蚁群算法

合集下载

蚁群算法

蚁群算法

两阶段算法(Two Phase Algorithm)
算法举例
(3)以P0为起点,以P4为终点,求下图最短路径L
Dijkstra算法 动态规划 L为 P0→P6 → P3 → P4. 总长度为97km。
(4)根据最短路进行分组,最短路由三条分支组成,即
P0→P5 → P8 → P7 → P6 → P0. 33km,5.9t
0 0
4 10 17 0
节约法(Saving Method)
算法举例
点对之间连接的距离节约值
连接点 3-4 2-3 7-8 6-7 1-7 节约里程 19 18 17 16 13 连接点 1-2 1-6 6-8 2-4 1-3 节约里程 12 11 10 9 8 连接点 1-8 2-7 5-8 2-6 4-5 节约里程 5 5 4 3 3 连接点 5-7 3-7 5-6 节约里程 3 1 1
Cij P0 P5 P8 P0 0 P5 8 0 P8 22 18 0 P7 33 29 28 P6 33 29 28 P1 ∞ ∞ 37 P2 ∞ ∞ ∞ P3 ∞ ∞ ∞ P4 ∞ ∞ ∞
P7
P6 P1 P2 P3 P4
0
16
0
25
20 0
35
30 22 0

42 34 30 0

∞ ∞ ∞ 22 0
节约法(Saving Method)
算法举例
求初始解
令Ii={i},i=1,2,· · · ,8;最短路长li=2C0i;载重量ri=Ri;标记 (合并次数)B1=B2=· · · =B8=0.
按节约里程从大到小合并路径 8
P3 P29 10P15 NhomakorabeaP4
11

蚁群算法

蚁群算法

蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。

该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。

蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。

蚁群算法是群智能理论研究领域的一种主要算法。

1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。

路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。

蚁群算法及案例分析精选全文

蚁群算法及案例分析精选全文
问过的节点;另外,人工蚁
群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
正反馈、较强的鲁棒性、全
局性、普遍性
局部搜索能力较弱,易出现
停滞和局部收敛、收敛速度
慢等问题
优良的分布式并行计算机制
长时间花费在解的构造上,
导致搜索时间过长
Hale Waihona Puke 易于与其他方法相结合算法最先基于离散问题,不
能直接解决连续优化问题
蚁群算法的
特点
蚁群算法的特点及应用领域
由于蚁群算法对图的对称性以
及目标函数无特殊要求,因此
L_ave=zeros(NC_max,1);
%各代路线的平均长度
while NC<=NC_max
%停止条件之一:达到最大迭代次数
% 第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
scatter(C(:,1),C(:,2));
L(i)=L(i)+D(R(1),R(n));
hold on
end
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])

蚁群算法

蚁群算法

基本蚁群算法程序流程图
开始 初始化
循环次数Nc← Nc+1
蚂蚁k=1 蚂蚁k=k+1
按式(1)选择下一元素 修改禁忌表 N Y K≥ m
按式(2)和式(3)进行信息量更新 满足结束条件 Y
Байду номын сангаас输出程序计算结果 结束 N
复杂度分析
对于TSP,所有可行的路径共有(n-1)!/2条,以 此路径比较为基本操作,则需要(n-1)!/2-1次基 本操作才能保证得到绝对最优解。 若1M FLOPS,当n=10, 需要0.19秒 n=20, 需要1929年 n=30, 需要1.4X10e17年
{ ij (t ) | ci , c j C}是t时刻集合C中元素
蚂蚁k(k=1,2,…,m)在运动过程中,根据各条路径上的信息 量决定其转移方向。这里用禁忌表tabuk来记录蚂蚁k当前 所走过的城市,集合随着tabuk进化过程做动态调整。在 搜索过程中,蚂蚁根据各条路径上的信息量及路径的启发 信息来计算状态转移概率。在t时刻蚂蚁k由元素(城市)i 转移到元素(城市)j的状态转移概率:
1) 标有距离的路径图 2) 在0时刻,路径上没有信息素累积,蚂蚁选择路径为任意 3) 在1时刻,路径上信息素堆积,短边信息素多与长边,所以蚂蚁更 倾向于选择ABCDE


