蚁群算法MATLAB程序实例整理
城市间蚁群算法matlab实现

城市间蚁群算法matlab实现%% I. 清空环境变量clear allclc%% II. 导入数据31个城市的坐标load citys_data.mat%% III. 计算城市间相互距离n = size(citys,1);D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));elseD(i,j) = 1e-4; %用很小的值代替0 公式需要endendend%% IV. 初始化参数m = 50; % 蚂蚁数量alpha = 1; % 信息素重要程度因子beta = 5; % 启发函数重要程度因子rho = 0.1; % 信息素挥发因子Q = 1; % 常系数Eta = 1./D; % 启发函数Tau = ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表m个蚂蚁走过的路径iter = 1; % 迭代次数初值iter_max = 200; % 最大迭代次数Route_best = zeros(iter_max,n); % 各代最佳路径Length_best = zeros(iter_max,1); % 各代最佳路径的长度Length_ave = zeros(iter_max,1); % 各代路径的平均长度%% V. 迭代寻找最佳路径while iter <= iter_max% 随机产生各个蚂蚁的起点城市start = zeros(m,1);for i = 1:m %50个蚂蚁随机产生的起始城市位置temp = randperm(n);start(i) = temp(1);endTable(:,1) = start; %初始位置citys_index = 1:n; %城市索引取出来% 逐个蚂蚁路径选择for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)allow_index = ~ismember(citys_index,tabu); %没有访问过的城市取出来allow = citys_index(allow_index); % 待访问的城市集合P = allow;% 计算城市间转移概率for k = 1:length(allow)P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta; %end代表最后一个元素对应公式endP = P/sum(P);% 轮盘赌法选择下一个访问城市Pc = cumsum(P);target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target; %记录下来,添加新访问的城市endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = Table(i,:); %每个蚂蚁的路径取出来for j = 1:(n - 1)Length(i) = Length(i) + D(Route(j),Route(j + 1));endLength(i) = Length(i) + D(Route(n),Route(1));end% 计算最短路径距离及平均距离if iter == 1[min_Length,min_index] = min(Length);Length_best(iter) = min_Length;Length_ave(iter) = mean(Length);Route_best(iter,:) = Table(min_index,:);else[min_Length,min_index] = min(Length);Length_best(iter) = min(Length_best(iter - 1),min_Length);Length_ave(iter) = mean(Length);if Length_best(iter) == min_LengthRoute_best(iter,:) = Table(min_index,:);elseRoute_best(iter,:) = Route_best((iter-1),:);endend% 更新信息素Delta_Tau = zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算for j = 1:(n - 1)Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);endDelta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);endTau = (1-rho) * Tau + Delta_Tau;% 迭代次数加1,清空路径记录表iter = iter + 1;Table = zeros(m,n);end%% VI. 结果显示[Shortest_Length,index] = min(Length_best);Shortest_Route = Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%% VII. 绘图1960009019 l132********figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i = 1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),'终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')']) figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对比')。
蚁群算法matlab程序

D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D; %% Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %% Tau为信息素矩阵
Tabu=zeros(m,n); %% 存储并记录路径的生成
%% 蚁群算法MATLAB程序第六
end
NC
