷嘴的收缩,流速增加,静压力降低,动能增加。
2. 扩散器:喷嘴后面连接着一个扩散器,用于将高速射流转换为低速高压的流体。
扩散器内部的几何形状和尺寸使流体逐渐扩散,从而减小流速,增加静压力。
3. 吸收器:扩散器后面是一个吸收器,用于采集流体并将其输送到所需的位置。
吸收器的设计通常考虑到流体的压力和流量需求。
射流泵的工作过程可以分为以下几个步骤:1. 流体进入喷嘴:流体从进口处进入射流泵的喷嘴。
喷嘴的几何形状和尺寸使得流体在喷嘴内加速,并转化为高速射流。
2. 射流加速:流体在喷嘴内加速,同时静压力降低,动能增加。
这是通过喷嘴内的收缩通道实现的。
3. 射流扩散:高速射流通过喷嘴后的扩散器,流速逐渐减小,静压力增加。
扩散器内的几何形状和尺寸使得流体逐渐扩散。
4. 流体采集:流体从扩散器进入吸收器,通过吸收器输送到所需的位置。
吸收器的设计通常考虑到流体的压力和流量需求。
射流泵的优点包括:1. 简单结构:射流泵的结构相对简单,由喷嘴、扩散器和吸收器等基本部件组成,易于创造和维护。
2. 无机械部件:射流泵没有旋转部件或者活塞等机械部件,因此没有磨擦和磨损,减少了维护和故障的可能性。
3. 可调节性:射流泵的性能可以通过改变喷嘴和扩散器的几何形状和尺寸来调节,以满足不同的压力和流量需求。
4. 适合范围广:射流泵可用于输送各种液体温和体,适合于不同的工业领域和应用场景。
射流泵的应用包括:1. 污水处理:射流泵可用于将污水从低压区域抽送到高压区域,用于污水处理和排放。
2. 石油工业:射流泵可用于油井注水、油气输送等石油工业领域。
射流泵工作原理

射流泵工作原理引言概述:射流泵是一种常见的流体输送设备,它利用高速射流原理将能量转化为压力能,从而实现液体的输送。
本文将详细介绍射流泵的工作原理,包括射流泵的基本构造、工作过程、优点和应用领域。
一、射流泵的基本构造1.1 射流泵的主体结构射流泵主要由喷嘴、扩散器和泵体组成。
喷嘴是射流泵的核心部件,它通过高速喷射流体产生负压,形成射流。
扩散器用于扩大射流截面积,减小流速,增加压力。
泵体则起到封闭和支撑的作用。
1.2 射流泵的进口和出口射流泵的进口通常位于泵体的一侧,用于引入待输送的液体。
出口则位于泵体的另一侧,用于排出压力增加后的液体。
进口和出口之间的压差是射流泵工作的关键。
1.3 射流泵的驱动装置射流泵的驱动装置通常是一个高速流体,如水或者气体。
这种流体经过喷嘴后形成射流,通过扩散器增加压力,从而实现液体的输送。
驱动装置的流速和压力决定了射流泵的输送能力。
二、射流泵的工作过程2.1 射流泵的启动过程当驱动装置开始工作时,高速流体通过喷嘴形成射流。
射流在扩散器内扩大截面积,流速减小,压力增加。
液体通过进口进入射流泵,受到射流的负压作用被吸入,并随着射流一起流动。
2.2 射流泵的压力增加过程随着液体进入射流泵,射流的流速减小,压力增加。
液体在扩散器内受到压力的作用,被推向出口。
出口处的压力比进口处高,从而实现了液体的输送。
2.3 射流泵的循环过程射流泵的工作是一个循环过程。
液体从进口进入射流泵,受到射流的负压作用被吸入,然后在扩散器内增加压力,最终从出口排出。
这个循环过程不断重复,实现了液体的持续输送。
三、射流泵的优点3.1 高效节能射流泵利用射流原理实现液体的输送,无需机械转动部件,因此能够减少能量损耗,提高能效。
3.2 无泄漏射流泵的结构简单,没有密封件,因此不存在泄漏问题,能够确保输送液体的完整性。
3.3 适应性强射流泵适合于各种液体输送,包括高粘度液体、腐蚀性液体和固体颗粒悬浮液等,具有广泛的应用领域。
射流泵工作原理
射流泵工作原理射流泵是一种常用的流体输送设备,它通过利用射流原理将高速流体能转化为压力能,实现流体的输送。
射流泵的工作原理主要包括三个方面:射流效应、能量转换和流体输送。