(1)其原理是一种正反馈机制或称增强型学习系统;它通过 信息素的不断更新达到最终收敛于最优路径上; (2)它是一种通用型随机优化方法;但人工蚂蚁决不是对实 际蚂蚁的一种简单模拟,它融进了人类的智能; (3)它是一种分布式的优化方法;不仅适合目前的串行计算 机,而且适合未来的并行计算机; (4)它是一种全局优化的方法;不仅可用于求解单目标优化 问题,而且可用于求解多目标优化问题; 2 (5)它是一种启发式算法;计算复杂性为 O( NC m n ),其 中NC 是迭代次数,m 是蚂蚁数目,n 是目的节点数目。

蚁群算法最全集PPT课件

蚁群算法最全集PPT课件
参数优化方法
采用智能优化算法,如遗传算法、粒子群算法等,对算法参数进行 优化,以寻找最优参数组合,提高算法性能。
04
蚁群算法的实现流程
问题定义与参数设定
问题定义
明确待求解的问题,将其抽象为优化 问题,并确定问题的目标函数和约束 条件。
参数设定
根据问题的特性,设定蚁群算法的参 数,如蚂蚁数量、信息素挥发速度、 信息素更新方式等。
动态调整种群规模
根据搜索进程的需要,动态调整参与搜索的蚁群规模,以保持种群 的多样性和搜索的广泛性。
自适应调整参数
参数自适应调整策略
根据搜索进程中的反馈信息,动态调整算法参数,如信息素挥发速 度、蚂蚁数量、移动概率等。
参数动态调整规则
制定参数调整规则,如基于性能指标的增量调整、基于时间序列的 周期性调整等,以保持算法性能的稳定性和持续性。
06
蚁群算法的优缺点分析
优点
高效性
鲁棒性
蚁群算法在解决组合优化问题上表现出高 效性,尤其在处理大规模问题时。
蚁群算法对噪声和异常不敏感,具有较强 的鲁棒性。
并行性
全局搜索
蚁群算法具有天然的并行性,可以充分利 用多核处理器或分布式计算资源来提高求 解速度。
蚁群算法采用正反馈机制,能够实现从局 部最优到全局最优的有效搜索。
强化学习
将蚁群算法与强化学习相结合,利用强化学习中的奖励机制指导 蚁群搜索,提高算法的探索和利用能力。
THANKS
感谢观看
蚂蚁在移动过程中会不断释放新 的信息素,更新路径上的信息素 浓度。
蚂蚁在更新信息素时,会根据路 径上的信息素浓度和自身的状态 来决定释放的信息素增量。
搜索策略与最优解的形成
搜索策略

蚁群算法

蚁群算法

4.蚁群算法应用
信息素更新规则
1.蚁群算法简述 2.蚁群算法原理
最大最小蚂蚁系统
3.蚁群算法改进
4.蚁群算法应用
最大最小蚂蚁系统(MAX-MIN Ant System,MMAS)在基本AS算法的基础 上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的蚂蚁),或者至今 最优蚂蚁释放信息素。(迭代最优更新规则和至今最优更新规则在MMAS 中会被交替使用)
p( B) 0.033/(0.033 0.3 0.075) 0.081 p(C ) 0.3 /(0.033 0.3 0.075) 0.74 p( D) 0.075 /(0.033 0.3 0.075) 0.18
用轮盘赌法则选择下城市。假设产生的 随机数q=random(0,1)=0.05,则蚂蚁1将会 选择城市B。 用同样的方法为蚂蚁2和3选择下一访问 城市,假设蚂蚁2选择城市D,蚂蚁3选择城 市A。
蚁群算法
1.蚁群算法简述 2.蚁群算法原理 3.蚁群算法改进 4.蚁群算法应用
1.蚁群算法简述 2.蚁群算法原理
3.蚁群算法改进
4.蚁群算法应用