%% 蚁群算法MATLAB程序第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route) %% 画路线图
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave,'r')
title('平均距离和最短距离')
P=J; %% 待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
%% 蚁群算法MATLAB程序第二步:将m只蚂蚁放到n个城市上
Randpos=[]; %% 随机存取
for i=1:ceil(m/n)
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=Randpos(1,1:m)';
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
MATLAB中的蚁群算法与粒子群优化联合优化实例分析

MATLAB中的蚁群算法与粒子群优化联合优化实例分析引言:在现代科学技术的发展中,优化问题一直是一个关键的挑战。
为了解决这些问题,出现了许多优化算法。
其中,蚁群算法(Ant Colony Optimization,ACO)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种被广泛应用的算法。
本文将通过示例分析,探讨如何将这两种优化算法结合使用以获得更好的优化结果。
1. 蚁群算法概述蚁群算法是一种启发式优化算法,灵感来源于蚂蚁寻找食物的行为。
蚂蚁在搜索食物的过程中,通过释放信息素与其他蚂蚁进行通信,从而引导整个群体向最优解靠近。
这种算法主要适用于组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)等。
2. 粒子群优化算法概述粒子群优化算法是一种仿生优化算法,灵感来源于鸟群觅食的行为。
在算法中,个体被模拟成鸟群中的粒子,并通过合作和竞争的方式搜索最优解。
粒子的位置代表可能的解,速度代表解的搜索方向和距离。
这种算法通常适用于连续优化问题。
3. 蚁群算法与粒子群优化算法的结合蚁群算法和粒子群优化算法有着不同的特点和适用范围,结合它们的优点可以提高优化结果的质量。
在下面的示例中,我们将探讨一个工程优化问题,通过联合使用这两种算法来获得较好的优化结果。
示例:电力系统优化在电力系统中,优化发电机组的负荷分配可以有效降低能源消耗和运行成本。
我们将使用蚁群算法和粒子群优化算法联合进行负荷分配的优化。
首先,我们需要建立一个能源消耗和运行成本的数学模型。
这个模型将考虑发电机组的负荷分配和相应的能源消耗和运行成本。
假设我们有n个发电机组,每个组的负荷分配为x1,x2,...,xn,则总的能源消耗为:E = f(x1) + f(x2) + ... + f(xn)其中f(x)是关于负荷分配的函数,代表了每个发电机组的能源消耗。
接下来,我们使用蚁群算法对发电机组的负荷分配进行优化。
蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码标题:蚁群算法路径优化 MATLAB 代码正文:蚁群算法是一种基于模拟蚂蚁搜索食物路径的优化算法,常用于求解复杂问题。
在路径优化问题中,蚂蚁需要从起点移动到终点,通过探索周围区域来寻找最短路径。
MATLAB 是一个常用的数值计算软件,可以用来实现蚁群算法的路径优化。
下面是一个基本的 MATLAB 代码示例,用于实现蚁群算法的路径优化:```matlab% 定义参数num_ants = 100; % 蚂蚁数量num_steps = 100; % 路径优化步数search_radius = 2; % 搜索半径max_iterations = 1000; % 最大迭代次数% 随机生成起点和终点的位置坐标start_pos = [randi(100), randi(100)];end_pos = [75, 75];% 初始化蚂蚁群体的位置和方向ants_pos = zeros(num_ants, 2);ants_dir = zeros(num_ants, 2);for i = 1:num_antsants_pos(i, :) = start_pos + randn(2) * search_radius; ants_dir(i, :) = randomvec(2);end% 初始化蚂蚁群体的速度ants_vel = zeros(num_ants, 2);for i = 1:num_antsants_vel(i, :) = -0.1 * ants_pos(i, :) + 0.5 *ants_dir(i, :);end% 初始时蚂蚁群体向终点移动for i = 1:num_antsans_pos = end_pos;ans_vel = ants_vel;for j = 1:num_steps% 更新位置和速度ans_pos(i) = ans_pos(i) + ans_vel(i);ants_vel(i, :) = ones(1, num_steps) * (-0.1 * ans_pos(i) + 0.5 * ans_dir(i, :));end% 更新方向ants_dir(i, :) = ans_dir(i, :) - ans_vel(i) * 3;end% 迭代优化路径max_iter = 0;for i = 1:max_iterations% 计算当前路径的最短距离dist = zeros(num_ants, 1);for j = 1:num_antsdist(j) = norm(ants_pos(j) - end_pos);end% 更新蚂蚁群体的位置和方向for j = 1:num_antsants_pos(j, :) = ants_pos(j, :) - 0.05 * dist(j) * ants_dir(j, :);ants_dir(j, :) = -ants_dir(j, :);end% 更新蚂蚁群体的速度for j = 1:num_antsants_vel(j, :) = ants_vel(j, :) - 0.001 * dist(j) * ants_dir(j, :);end% 检查是否达到最大迭代次数if i > max_iterationsbreak;endend% 输出最优路径[ans_pos, ans_vel] = ants_pos;path_dist = norm(ans_pos - end_pos);disp(["最优路径长度为:" num2str(path_dist)]);```拓展:上述代码仅仅是一个简单的示例,实际上要实现蚁群算法的路径优化,需要更加复杂的代码实现。