1. 射流效应射流效应是射流泵工作的基础。
当高速流体从喷嘴中喷出时,会产生一个向前的冲击力,这个冲击力可以将周围的流体推动起来。
射流效应的产生与贝努利原理有关,即高速流体的速度增加,压力就会降低。
通过喷嘴中的高速流体,射流泵可以产生足够的冲击力,推动周围的流体向前流动。
2. 能量转换射流泵利用射流效应将高速流体的动能转化为压力能。
当高速流体冲击到静止的流体时,它会将动能传递给周围的流体,使其获得一定的动能。
在这个过程中,高速流体的速度减小,而静止流体的速度增加,从而使得静止流体的压力增加。
这种能量转换的过程可以实现流体的输送。
3. 流体输送射流泵利用能量转换的原理将流体推向需要输送的方向。
当高速流体冲击到静止流体时,它会产生一个压力波,这个压力波会向前传播,推动周围的流体一起向前流动。
通过控制喷嘴的尺寸和形状,可以调节射流泵的流量和压力。
射流泵的工作原理可以通过以下实例来说明:假设有一个射流泵系统,包括一个喷嘴和一个管道。
当液体从喷嘴中喷出时,它会产生一个高速流体射流。
这个射流会冲击到管道中的静止液体,将动能转化为压力能,并将静止液体推向管道的出口。
通过控制喷嘴的尺寸和形状,可以调节射流泵的流量和压力,从而满足不同的流体输送需求。
射流泵具有以下优点:1. 结构简单,操作方便。
2. 可以实现高压力和大流量的流体输送。
3. 适合于各种流体,包括液体、气体和悬浮颗粒等。
然而,射流泵也存在一些局限性:1. 射流泵的效率较低,能量转换率普通在30%到40%之间。
2. 喷嘴和管道的磨损较大,需要定期维护和更换。
3. 对于粘稠流体和颗粒含量较高的流体,射流泵的效果较差。
总之,射流泵是一种利用射流效应实现流体输送的设备。
通过射流效应、能量转换和流体输送三个方面的工作原理,射流泵可以将高速流体的动能转化为压力能,实现流体的输送。
射流泵工作原理
射流泵工作原理射流泵是一种利用高速射流产生的负压效应来实现液体输送的装置。
其工作原理基于贝努利原理和连续介质动力学理论。
1. 贝努利原理贝努利原理是流体力学中的基本原理,它描述了流体在不同速度下的压力变化。
根据贝努利原理,当流体在一个管道中流动时,速度增加时,压力就会降低。
射流泵利用了这个原理来实现液体的吸引和输送。
2. 射流泵的构造射流泵主要由两部分组成:喷嘴和吸液管。
喷嘴是射流泵的关键部件,它通过一个细小的出口将液体喷射出来,形成高速的射流。
吸液管连接在喷嘴的一侧,用于吸取被喷射出的液体。
3. 射流泵的工作过程当射流泵开始工作时,液体被喷射出来形成高速的射流。
由于射流的速度较高,根据贝努利原理,射流周围的压力会降低。
这个负压区域将吸引周围的液体进入射流中,形成连续的液体流动。
4. 射流泵的优点射流泵具有以下几个优点:- 简单且结构紧凑,易于安装和维护。
- 不需要额外的动力源,只需利用液体的动能即可工作。
- 可以输送各种类型的液体,包括固体颗粒和高粘度液体。
- 没有旋转部件,因此不易受到磨损和堵塞。
5. 射流泵的应用领域射流泵广泛应用于各个领域,包括:- 污水处理和污泥输送:射流泵可以有效地将污水和污泥从一处输送到另一处。
- 化工工艺中的液体混合和搅拌:射流泵可以将不同的液体混合在一起,实现化学反应或物质的溶解。
- 矿山和石油行业中的液体输送:射流泵可以输送含有固体颗粒或高粘度液体的混合物。
- 消防系统中的水供应:射流泵可以通过吸取周围的液体来提供高速的水流,用于灭火或清洗作业。
总结:射流泵是一种利用高速射流产生的负压效应来实现液体输送的装置。
它通过喷射出高速射流形成负压区域,吸引周围的液体进入射流中,实现连续的液体流动。
射流泵具有结构简单、易于安装和维护的优点,广泛应用于污水处理、化工工艺、矿山和石油行业以及消防系统等领域。
射流泵工作原理