蚁群算法(ant colony optimization, ACO),又称蚂蚁 算法,是一种用来在图中寻找优 化路径的机率型算法。 由Marco Dorigo于1992年在他 的博士论文中提出,其灵感来源 于蚂蚁在寻找食物过程中发现路 径的行为
4.蚁群算法应用
例给出用蚁群算法求解一个四城市的TSP 3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数a=1,b=2,r=0.5。 解:
满足结束条件?

蚁群算法简述


2.蚁群算法的特征
下面是对蚁群算法的进行过程中采用的规则进行的一些说明. 范围
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径一般 是3,那么它能观察到的范围就是33个方格世界,并且能移动的距离也在这 个范围之内. 环境
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有 信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找 到窝的蚂蚁洒下的窝的信息素.每个蚂蚁都仅仅能感知它范围内的环境信 息.环境以一定的速率让信息素消失. 觅食规则
2.蚁群算法的特征
基本蚁群算法流程图详细
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各 自会随机的选择一条路径. 2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这 些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁 开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路 径上信息素的多少选择路线selection,更倾向于选择信息 素多的路径走当然也有随机性. 3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信 息素不同程度的挥发掉了evaporation,而刚刚经过了蚂蚁 的路线信息素增强reinforcement.然后又出动一批蚂蚁,重 复第2个步骤. 每个状态到下一个状态的变化称为一次迭代,在迭代多次 过后,就会有某一条路径上的信息素明显多于其它路径,这 通常就是一条最优路径.
人工蚁群算法
基于以上蚁群寻找食物时的最优路径选择问题,可 以构造人工蚁群,来解决最优化问题,如TSP问题.
人工蚁群中把具有简单功能的工作单元看作蚂蚁. 二者的相似之处在于都是优先选择信息素浓度大的路 径.较短路径的信息素浓度高,所以能够最终被所有蚂 蚁选择,也就是最终的优化结果.
两者的区别在于人工蚁群有一定的记忆能力,能够 记忆已经访问过的节点.同时,人工蚁群再选择下一条 路径的时候是按一定算法规律有意识地寻找最短路径, 而不是盲目的.例如在TSP问题中,可以预先知道当前 城市到下一个目的地的距离.

蚁群算法


四、结论
蚁群算法是由M.Dorigo于1992年提出来的一种新型进化算 法。该算法不依赖于具体问题的数学描述,具有全局优化能力 和本质上的并行性,同时比遗传算法、模拟退火算法等早期进 化算法具备更强的鲁棒性、求解时间短、易于计算机实现等优 点。已被用于高度复杂的组合优化问题、通讯网络的路由选择 问题、多机器人任务分配问题、图形生成及划分等问题中。 但由于蚁群算法的研究历史很短,在实际问题中应用还较 少,因此存在许多有待进一步研究改进的地方。如信息素分配 策略、路径搜索策略、最优解保留策略等方面,均带有经验性 和直觉性,没有经过细致的研究和分析。因此算法的求解效率 不高,收敛性较差。
它们的区别在于后两种模型中利用的是局部信息, 而前者利用的是整体信息。参数α,β,Q,ρ,可以用 实验方法确定其最优组合,停止条件可以用固定进化 代数或当进化趋势不明显时停止计算。
pij (t ) =
α β τ ij (t ) × η ij (t ) α β τ ik (t ) × η ik (t ) ∑(i,k )∈S ,k∉U
ant cycle system, ant quantity system, ant density system。
他们的差别在于表达式的不同。 在ant cycle system模型中,
Q k ∆τ ij = f k 0 第k只蚂蚁在第t次循环中经过边(i, j ) 其他
f k 第k只蚂蚁在整个路径中的目标函数值。
谢谢!
二、蚁群算法原理
人工蚁群算法是模仿真实的蚁群行为而提出的。仿生 学家经过大量细致的观察研究发现,蚂蚁个体之间是通过一 种称为“外激素”(Stigmergy)的物质进行信息传递的。蚂蚁 在运动过程中,能够在它所经过的路径上留下该种物质,而 且蚂蚁在运动过程中能感知这种物质,并以此指导自己的运 动方向(蚂蚁选择有这些物质的路径的可能性,比选择没有这 些物质的路径的可能性大得多)。因此,有大量蚂蚁组成的蚁 群的集体行为便表现出一种信息正反馈现象:某一路径上走 过的蚂蚁越多,则后来者选择该路经的概率就越大。蚂蚁个 体之间就是通过这种信息的交流达到搜索食物的目的。