PythonMatlab实现蚂蚁群算法求解最短路径问题的示例

PythonMatlab实现蚂蚁群算法求解最短路径问题的⽰例⽬录1知识点1.1 蚁群算法步骤1.2 蚁群算法程序2蚂蚁算法求解最短路径问题——Python实现2.1源码实现2.2 ACA_TSP实现3 蚂蚁算法求解最短路径问题——Matlab实现3.1流程图3.2代码实现3.3结果1 知识点详细知识点见:我们这⼀节知识点只讲蚁群算法求解最短路径步骤及流程。
1.1 蚁群算法步骤设蚂蚁的数量为m,地点的数量为n,地点i与地点j之间相距Dij,t时刻地点i与地点j连接的路径上的信息素浓度为Sij,初始时刻每个地点间路径上的信息素浓度相等。
蚂蚁k根据各个地点间连接路径上的信息素决定下⼀个⽬标地点,Pijk表⽰t时刻蚂蚁k从地点i转移的概率,概率计算公式如下:上式中,为启发函数,,表⽰蚂蚁从地点i转移到地点j的期望程度;为蚂蚁k即将访问地点的集合,开始时中有n-1个元素(除出发地点),随时间的推移,蚂蚁每到达下⼀个地点,中的元素便减少⼀个,直⾄空集,即表⽰所有地点均访问完毕;a为信息素重要程度因⼦,值越⼤,表明信息素的浓度在转移中起到的作⽤越⼤,也就是说蚂蚁选择距离近的下⼀个地点的概率更⼤,β为启发函数重要程度因⼦。
蚂蚁在释放信息素的同时,每个地点间连接路径上的信息素逐渐消失,⽤参数表⽰信息素的挥发程度。
因此,当所有蚂蚁完成⼀次循环后,每个地点间连接路径上的信息素浓度需更新,也就是有蚂蚁路过并且留下信息素,有公式表⽰为:其中,表⽰第k只蚂蚁在地点i与j连接路径上释放的信息素浓度;表⽰所有蚂蚁在地点i与j连接路径上释放的信息素浓度之和;Q为常数,表⽰蚂蚁循环⼀次所释放的信息素总量;Lk表⽰第k只蚂蚁经过路径的长度,总的来说,蚂蚁经过的路径越短,释放的信息素浓度越⾼,最终选出最短路径。
1.2 蚁群算法程序(1)参数初始化在寻最短路钱,需对程序各个参数进⾏初始化,蚁群规模m、信息素重要程度因⼦α、启发函数重要程度因⼦β、信息素会发因⼦、最⼤迭代次数ddcs_max,初始迭代值为ddcs=1。
蚁群算法matlab代码讲解

蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。
它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。
该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。
在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。
每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。
当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。
下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。
matlab的蚂蚁算法的实现

matlab的蚂蚁算法的实现
在上述代码中,我们首先设置了一些参数,如蚂蚁数量、迭代次数、信息素和启发式信息 的重要程度等。然后,根据参数初始化了信息素矩阵,并进行了迭代优化过程。
在每次迭代中,我们先初始化蚂蚁的位置,然后根据信息素和启发式信息的重要程度,以 及当前城市和已访问城市的距离,计算每个城市被选择的概率。根据概率选择下一个城市, 直到完成整个路径的选择。然后,根据蚂蚁的路径更新信息素矩阵。重复迭代过程,直到达 到指定的迭代次数。
最后,输出最优路径和最优距离。
matlab的蚂蚁算法的实现
需要注意的是,上述代码只是一个简单的示例,实际应用中可能需要根据具体问题进行适 当的调整和扩展。蚂蚁算法的实现也可能因问题的复杂性和特点而有所不同。
Байду номын сангаас
matlab的蚂蚁算法的实现
以下是一个使用 MATLAB 实现蚂蚁算法的简单示例:
```matlab % 参数设置 numAnts = 10; % 蚂蚁数量 numIterations = 100; % 迭代次数 alpha = 1; % 信息素重要程度 beta = 5; % 启发式信息重要程度 rho = 0.5; % 信息素挥发率 Q = 1; % 信息素增量 numCities = 10; % 城市数量 distances = rand(numCities); % 城市之间的距离矩阵
(完整版)蚁群算法matlab程序实例整理

function [y,val]=QACSticload att48 att48;MAXIT=300; % 最大循环次数NC=48; % 城市个数tao=ones(48,48);% 初始时刻各边上的信息最为1rho=0.2; % 挥发系数alpha=1;beta=2;Q=100;mant=20; % 蚂蚁数量iter=0; % 记录迭代次数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);endendbestroute=zeros(1,48); % 用来记录最优路径routelength=inf; % 用来记录当前找到的最优路径长度% for i=1:mant % 确定各蚂蚁初始的位置% endfor ite=1:MAXITfor ka=1:mant %考查第K只蚂蚁deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零[routek,lengthk]=travel(distance,tao,alpha,beta);if lengthk<routelength % 找到一条更好的路径routelength=lengthk;bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk ;enddeltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;endfor i=1:NC-1for j=i+1:NCif deltatao(i,j)==0deltatao(i,j)=deltatao(j,i); y=bestroute;end val=routelength;end tocendtao=(1-rho).