射流泵工作原理射流泵是一种基于射流原理工作的流体输送设备。
它通过利用高速流体射流的动能将流体压力能转化为动能,从而实现流体的输送和增压。
射流泵由喷嘴、扩散管和吸入管组成。
工作原理如下:1. 喷嘴:射流泵的关键部件是喷嘴,它是通过喷嘴的构造和设计来实现流体的加速和压力能的转化。
喷嘴的形状和尺寸直接影响射流泵的性能。
2. 高速射流:在射流泵中,高速流体从喷嘴中喷出,形成一个高速射流。
射流泵利用射流动能来提供流体的压力能。
3. 液体吸入:在射流泵的吸入管中,液体通过负压作用被吸入,并与高速射流相混合。
射流泵利用液体的动能将其加速。
4. 动能转化:当高速射流与吸入的液体相混合时,高速射流的动能会转化为液体的动能,使液体获得较高的速度和压力。
5. 流体输送和增压:经过动能转化后,液体被推送到扩散管中,通过扩散管的设计,将液体的速度逐渐减小,压力逐渐增大,从而实现液体的输送和增压。
射流泵的优点包括结构简单、无机械运动部件、可靠性高、维护成本低等。
它适合于输送各种流体,包括清水、污水、酸碱溶液等。
射流泵的工作原理使其在一些特殊的工况下具有较好的适应性,例如输送高浓度固体颗粒的液体、输送高粘度液体等。
需要注意的是,射流泵的性能和效率受到多种因素的影响,如喷嘴形状、喷嘴和扩散管的尺寸、液体的性质等。
在实际应用中,需要根据具体的工况要求和流体特性来选择和设计射流泵,以获得最佳的性能和效果。
总结起来,射流泵是一种利用射流原理工作的流体输送设备,通过喷嘴产生高速射流,将流体的压力能转化为动能,实现流体的输送和增压。
它具有结构简单、无机械运动部件等优点,适合于多种流体的输送。
在实际应用中,需要根据具体要求选择和设计射流泵,以获得最佳的性能和效果。
射流泵工作原理
射流泵工作原理引言概述:射流泵是一种基于射流原理工作的泵类装置,其工作原理是通过高速射流流体的动能转换为压力能,从而实现液体的输送。
本文将从五个大点来详细阐述射流泵的工作原理。
正文内容:1. 射流泵的基本原理1.1 射流泵的定义和分类射流泵是一种利用液体高速射流的动能来实现液体输送的装置。
根据不同的工作原理和结构特点,射流泵可以分为单级射流泵和多级射流泵两种。
1.2 射流泵的工作原理射流泵的工作原理是通过高速射流流体的动能转换为压力能,实现液体的输送。
当高速射流流体经过射流管道时,会产生较大的动能和较高的速度。
然后,这些高速流体会与待输送的液体混合,通过动能转换将其压缩,并将其输送到需要的地方。
1.3 射流泵的优势和应用领域射流泵相比传统的离心泵等泵类装置具有结构简单、无需机械密封、不易堵塞等优势。
因此,射流泵在化工、环保、石油、冶金等领域有着广泛的应用。
2. 射流泵的工作过程2.1 射流泵的主要组成部分射流泵主要由射流管道、喷嘴、混合室和出口管道等组成。
射流管道用于引导高速射流流体,喷嘴用于产生高速射流流体,混合室用于将高速射流流体与待输送的液体混合,出口管道用于输送混合后的液体。
2.2 射流泵的工作过程射流泵的工作过程可以分为三个阶段:喷射阶段、混合阶段和压缩阶段。
首先,高速射流流体通过喷嘴进入射流管道,形成喷射阶段;然后,高速射流流体与待输送的液体在混合室中混合,形成混合阶段;最后,混合后的液体在出口管道中被压缩,形成压缩阶段,从而实现液体的输送。
2.3 射流泵的工作效率和控制方法射流泵的工作效率主要取决于射流流体的速度和压力,以及混合室的设计。
为了提高射流泵的工作效率,可以通过优化射流管道和喷嘴的结构,以及控制射流流体的流量和速度等方法来实现。
3. 射流泵的优缺点3.1 射流泵的优点射流泵相比传统泵类装置具有结构简单、无需机械密封、不易堵塞等优点。
此外,射流泵还具有较高的输送能力和较低的能耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特性曲线