蚁群算法简介

蚁群算法简介蚁群算法是一种优化技术,受到自然界中蚂蚁寻找食物的行为的启发。

这种算法模拟了蚂蚁的信息共享和移动模式,用于解决复杂的组合优化问题,如旅行商问题(TSP)、车辆路径问题(VRP)等。

一、蚁群算法的基本原理在自然界中,蚂蚁寻找食物的行为非常有趣。

它们会在路径上留下信息素,后续的蚂蚁会根据信息素的强度选择路径,倾向于选择信息素浓度高的路径。

这样,一段时间后,大多数蚂蚁都会选择最短或最佳的路径。

这就是蚁群算法的基本原理。

二、蚁群算法的主要步骤1.初始化:首先,为每条边分配一个初始的信息素浓度。

通常,所有边的初始信息素浓度都是相等的。

2.路径选择:在每一步,每个蚂蚁都会根据当前位置和周围信息素浓度选择下一步的移动方向。

选择概率与信息素浓度成正比,与距离成反比。

这意味着蚂蚁更倾向于选择信息素浓度高且距离短的路径。

3.释放信息素:当蚂蚁完成一次完整的路径后,它会在其经过的边上留下信息素。

信息素的浓度与解决问题的质量成正比,即如果蚂蚁找到了一条更好的路径,那么这条路径上的信息素浓度会增加。

4.更新:经过一段时间后,信息素会随时间的推移而挥发,这使得那些不再被认为是最优的路径上的信息素浓度逐渐减少。

同时,每条边上的信息素浓度也会随着时间的推移而均匀增加,这使得那些从未被探索过的路径也有被选择的可能性。

5.终止条件:算法会在找到满足条件的最优解或达到预设的最大迭代次数后终止。

三、蚁群算法的优势和局限性蚁群算法的优势在于其对于组合优化问题的良好性能和其自然启发式的搜索过程。

这种算法能够有效地找到全局最优解,并且在搜索过程中能够避免陷入局部最优解。

此外,蚁群算法具有较强的鲁棒性,对于问题的规模和复杂性具有较强的适应性。

然而,蚁群算法也存在一些局限性。

首先,算法的性能高度依赖于参数的设置,如信息素的挥发速度、蚂蚁的数量、迭代次数等。

其次,对于一些复杂的问题,可能需要很长的计算时间才能找到最优解。

此外,蚁群算法可能无法处理大规模的问题,因为这可能导致计算时间和空间的复杂性增加。

人工智能07蚁群算法及其应用


蚁群算法数学表达式
转移概率公式
蚁群算法中,蚂蚁根据转移概率公式选 择下一个访问的节点。转移概率通常由 信息素浓度和启发式信息共同决定,以 实现局部搜索与全局搜索的平衡。
VS
信息素更新规则
信息素是蚁群算法中的关键参数,用于引 导蚂蚁的搜索方向。信息素更新规则包括 局部更新和全局更新两种方式,分别用于 加强当前路径上的信息素浓度和更新全局 最优路径上的信息素浓度。
• 启发式信息权重:启发式信息权重用于平衡转移概率中的信息素浓度和启发式信息。较大的启发式信息权重会 使算法更加倾向于选择局部最优解,而较小的启发式信息权重则会使算法更加注重全局搜索。
• 最大迭代次数:最大迭代次数是控制算法停止条件的重要参数。当达到最大迭代次数时,算法将停止搜索并输 出当前最优解。需要根据问题规模和复杂度合理设置最大迭代次数,以保证算法能够在有限时间内找到满意的 解。
算法优化
针对旅行商问题的特点,可以对蚁群算法进行改进,如引入局部搜索策 略、调整信息素更新规则等,以进一步提高算法的求解性能。
机器人路径规划问题应用探讨
问题描述
机器人路径规划问题要求机器人在有障碍物的环境中,从起点安全、快速地到达目标点。
蚁群算法应用
蚁群算法可以应用于机器人路径规划问题中,通过模拟蚂蚁的觅食行为来寻找一条从起点 到目标点的最优路径。实例分析表明,蚁群算法在机器人路径规划问题中具有较好的应用 效果。