*tao+deltatao;endy=bestroute;val=routelength;tocfunction [y,val]=travel(distance,tao,alpha,beta) % 某只蚂蚁找到的某条路径[m,n]=size(distance);p=fix(m*rand)+1; %fix取整函数val=0; % 初始路径长度设为0tabuk=[p]; % 假设该蚂蚁都是从第p 个城市出发的for i=1:m-1np=tabuk(length(tabuk)); % 蚂蚁当前所在的城市号p_sum=0;for j=1:mif isin(j,tabuk)continue;elseada=1/distance(np,j);p_sum=p_sum+tao(np,j)^alpha*ada^beta;endendcp=zeros(1,m); % 转移概率for j=1:mif isin(j,tabuk)continue;elseada=1/distance(np,j);cp(j)=tao(np,j)^alpha*ada^beta/p_sum;endendNextCity=pchoice(cp);tabuk=[tabuk,NextCity];val=val+distance(np,NextCity);endy=tabuk;function y=isin(x,A) % 判断数x 是否在向量A 中,如在返回1 ,否则返回0 y=0;for i=1:length(A)if A(i)==xy=1;break;endendfunction y=pchoice(A)a=rand;tempA=zeros(1,length(A)+1);for i=1:length(A)tempA(i+1)=tempA(i)+A(i);endfor i=2:length(tempA)if a<=tempA(i)y=i-1;break;endend。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function [y,val]=QACS
tic
MAXIT=300; % 最大循环次数
NC=11; % 城市个数
tao=ones(11,11)*1/44;% 初始时刻各边上的信息量为1/44
rho=0.2; % 挥发系数
alpha=1;
beta=2;
Q=100;
mant=11; % 蚂蚁数量
iter=0; % 记录迭代次数
/*for i=1:NC % 计算各城市间的距离
for j=1:NC
distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);
end
end */
bestroute=zeros(1,44); % 用来记录最优路径
routelength=inf; % 用来记录当前找到的最优路径长度
% for i=1:mant % 确定各蚂蚁初始的位置
% end
for ite=1:MAXIT
for ka=1:mant %考查第K只蚂蚁
deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零
[routek,lengthk]=travel(distance,tao,alpha,beta);
if lengthk<routelength % 找到一条更好的路径
routelength=lengthk;
bestroute=routek;
end
for i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量
deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk ;
end
deltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;
end
for i=1:NC-1
for j=i+1:NC
if deltatao(i,j)==0
deltatao(i,j)=deltatao(j,i); y=bestroute;
end val=routelength;
end toc
end
tao=(1-rho).*tao+deltatao;
end
y=bestroute;
val=routelength;
toc
function [y,val]=travel(distance,tao,alpha,beta) % 某只蚂蚁找到的某条路径[m,n]=size(distance);
p=fix(m*rand)+1; %fix取整函数
val=0; % 初始路径长度设为0
tabuk=[p]; % 假设该蚂蚁都是从第p 个城市出发的
for i=1:m-1
np=tabuk(length(tabuk)); % 蚂蚁当前所在的城市号
p_sum=0;
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
p_sum=p_sum+tao(np,j)^alpha*ada^beta;
end
end
cp=zeros(1,m); % 转移概率
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
cp(j)=tao(np,j)^alpha*ada^beta/p_sum;
end
end
NextCity=pchoice(cp);
tabuk=[tabuk,NextCity];
val=val+distance(np,NextCity);
end
y=tabuk;
function y=isin(x,A) % 判断数x 是否在向量A 中,如在返回1 ,否则返回0 y=0;
for i=1:length(A)
if A(i)==x
y=1;
break;
end
end
function y=pchoice(A)
a=rand;
tempA=zeros(1,length(A)+1);
for i=1:length(A)
tempA(i+1)=tempA(i)+A(i);
end
for i=2:length(tempA)
if a<=tempA(i)
y=i-1;
break;
end
end。