一、综合特性曲线 注意:m>1!!! 包络线及其意义
1、既定q下的最 大h
2、最优效率
3、最优面积比
4、可行域与非 可行域
最优面积比
特性曲线,最优m
二、有量纲特性曲线
H1=const H2,=f(q3)
根据无量纲曲线求有量纲曲线:
喷嘴出口速度
q1
q3
q3 1 q
f 0 2 gH 1
(1 1)
效率: 2 gq2H2 q h 1gq1(H1 H2 ) 1 h
基本方程,推导1
五、射流泵基本方程 1、对混合室(喉管)应用动量方程
2 (q1v1a q2v2a ) (q1 q2 )vb (pb pa ) fb
(忽略a和b点的高度差,并将a点的高度定为0)
2:喉管流速系数
基本方程,推导2
概述,特点
三、射流泵的特点 1、结构简单,加工容易,成本低 2、工作可靠,无泄漏,无磨损,维护方便 3、可综合利用,兼作反应器、混合器等 4、能量转换效率较低 四、应用举例 1、深井抽水装置
2、泵站流量放大 3、飞机燃油系统 4、火箭燃料泵前置泵 5、水电机组技术供水 6、水电站排水系统 7、沸水反应堆流量再循 环系统 8、河道疏浚 9、捕鱼 10、火电机组真空泵 11、射流曝气机
三、基本参数对qk的影响 1、工作压力p1
空化流量的影响因素
2、面积比的影响
面积比
3、安装高度的影响
安装高度
射流泵的最优参数
第六节 射流泵的最优参数
一、设计条件 1、已知q(或h),求m和h(q) 2、已知m,求q和h 3、m,q,h均需确定
注意:q、h均与射流泵以及工作泵有关,即射流泵的设计不 是孤立的,需与系统一起考虑
1
(1 q)h
深井射流泵装置2
第Ⅲ种装置
装置输出功率:
gq2 (Ha H2 )
装置输入功率:
g(q1 q2 )Ha gq1Hb
a
b
射流泵工作扬程:
H1 H2 Ha Hb
射流泵装置3
装置总效率:
III
q2 (Ha H 2 ) (q1 q2 )Ha q1Hb
a
b
设 a b c
则
按射入空间分: 无界射流(射入无穷大空间) 有界射流(射入有限空间)
按运动分: 伴随射流(射入流动的液体) 自由射流(射入静止的液体)
二、射流流动结构
基本方程,射流结构
三、速度与压力的变化
基本方程,压力变化
基本方程,主要参数
四、射流泵的主要参数
1、有量纲参数
工作液体流量 q1
被输送液体流量q2
总结3
III
c
q2 (H 2 H a ) (q1 q2 )H a q1Hb
q 1
H2 Ha
1q Hb
Ha
装置3效率
总结
射流泵总结
一、射流泵的定义,分类、特点与应用 二、液体射流泵的基本方程
射流流动与混合过程 速度与压力的变化过程 液体射流泵的主要性能参数 液体射流泵的基本方程及其简化 应用基本方程进行计算
概述,应用1
与微孔曝气的比较
概述,应用2
概述,应用3
12、化学反应器 13、尾气治理 14、除尘装置 15、锅炉注水器
概述,应用4
15、大气喷射器
概述,应用5
基本方程,射流分类
第二节 液-液射流泵的基本方程
一、湍流射流的分类
按射入介质分: 淹没射流(液体射入液体) 非淹没射流(液体射入气体)
g
所以
A
H
cr SZ
1 4 2 gf n
q2 2 max
考虑q2与q1及H1 的关系
A
H
cr SZ
14 fn
f 02 H1q 2
1
4
q2 m2
1
4
最后得
空化,计算2
A
H
cr SZ
q 2
H1
m2 q 2
分析:考虑A的意义, 可以写成
Ha Hva HS H1
临界流量比
与q密切相关,在一定的HSZ下,q增大导致空化
二、射流泵空化的计算
射流泵的空化
最低压力点的位置k:位于喉管中
空化计算
从下游水面到 k 点的伯努利方程
pa g
H SZ
HS
ha
v22 2g
v22 2g
pk g
对于临界点:
空化,计算