05 蚁群算法在数据挖掘中应 用
聚类分析问题解决方法展示
基于蚁群算法的聚类方法
通过模拟蚂蚁觅食行为,将数据集划分为多个簇,使得同一簇内数据相似度高,不同簇间数据相似度 低。
聚类结果评估与优化
采用轮廓系数、DB指数等评估指标对聚类结果进行评价,并通过调整算法参数或引入其他优化策略来 提高聚类效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%% 蚁群算法求函数极值
% 初始化
clear all; %清除所有变量
close all; %清图
clc; %清屏
m = 20; %蚂蚁个数
G = 200; %最大迭代次数
Rho = 0.9; %信息素蒸发系数
P0 = 0.2; %转移概率常数
XMAX = 7; %搜素变量x最大值
XMIN = 1; %搜素变量x最小值
YMAX = 7; %搜素变量y最大值
YMIN = 1; %搜素变量y最小值
%% 随机设置蚂蚁初始位置
for i = 1:m
X(i,1) = (XMIN +(XMAX-XMIN)*rand);
X(i,2) = (YMIN +(YMAX-YMIN)*rand);
Tau(i) = func(X(i,1),X(i,2));
end
step = 0.1;
for NC = 1:G
lamda = 1/NC;
[Tau_best,BestIndex] = max(Tau);
% 计算状态转移概率
for i = 1:m
P(NC,i) =(Tau(BestIndex)-Tau(i))/Tau(BestIndex);
end
% 位置更新
for i = 1:m
%局部搜素
if P(NC,i) < P0
temp1 = X(i,1)+(2*rand-1)*step*lamda;
temp2 = X(i,2)+(2*rand-1)*step*lamda;
else
%全局搜索
temp1 = X(i,1)+(XMAX-XMIN)*(rand-0.5);
temp2 = X(i,2)+(YMAX-YMIN)*(rand-0.5);
end
% 边界处理
if temp1 < XMIN
temp1 = XMIN;
end
if temp1 > XMAX
temp1 = XMAX;
end
if temp2 < YMIN
temp2 = YMIN;
end
if temp2 > YMAX
temp2 = YMAX;
end
% 判断蚂蚁是否移动
if func(temp1,temp2) > func(X(i,1),X(i,2))
X(i,1) = temp1;
X(i,2) = temp2;
end
end
% 更新信息素
for i = 1:m
Tau(i) = (1-Rho)*Tau(i)+func(X(i,1),X(i,2)); end
[value ,index] = max(Tau);
trace(NC) = func(X(index,1),X(index,2));
end
[max_value,max_index] = max(Tau);
maxX = X(max_index,1)
maxY = X(max_index,2)
maxValue = func(X(max_index,1),X(max_index,2)) figure
plot(trace)
xlabel('搜索次数')
ylabel('适应度值')
title('适应度进化曲线')
function value = func(x,y)
value = x^2+y^2;
end。

相关文档
最新文档