pa g
H
cr SZ
H S
ha
v22 2g
v22 2g
pva g
考虑到
v2
q2 fn
令
A pa pva
2、从被输送液体进口到a-a断面用伯努利方程
v2a 4
2 g
p2 g
z2
v22 2g
pa g
4:流速系数
3、喷嘴出口速度
v1n 1
2 p
4、扩散管的流动
基本方程,推导3
vb
1
3
2 g
pc g
vc2 2g
pb g
(忽略Zb-Zc)
3:扩散管流速系数
结果:
基本方程,推导4
h
12
I
gq2H 2 gq1H c
c
q2 H 2
q1H1 H 2
c
cq
1
h h
c j
射流泵装置
第Ⅰa 种装置
装置的输出功率:g(q1 q2 )H2 装置的输入功率: gq1Hc
c 射流泵工作扬程: H1 Hc
装置总效率:
I
g (q1 q2 )H 2 gq1H1
c
(q1 q2 )H 2 q1H1
总流量
q3=q1+q2
工作扬程H1:单位重量工作液体和被输送液 体在各自的进口处所具有的能量的差值
射流泵扬程H2:单位重量被抽送液体通过射 流泵所获得的能量
喷嘴出口面积 f0 喉管面积 fb
2、无量纲参数
流量比:
q q2 q1
扬程比: 面积比:
h H2 H1
m fb f0
基本方程,参数2
n fb m fb f0 m 1
c
c (1 q)h
射流泵装置
第Ⅱ种装置
装置输出功率: gq2 (H2 Hc )
装置输入功率: g(q1 q2 )Hc
c
射流泵工作扬程: H1 H2 Hc 装置总效率:
II
q2 (Hc H 2 ) (q1 q2 )Hc
c
q1
q2 H1
q2 H1
H2
c
cq
(1 q)(1 h)
c j
三、射流泵的相似 相似准则 处理射流泵相似问题的方法及其特点
四、射流泵的特性曲线 综合特性曲线 综合特性曲线的包络线,最优参数 有量纲特性曲线与通用特性曲线 不同曲线之间的换算
总结2
五、射流泵的空化 射流泵的空化现象,空化系数 空化的计算(qK,hK和吸上高度) 主要参数对空化性能的影响
六、深井射流装置 三种装置的特点与效率
概述
射流泵
第一节 概述
一、射流泵的工作原理
二、射流泵的分类
概述,分类
分类方法:
按介质性质;按混合过程的热力学;按用途与结构
类别 射流泵 喷射器
介质 工作流体
液体
液气混合物 气体
状态 被输送流体
液体 散状固体或泥浆
气体 液体 气体 散状固体 液体
名称
射流泵 固体输送射流泵或泥浆射流泵
液气射流泵 射流混合器 气体喷射器 气力输送喷射器 蒸汽热水喷射器
q2 m2
(1 4 )
H2 hH1
有量纲特性曲线
特性曲线,有量纲
H2
H1=const
q3
三、通用特性曲线 将H1的影响表现出来
相似抛物线
q,h=const q3 A H1
H2 hH1
∴ q3=kH22
通用特性曲线
第五节 射流泵的空化
一、射流泵的空化现象及影响因素 影响因素: 几何参数(m) 吸出高HS 工况(q) 工作压力(H1)
2 2 m
22
n
2 4
n m2
q2
2
2 3
1 q 2
m2Biblioteka 流速系数的值由经验确定六、方程的简化
当m为常数时,方程很接近直线(二次项很小)方程故
可简化为
h 12
h0 q0
(q0 q)
第三节 射流泵的相似
相似准则
问题:必须满足的相似准则:
Sr Fr Re Eu =h
几何相似问题:
关键:面积比
第四节 射流泵的特性曲线
设计思路: 利用综合特性曲线及其包络线确定最优参数
注意:
不同的条件有不 同的方法
综合特性曲线
方法对比
若已知q(h),按包络线 若已知m,按顶点连线
最优参数
第七节 深井射流泵装置 与深井泵和潜水泵的比较
第Ⅰ种装置 装置的输出功率: gq2H2
装置的输入功率: gq1Hc c
射流泵工作扬程: H1 H2 Hc 装置总效率: