A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive

合集下载

串联电池组的SOE估算方法

串联电池组的SOE估算方法

串联电池组的SOE估算方法龚敏明;王占国;马泽宇;郭宏榆;文锋【摘要】针对基于剩余容量的电池使用能力描述方法不能线性对应车辆行驶里程的问题,分析了电池充放电能量的计算方法和影响因素,通过建立单体电池能量状态(State Of Energy,SOE)的定义和估算方法,提出了电池组最大可用能量的概念和串联电池组SOE估算方法,为纯电动汽车行驶里程的准确估算和串联电池组均衡维护提供理论依据.%The methods which describe battery using ability based on remaining capacity can not linearly correspond to vehicle mileage. To solve this problem, the calculation method of battery charge/dis-charge energy is described, and the effects on battery energy are also analyzed in this paper. The definition and estimation of single cell state of energy (SOE) are addressed. The maximum available energy of the battery pack is introduced. The SOE estimation of battery pack in series method based on maximum available energy is proposed, which can provide the foundation for EV mileage estimation and battery pack balancing.【期刊名称】《北京交通大学学报》【年(卷),期】2013(037)002【总页数】6页(P74-78,98)【关键词】电池组能量状态(SOE);串联电池组;充/放电能量;实际可用能量;能量效率【作者】龚敏明;王占国;马泽宇;郭宏榆;文锋【作者单位】北京交通大学电气工程学院,北京100044【正文语种】中文【中图分类】TM912.4在电池应用过程中,电池的电量一直用电池容量和荷电状态(State Of Charge,SOC)来描述[1-5].随着动力电池在电动汽车中的大量应用,电池作为动力源用来存储和释放能量,但电池容量和SOC不能线性对应车辆的行驶里程.于是研究人员开始从能量的角度,提出了电池的能量状态(State Of Energy,SOE)的概念,并应用于电池组一致性的分析[6-8].但由于研究尚不深入,只是作为一个概念提出,存在长期采用固定的模型参数、忽略电池老化因素和电池之间固有的差异性等问题,使SOE的定义和估算方法没有形成系统的理论,使实现SOE与运行工况之间的解耦及SOE存在差异的电池串联成组后SOE估算方法变得非常困难.本文作者在锂离子电池电化学模型基础上分析了基于放电能量描述方法和基于放电容量描述方式的差异.在考虑电动汽车实际运行工况影响因素下,建立了基于电池组最大可用能量的定义和估算方法.通过相关的估算方法解决准确估算电动汽车的行驶里程问题,并改变现有的基于电压差异的电池组均衡维护体系,提高电池组使用效率.1 电池充放电能量和能量效率从容量的角度对电池的剩余电量进行定义的物理意义在于:电池的充放电过程即内部氧化还原反应得失电子的过程,得失电子的多少及库仑数对应的就是容量.但是在实际使用过程中,从容量的角度解释以下现象时存在问题:1) 容量和SOC完全一致的多只电池串联成组后,电池组的实际可用容量并没有增加,但是车辆可运行的距离和使用时间延长.2) 不同电池虽然容量一样,但是电池的续航时间和对外做功存在差异.3) 同一只电池,在同一次放电过程中,当变化同样容量时(如10%SOC),电池释放的能量存在差异(与SOC所处区间相关),所以设备运行时间或者车辆运行的里程数不能与容量变化呈现线性对应关系.出现以上问题的原因在于:基于容量的电池电量描述方法回避了电压的影响.实际使用时,电池的主要功能在于储能和释放能量,电动汽车的续驶里程及用电设备的续航时间都与电池释放的能量多少直接相关,所以在实际应用中从能量的角度对电池状态和剩余电量进行描述更具现实意义.电池的充放电能量计算公式为其中u O(t),i(t)为t时刻电池的外电压和电流.由于u O(t)由开路电压 u OCV(t)、欧姆压降 u R(t)和极化电压 u P(t)构成,且有所以充电能量E O -ch可展开为其中(t)对应的能量被电池吸收或者释放出来,称为电池内部充放电能量;u R(t)对应的能量在充电过程中被损耗,称为充电欧姆损耗.u P(t)对应的能量在充电过程中被损耗,称为充电极化损耗.同理,可以得到电池放电过程中放电欧姆损耗E R-dch和放电极化损耗E P-dch,于是可以得到电池充放电能量效率可见,由于在充放电过程中,欧姆内阻和极化内阻都会造成一定的能量损耗,在充放电过程中(t)对应的能量为电池的存储或释放能量.当充放电容量变化足够小时,可认为 u OCV(t)几乎不变,于是将[t1,t2]时间段的充放电容量Q分为n等份,并假设对应的时间片分别为 t1~ta1,ta1~t a2,…,ta(n-2)~ta(n-1),ta(n-1)~t2;u OCV(t)分别为U OCV(1),…,U OCV(n),当 n足够大时,有其中为[t1,t2]时间段内等容量分段后的开路电压的平均值.可见,在充放电过程中,电池存储或释放的能量等于充放电容量与本段容量对应的开路电压平均值的乘积,如图1所示.图1 不同SOC下的放电能量差异Fig.1 Discharge energy with different SOC 由式(4)、式(5)、式(6)可知,对电池的能量利用有两个主要影响因素:一是电池荷电状态对电池OCV(开路电压)的影响;二是由于电池欧姆内阻和极化内阻的存在,在实际工作条件下,造成电池充放电能量的损失.2 串联电池组的SOE定义方法在不考虑电池的使用工况条件,假设充放电电流足够小,不考虑电池内阻的影响,首先给出单体电池SOE定义,进一步提出串联电池组的SOE定义.2.1 单体电池的SOE定义为便于衡量电池的能量状态,引入SOE的概念.由于E R和E P与电池的工况密切相关,如采用外电压来判定是否充满电或放完电,并对剩余能量进行定义,那么电池的充放电能量就会随着工况的变化而变化.电动汽车用电池在以后的运行过程中的电流大小、工作模式等都很难确定,这会给电池的SOE估算带来很大的难度.所以本文依据电池开路电压达到充放电终止电压作为充满电和放完电的判断依据.并将电池的最大可用能量(E max)定义为:电池从充满电状态以足够小的电流放电至放完电状态过程释放的能量.剩余能量(E rem)定义:为电池从当前状态以足够小的电流放电至放完电状态过程释放的能量;并将电池的SOE定义为:E max与 E rem的百分比.当充放电电流足够小时,U R和U P可忽略,此时U O=U OCV,充放电能量效率达到最大值1.此时其中Q max为电池的最大可用容量,整个容量区间对应的开路电压平均值为为电池的剩余容量,SOC0为电池的当前荷电状态,为荷电状态从SOC0到放完电过程的开路电压平均值,于是有可见,对于同一只电池而言,OCV-SOC是固定的,所以 E max和E rem只与 Q max 和SOC相关,且与运行工况之间是解耦的;所以电池的SOE也就实现了与运行工况之间的解耦.初始能量状态为SOE0,荷电状态为SOC0的电池,当放出一定能量ΔE后,能量状态变为SOE1,荷电状态为SOC1,则有这样就使得电池的SOE具有了递推性.2.2 串联电池组的SOE定义从单体SOE定义可知,单只电池的荷电状态从SOC0变化到SOC1的过程中,电池的容量变化Q和能量变化E之间的关系满足当对该电池进行充电时,最大充电能量E ch-max为当对该电池进行放电时,最大放电能量E dch-max,即电池的剩余能量E rem为假设 n只最大可用容量分别为[1],…,[n],当前荷电状态分别为[1],…,SOC0[n]的电池串联成组,电池组的最大充电容量和放电容量分别为、,如果对电池组进行充电,则电池组充满电时,各只电池的SOC分别为在此过程中,电池组中任意电池m存储能量为电池组的总存储能量为各只电池的存储能量之和,即反之,如果对该电池组进行放电,则放电结束时,各只电池的SOC分别为则有电池组的可释放能量 ,即电池组的剩余能量 ,为各只电池释放的能量之和,即电池组的最大可用能量为各只电池的可用能量之和,即有可见,串联电池组的最大可用能量等于该组电池的最大可用容量与组内所有单只电池在其工作荷电状态区间内的平均开路电压之和的乘积.与单只电池的SOE定义类似,串联电池组的定义为电池组的剩余能量和最大可用能量之比即其中:SOCB为表示电池组的荷电状态,表示电池组电过程中电池组开路电压平均值,且有表示电池组从充满电到放完电过程中开路电压平均值,且有3 电池实际可用能量估算方法3.1 基于电池组OCV曲线的计算方法由式(13)知,估算电池的SOE即是对电池SOC的估算与电池从当前状态和充满电状态放电至放完电状态时,电池的开路电压的平均值.电池的SOE的估算只是在SOC估算的基础上,再计算电池的并通过式(13)即可估算得到电池的SOE.当电池确定后,即可通过测试得到电池的OCV-SOC对应表见表1.在此基础上,通过从电池初始荷电状态SOC0开始,等容量变化时刻提取开路电压(提取点数越多,精度越好),直到SOC=0%,并取以上数据的平均值,即可得到.当SOC0=100%时,即得到因电池确定后,OCV-SOC随即确定,所以为一常数,只与电池的SOC相关.由于电池的SOC与SOE存在一一对应关系,于是可建立SOC-SOE表,从而在SOC估算的基础上,通过查表即可得到电池的SOE,简化在线处理时间.以表1所示电池的OCVSOC对应表为例,可得到OCV-SOC-SOE对应表.表1 电池OCV-SOC-SOE对应表Tab.1 OCV-SOC-SOE relationship of batteryU OCV/V SOC/%U OCV /V SOE/%SOC=[0%,SOC0]3.300 0.0 3.300 0.0 3.775 10.4 3.616 9.5 3.849 20.7 3.714 19.5 3.904 31.1 3.768 29.63.946 41.5 3.808 39.9 3.988 51.9 3.839 50.34.018 62.2 3.867 60.84.057 72.6 3.891 71.4 4.083 83.0 3.913 82.1 4.121 93.4 3.934 92.84.210 100.0 3.957 100.0由式(14)知,电池最大可用能量最大可用能量与最大可用容量成正比例关系,系数E max×SOE,也即可得到.以上讨论均以单只电池为描述对象,成组电池的处理可类比得到,在此不再赘述.3.2 实际工况下的估算方法本文提出将开路电压与充放电终止电压比较来判定电池是否充满电或放完电,实现剩余能量、最大可用能量和SOE与工况之间的解耦.但这些量只在充放电电流足够小的条件下才能得到.实际使用时,电池的工作电流不可能一直维持在足够小的状态,这样势必存在一定的欧姆压降U R和极化电压U P,这最终将导致实际放电能量少于最大可用能量.所以对电池在当前工况下,实际可放出多少能量——实际可用能量的估算对使用者而言具有重要现实意义.电池实际放电能量 E dch等于放电容量(Q dch)和是实际可用能量少于最大可用能量,放电能量少于剩余能量的原因.在工况下运行时,过电压从两个方面影响电池的实际放电能量:1)实际放电容量下降;2)电压利用率下降,对应电池充放电能量效率下降.容量损失方面,在使用过程中,假设电池充电完成时,电池的SOC为SOCH,放电结束时为SOCL,则电池的实际可用容量 Q为则电池的在该区间的最大可用能量E为可见,工况下,容量损失使得电池的可用能量仅限于SOC的中间段,损失的是电池从满电荷状态到SOCH和SOCL到放完电部分,损失的可用能量E loss为电压利用率方面,U R和 U P使得电池在充电程存在能量利用效率的问题.当电池从SOC0放电至U O对应的放电能量为所以单只电池的最大可用能量和实际可用能量的关系参见图2.图2 电池的最大可用能量和实际可用能量Fig.2 Maximum availableenergy andactual availableenergy of battery以上讨论均以单只电池为描述对象,从单只电池的实际可用能量到成组电池的实际可用能量的分析和估算方法相同,所以在此不再赘述.4 结论1) 分析了存储和释放能量、欧姆损耗和极化损耗的计算方法和影响因素,基于开路电压提出了电池的最大可用能量和剩余能量的概念,并据此得到了电池SOE的定义和估算方法.2) 充分考虑电池之间在最大可用能量和SOE上的差异性,推导了串联电池组的最大可用能量和剩余能量的估算方法,得到SOE的定义和估算方法以及OCV-SOC-SOE 对应表.分析了基于容量和能量的状态分析方法的关系,指出电池的容量和SOC是能量和SOE定义和估算的基础.3) 为了满足实际工况下对电池实际可用能量的估算,从电池容量和电压利用率的角度分析了负载情况下实际可用能量的估算方法,从而为电池和电池组的状态有效估算提供了依据.参考文献(References):[1]Johnson V,Pesaran A,Sack T.Temperature-dependent battery models for high-power lithium-ion batteries[C]//Montreal,Canada:Proceedings of the17th Electric Vehicle Symposium,2000:15-18.[2]Li I Hsum,Wang Wei Yen,Su Shun Feng.A merged fuzzy neural network and its applications in battery stateof-charge estimation[J].IEEE Transactions On Energy Conversion,2007,22(3):697-708.[3]Chau K T,Wu K C,Chan CC.A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptiveneuro-fuzzy inference system[J].Energy Conversion and Management,2004,45(11-12):1681-1692.[4]Takano K,Nozaki K,Saito Y,et al.Simulation study of electrical dynamic characteristics of lithium-ion battery[J].Power Sour,2000,90(2):214-223. [5]Barsoukov E,Kim J,Yoon C H,et al.Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load[J].Power Sour,1999,83(1/2):61-70.[6]胡明辉,秦大同,舒红,等.混合动力汽车电池管理系统SOC的评价[J].重庆大学学报,2003,26(4):20-23.HU Minghui,QIN Datong,SHU Hong,et al.SOC definition of battery management system used in hybrid vehicles[J].JournaI of Chongging University,2003,26(4):20-23.(in Chinese)[7]田锐,秦大同,胡明辉.电池均衡控制策略研究[J].重庆大学学报,2005,28(7):1-4.TIAN Rui,QIN Datong,HU Minghui.Controlling strategy research on batteries imbalance[J].JournaI of Chongging University,2005,28(7):1-4.(in Chinese)[8]宫学庚,齐铂金.电动汽车电池组离散特性的建模与分析[J].汽车工程,2005,27(3):292-295.GONG Xuegeng,QI Bojin.Determination on thedegree of inequality in stateof chargefor series battery stack of electricvehicle[J].Autornotive Engineering,2005,27(3):292-295.(in Chinese)。

P-1 RGBW 蜂鸟灯的产品说明书

P-1 RGBW 蜂鸟灯的产品说明书

DescriptionThe P-1 is a versatile RGBW wash with full wireless operation, designed to match the requirements of corporate productions, broadcast applications, wedding receptions, staging, and events. To further enhance its versatility, available unique magnetic holographic filters allow the P-1 to modify its beam angle depending on the application, while the onboard Lithium-Ion battery pack provides for extended run times without recharge, eliminating the need of cables or mains power. The P-1 is a smart, reliable, and powerful luminaire built in a compact, lightweight, and elegant assembly:an LED wash that sets a new standard for the most demanding users.Features and benefitsCertifications & classificationsBattery-driven IP65 RGBW LED light source10° (with 10° lens) native beam angle, adjustable via magnetic holographic filters Up to 24 hours battery operationDMX, RDM, and 100% wireless (power and control)2000K - 10000K CTC controlUltra-high-speed strobe effect Practically maintenance-free and silent performance Flicker-free / Programmable scenesSpecificationOptical Data LED expected lifetime50,000 hoursLens10°Lightsource8 x high-power 12.5W RGBW LEDs Photometric Beam angle(s)10° (with 10° lens)19° (with Med filter frame)45° (with Wide filter frame)Color temperature range2000K - 10000KCRI typical80Efficacy33 lm/WLight output all LEDs on3073 lmLight output blue316 lmLight output green1018 lmLight output red544 lmLux @ 10m514 luxLux @ 3m5709 luxLux @ 5m2055 luxMaximum Field Angle22 °Physical Color options Black - RAL 9004Custom color - Any RALWhite - RAL 9010Effective Projected Area0.85 Square ftIP class IP65Lens material Tempered glass frontMaterial AluminiumPC/ASAPlasticRubberSteelNet dimensions334 x 254.6 x 119 mmNet dimensions inches13.2 x 10 x 4.7 inchesNet weight 5.7 kg (12.6 lbs)Net Weight Excluding Batteries 5 kgNet Weight Excluding Batteries Lbs11Features Anti Theft Protection Kensington LockAnti-Theft protection with movementsensor (Optional)Dehumidifier Base / HeadDimming ElectronicFilters Magnetic easy-fit spread angle filters and color frameLED panel 2 individually controllable segmentsStrobe Ultra-high-speed strobe effectsTilt0 - 190°Electrical AC power, max.90 - 264V 50/60HzAC Power, nominal100 - 240V 50/60HzElectrical Protection Overload protection with automatic recoverMax Inrush Current60 AMax power consumption90 WPower Supply Unit High-efficiency electronic switch-modeStandby power consumption 3 WTypical power consumption70 WProgramming and Control16-bit control Dimmer, Red, Green, BlueCabled DMX 5 pin XLR input/outputDMX channels3, 4, 6, 9, 11 or 16DMX modes6Protocol CRMX, W-DMX™ G2, W-DMX™ G3, W-DMX™ G4, W-DMX™ G4S USITT DMX512AWireless RDMRDM ANSI E1.20Setting and addressing OLED graphical display / 4 buttonsRDM ANSI E1.20Standalone modeStandalone mode Quick Color3 programs with up to 24 scenesWireless DMX Lumen Radio with RDM Connections DMX data in/out IP65 XLR 5-pin connector, FemaleIP65 XLR 5-pin connector, MalePower Power input connectorInstallation Mounting point 2 quarter-turn locking points for one Omega bracketOrientation AnyRigging possibilities Hanging (Omega Bracket included) or ceiling/wall mount (optional)Safety features Bottom mount for safety wireMinimum distance to combutiblematerials: 0.3 meter (11 in). Thermal Cooling PassiveHumidity (max.)98 %Temperature range, Battery-20°C to 50°COperatingTemperature range, Battey Start-up-20°C to 50°CTemperature range, Charging10°C to 45°CTemperature range, Operating0°C to 45°CTemperature range, Start-up0°C to 45°CTemperature range, Storage-20°C to 25°CThermal Protection Automatic overtemperature protectionIncluded items Included items 2 m power cable1 Omega bracket with quater-turnfastenersSafety instructions and installationquick guideBattery Battery capacity Configurable up to 24 hoursBattery capacity (typical use)10 - 12Battery charge time up to 100% 6.5 hoursBattery charge time up to 75% 3.5 hoursBattery Option YESBattery status Battery level indicatorBattery type Lithium-Ion batteryDurability> 1000 cyclesConforms To CE - 2014/30/EU: EMC Directive EN 55103-1EN 55103-2EN 55015EN 61547EN 61000-3-2EN 61000-3-3CE - 2014/35/EU: Low VoltageEN 60598-1DirectiveEN 60598-2-17EN 62471EN 60529RoHS2 Directive2011/65/EUNOTES:Due to continuous improvements and innovations, specifications may change without notice.LEDs' expected lifetime provided by manufacturer and obtained under manufacturer’s test conditions.Zoom range defined as a minimum beam angle to a maximum field angle.Photometric measurements obtained with Goniometer Scan / SGM Illumination Lab 1.6.0.0.Lumen output in pixel products is calculated.Headquarter +45 70 20 74 00 Mail ***************** Website 。

PT 系列单充电架快速入门指南说明书

PT 系列单充电架快速入门指南说明书
If you are using PT Series Single Charging Rack with LAN, connect the connector of power adapter to the “DC IN” power jack at the bottom of the charger.
Trigger Button Pistol Grip Release Button
1
Left Side View
Back View
Battery Capacity Indicator
Battery Capacity Checking
Button
Battery Pack Cover
Connecting PT Series Pistol Grip onto PT Series Tablet
5
Specifications
PT Series Single Charging Rack w/o LAN
Power Input 5V DC/15W
Number of Charger Slot
1 slot
PT Series Single Charging Rack with LAN
12V DC/40W
LED Status Solid Orange Blinking Orange Blinking Green Solid Green
Descriptions Charger Power ON Battery capacity under 80% Battery capacity above 80% Battery is fully charged.
DC-IN Power Jack
1. Connect the other end of power adapter to the electrical outlet.

容量保持率的英文

容量保持率的英文

容量保持率的英文一、“容量保持率”的英语单词1. “容量保持率”:capacity retention rate二、英语释义The proportion or percentage of the initial capacity that is still maintained over a certain period of time or under specific conditions.(在一定时期内或在特定条件下仍然保持的初始容量的比例或百分比。

)三、相关短语1. high - capacity retention rate(高容量保持率)2. battery capacity retention rate(电池容量保持率)3. long - term capacity retention rate(长期容量保持率)4. capacity retention rate test(容量保持率测试)四、用法1. 作主语The capacity retention rate is an important indicator for evaluating the performance of batteries.(容量保持率是评估电池性能的一个重要指标。

)2. 作宾语We need to measure the capacity retention rate accurately.(我们需要精确测量容量保持率。

)3. 作表语The result of the experiment shows that the capacity retention rate is quite high.(实验结果表明容量保持率相当高。

)五、双语例句1. The capacity retention rate of this new - type battery after 500 charge - discharge cycles is still above 80%.(这种新型电池在500次充放电循环后的容量保持率仍在80%以上。

电动折叠车用户指南说明书

电动折叠车用户指南说明书

Instruction Manual for E-bikes SKU#:8907644 SKU#:8907636 BIKE ELECTRIC FOLDING 20 IN BIKE ELECTRIC 26 INTable of contents1. Your E-Bike…………………………………………………………………..2—3 1.1 Introduction1.2 General presentation of the vehicle2. Function Display…………………………………………………………..4—8 2.1 Displayer Introduction2.2 Operation3. Using the bike (8)3.1 Riding the bike4. The battery……………………………………………………………….……..8—10 4.1 Installing and removing the battery4.2 Charging the battery4.3 Battery autonomy and lifespan4.4 Battery safety instructions5. Safety maintenance and recommendations (10)5.1 Helmet5.2 Tires6. Warranty (10)1. Your E-Bike1.1) IntroductionWe would like to thank you for your e-bike purchasing. For your safety and for the safety of others, we recommend that you obey all road regulations and wear a protective helmet. For optimal, safe and enjoyable use of the e-bike, make sure you thoroughly read this user guide before you first use it. Use the e-bike according to the user guide, or it may shorten the life cycle.Have a pleasant ride!1.2) General presentation of the vehicle1.2.1) General informationSKU#. 8907644 8907636Weight of bike with battery:26KG 30KGMaximum assistance speed:32KM/H32KM/HL 1420 x W270 x H660L 1580 x W275 x H840 The dimensions of the bike (MM)(85% package):146KG150KG Maximum Loading total weight:(includes the bike, battery and rider)8907644 89076361.2.2) Spare parts specSpare parts name 8907644 8907636Motor BAFANG36V,350W (20”)BAFANG36V,350W(26”)Battery 36V 10.40AHLG Lithium battery cells 36V 10.4AHLG Lithium battery cellsDisplay KUNTENG, KT-LCD5 KUNTENG, KT-LCD5 Front fork Strong suspension fork with lockoutSuspension forkE-Brake Lever 5 STAR106PDD-155mm 5 STAR106PDD-175mmDisc Brake Taiwan TEKTROMechanical disk brakes Taiwan TEKTRO Mechanical disk brakesDerailleur ShimanoTourney7 SpeedRD-FT35 Shimano Tourney 7 Speed RD-TY300Tire CHAOYANG20”X4.0”CHAOYANG 26”X4.9”2 charge indicators: 1 is located on the display; 1 is located on the side of battery.2. Function Display2.1) Display Introduction1UP button11Km/H Riding speed(metric)2 SW buttonMPHRiding speed (imperial)3 DOWN button MXS MAX speed4 ASSISTPas levelAVS Average speed 5 Battery capacity indicator12Km Distance(metric ) 6 CRUISE Cruise function Mil Distance (imperial ) 7 PAS Power-assisted functionDST Trip distance 8 TM Single trip time ODO Total distance TTM Total trip time VOLBattery voltage 9 THROTTLEThrottle display 13The brake display106Km/H push powerassist2.2) OperationON/OFFPress and hold (POWER BUTTON) to turn the power off and on. When the motor stops driving and when the e-bike is not used for a consecutive 5 minutes, it will automatically shut down.1. Display 1Hold button to start up and enter display 1.2.1 Assist ratio gear (ASSIST) switchPress or button to switch 1-5 gear. Gear 1 is for theminimum power, gear 5 is for the maximum power used withoutassisted function. Each startup will automatically restore the gearshutdown last time (the user can set randomly).2.2 6KM/H assist promotion functionPress and hold button and flashes, the vehicle drives atthe speed not more than 6Km /h. Release button, the function isDisengaged.2.3 THROTTLE displayTurn on throttle, THROTTLE display.2.4 PAS displayWhen Power-assisted riding, PAS display.2.5 Cruise functionAfter the cruise function is turned on, the trip riding speed isgreater than 7 km/ h, Press and hold button long to enter cruisemode. While in Cruise mode brake or hold any button to cancel.2.6 Display and delete of single DataAfter power on for 5 seconds, hold and button at thesame time, single trip riding time (TM) and single trip distance (DST)flash, hold button shortly, the content of both is cleared. If failedholding the button within 5 seconds, it will automatically return thedisplay interface after 5 seconds, original content is preserved.3 Display 2Hold button shortly in display 1 to enter display 2. In theriding mode after 5 seconds, display 2 automatically returns to display1.4 Display 3Hold button shortly in display 2 to enter display 3. In theriding condition, five seconds later, a single maximum speed (MXS)display automatically returns to the real riding speed (KM/H).5 In display 3, hold button shortly (SW) and the display willre-enter display 1.6 Press and Hold button to turn off the display and the powersupply of controller.7. Automatically prompt interface7.1 Error Code Display Error Code Definition01_info Throttle Abnormality03_info Motor hall signal Abnormality04_info Torque sensor signal Abnormality05_info Axis speed sensor Abnormality (only applied totorque sensor)06_info Motor or controller has short circuit Abnormality Electronic control system failure will display (flashing) fault code. Once the fault was removed, it automatically exits from the fault code display interface.General Project Setting1. Set maximum riding speedAfter power on for 5 seconds, hold and button at thesame time, maximum riding speed KM/H and MXS flash, hold orbutton shortly to set the maximum riding speed (default 25KM/H).Hold button shortly and go to the next parameter settings.2. Wheel diameter settingThe wheel diameter will be set after finishing setting themaximum riding speed, wheel diameter specifications flashes. Holdor button shortly to set the specifications of wheel diameter.Select the range 6,8,10,12,14,16,18,20,22, 24,26,700c and 28 inches.Hold button shortly and go to the next parameter settings.3. Set the metric unitsThe metric units will be set after finishing setting wheel diameter,KM/H and Km flash. Hold or button shortly and select metricunits of speed and mileage in synchronization.Display Metric ImperialRiding speed KM/H MPHTotal distance Km Mil4. KM/H and Km stop flash after metric unit setting is completed. Hold button shortly againto re-enter the maximum riding speed setting interface; or hold button long to exit from setting environment of routine projects and save the setting values, returning to display 1. 5. Exit from routine project settingAll three routine project settings can exit from the setting environment and return to the display if hold button long after each setting is completed, meanwhile the setting values are saved.Under each setting interface, if the button failed holding for more than 1 minute, it will automatically return to display 1, and the setting value is invalid.3. Using the bike---Riding the bikeBefore taking off, make sure that you activate the battery by pressing on the button located on the side of battery.The 4LEDs located on the side of the battery which indicate the charge level.Turn on the display unit which is on the handlebars. Select your needed assistance level and start to pedal. You’ll find that the engine starts as soon as you start pedaling.When you use the brakes, the contactor located within these brakes will halt the engine’s assistance immediately.The left brake lever controls the rear brake. The right brake lever controls the front brake.You can also use the bike without electric assistance by turning off the battery (switch off the button or by adjusting the assistance level on 0). The engine will then feature zero resistance: you’ll be freewheeling. Select the appropriate gear by activating the 7-speed gear lever.Please note: if you use the bike frequently, it is recommended that you inspect the state of the fork, the frame, the suspension and the fasteners. The materials and components may be subject to different reactions to usage and wear.If you have any doubts, contact your dealer, who will proceed with the necessary inspection.4.The battery4.1) Installing and removing the batteryTo remove the battery, unfasten the lock which is locatedalong the battery’s box. Remove the battery by pulling it out.To put the battery back into place, insert the battery along tothe guide rails. Push it closely against the controller box.Fasten the lock.4.2) Charging the batteryHere are the steps to be followed when charging your battery:Step 1 Turn the battery off. The LED lights will be off.Step 2 Plug the charger (which is off) into the socket and then insert the charger’s plug into the battery, which is also off.Step 3 the charger’s LED indicators lit up in the following manner:• The red LED lights on: the battery is being charged.(A)• The red LED light becomes green:the battery is full charged; you can unplug the charger. (B)(A)(B)It takes 3 - 6 hours for the battery to be fully charged when using the standard charger that’s supplied with your bike.4.3) Battery autonomy and lifespan4.3.1) AutonomyThe bike's autonomy ranges from 40 to 100 kilometers, as it depends on many different factors (degree of assistance used, topology, rider’s weight, frequent stops/start-ups, hills, tire pressure, etc…)4.3.2) MaintenanceIf you don’t use your bike for a period of time exceeding 2 months, store it in a humidity-free area to protect the electronic components and make sure that the battery is neither completely charged nor completely discharged (2 LEDs lit up)Note: Never store a completely discharged battery as it might result in permanent damage.During the winter or long storage periods, it is recommended that you chargethe battery halfway every 2 months. Don’t forget to switch it off. Store yourbattery at a temperature between 15° and 25°.4.4) Battery safety instructionsYour bike's battery is an electric component made up of chemical elements. For your safety, it is imperative that you obey the following rules:Always handle with great care10Always keep it away from childrenDo not take it apart or hit, pierce or submerge itKeep it away from temperatures exceeding 60°Never create a connection between the contacts located at the bottom of the batteryNever let the battery charge unattendedNever sleep near a battery that is chargingOnly use the charger that came with your bike or that was supplied by your dealer.If your battery is damaged, do not use it and take it back to your dealer as soon as possible5. Safety and maintenance Recommendations5.1) HelmetFor safe riding, use a bicycle helmet.5.2) TiresInspect the wear of your tires on a regular basis and verify the tire pressure at least once a month. Tire pressure: 40-65 PSI depending on the weight of the user.6. WarrantyYou are provided with a warranty for one year since the day you buy the bike.Details regarding your bike’s warranty coverage terms are available from yourdealer. Have a pleasant ride!。

(完整版)关于汽车的零部件名称中英文大全

(完整版)关于汽车的零部件名称中英文大全

关于汽车的零部件名称中英文大全座杆束SeatPostClamp座杆SeatPost座垫套SaddleCover座垫Seat座垫Saddles自行车类Bicycle自排车用滤油器OilFilterforAutomaticTransmission自排变速箱修理包AutomaticTransmissionGasketKits自动变速箱油AutomaticTransmissionOil装饰贴纸、标志OrnamentMark转向总成SteeringAssembly转向主干SteeringStemComp转向连杆SteeringLinkage转向节臂Knuckle转向机柱SteeringColumn转向齿轮箱SteeringGearBox铸造件(加工)CastingParts(Processing)主轴、副轴Mainshaft/Countershaft主脚架MainStand主滑动模轮组件PrimarySheaveAssembly轴承Bearing中轴组件(天心)BottomBracketParts 中央置物箱Console中央门控CentralDoorLock中心盖CenterCover置物袋CarriageBag趾夹带ToeStrap止推垫片ThrustWasher支柱总成StrutAssembly支架Bracket整流器Rectifier整车FinishedMotorcycle整车FinishedBicycle蒸发器Evaporator折叠式自行车FoldingBicycle遮阳板Sunvisor运钞车ArmorCashCarrier越野车TrekkingBicycle预热塞GlowPlug雨刷及雨刷连杆Wiper/Linkage油压感应器OilPressureSensor油箱浮筒TankFloat油箱浮筒GaugeFuelTank油箱FuelTank油土与基准模型ClayModelandMasterModel 油土及基准模型ClayModelandMasterModel 油品添加剂OilAdditive油量表FuelGauge油管FuelPipe油封OilSeal油底壳OilPan油杯FuelCupAssembly油帮浦OilPump引擎支撑EngineMounting引擎罩盖AirShroud/Cylinder引擎修理包EngineGasketKits引擎零件EngineParts引擎盖铰链HingeofEngineHood引擎盖EngineHood引擎盖EngineCover引擎波司EngineBush引擎Engine音响喇叭盖SpeakerCover仪表饰板InstrumentPanelGarnish仪表板支架InstrumentalPanelMounting 仪表板InstrumentPanel仪表Meter仪表CombinationMeter大凡自行车RegularBicycle液压式刹车器HydraulicBrake液罐车RefuelingTruck曳引车TractorTruck曳力杆TrailingArm叶子板Fender叶片弹簧LeafSpring摇臂轴RockerArmShaft摇臂RockerArm烟灰缸Ashtray压条Moulding悬臂式刹车器CantileverBrake修理业Repairing&Maintenance休旅车RecreationalVehicle(RV)行李箱铰链HingeofTrunkLid行李箱盖TrunkLid行李箱LuggageBox协力车TandemBicycle小型商用车(3.5吨以下) LightDutyCommercialCar(LessThan3.5Tons) 消音器ExhaustMuffler消防车FireFightingTruck橡胶件RubberParts下臂LowerArm洗涤壶WindshieldWasher五通管5-wayPipe无线电胎压侦测仪WirelessTireMonitor无链式自行车ChainlessBicycle无段自动变速系统C.V.T.握把Grip涡轮增压器Turbo-Supercharger温度记录器TemperatureRecorder温度感应器WaterTemperatureSensor外装品ExteriorParts瓦斯车LPGCar拖车Trailer拖板车PalletTruck涂料Paints凸轮轴链条CamChain凸轮轴链轮SprocketCamshaft凸轮轴Camshaft凸轮链条张力器CamChainTensioner凸轮Cam头盔Helmet铜套类Bushing停车支架Kickstand铁路扣夹ClipforRailroad铁路车辆制造及修理RailroadVehicleManufacture&Repair 铁路车辆零件RailroadVehicleParts铁路车辆类RailroadVehicle贴纸Sticker天线Antenna天窗SunRoof提速器Actuator碳刷CarbonBrush胎压不够警示器TireLowPressureIndicator踏板Pedal锁Lock随车工具Tools塑料件PlasticParts速度表SpeedMeter水箱支架RadiatorMounting水箱水管RadiatorHose水箱饰罩RadiatorGrille水箱风扇RadiatorFan水箱Radiator水壶架BottleCage水管WaterHose水帮浦WaterPump双面胶带AcrylicFoamTape竖管Stem手刹车拉柄ParkingBrakeLever室内运动车(健身车)Exerciser室内镜RoomMirror饰板/饰条Garnish/Trim时规炼条/皮带外盖TimingChain/BeltCover时规炼条/皮带TimingChain/Belt省电器EnergySavingUnit生产、检测及涂装设备Production,Test&PaintingEquipment生产、检测及涂装设备Production,Test&Painting Equipment 生产、检测及涂装设备Production,Test&Painting Equipment 舌簧阀ReedValve上臂UpperArm闪光器Flasher闪光灯Flasher煞车踏板BrakePedal刹车总成BrakeAssembly刹车总泵BrakeMasterCylinder刹车真空管BrakeBoostVacuumTube刹车真空倍力器BrakeVacuumBooster刹车油管(硬)BrakeTube刹车油管(软)BrakeHose刹车踏板BrakePedal刹车盘BrakeDisk刹车来令片BrakeShoe刹车来令片BrakeLiningShoe刹车鼓BrakeDrum刹车分泵BrakeCylinder散装车BulkTruck三通管3-wayPipe三轮车Tricycle润滑系统LubricationSystem人造革ArtificialLeather热水阀HeaterValve热处理HeatTreatment扰流板Spoiler燃油滤清器FuelStrainerAssembly 燃油滤清器FuelFilter燃油管FuelPipe燃油帮浦FuelPump燃料系统FuelingSystem曲轴轴承片CrankshaftBearing曲轴肖CrankShaftPin曲轴箱盖CrankcaseCover曲轴箱Crankcase曲轴皮带盘CrankshaftPulley曲轴Crankshaft曲柄组Chainwheel&Crank球形接头BallJoint倾卸车DumperTruck前护盖FrontFender前防撞杆GuardAssy(Front)前叉肩ForkCrown前叉顶梁ForkTopBridge前叉FrontFork千斤顶Jack汽门座ValveSeat汽门摇臂盖RockerCover汽门摇臂ValveArm汽门锁ValveCotter汽门导管ValveGuide汽门弹簧ValveSpring汽门Valve汽缸头侧盖CylinderHeadSideCover汽缸头CylinderHead汽缸头(盖)CylinderHead汽缸体CylinderBlock汽缸衬套CylinderLiner汽缸Cylinder汽车用液晶显示器CarLCD汽车用行动电话CarHand-freeMobilePhone 汽车用计算机CarComputer汽车用光盘CarCD汽车用电子钟DigitalClock汽车音响CarAudio汽车纯洁保养用品CosmeticsforAutomobile汽车内装用牛皮LeatherforCarInterior汽车导航系统CarNavigationSystem汽车保全系统CarSecuritySystem其它特种自行车OtherSpecial-purposeBicycles其它电动辅助车辆OtherElectricAuxiliary Vehicles 其它Others平衡杆StabilizerBar皮带张力器Tensioner喷油嘴InjectionNozzle配线WireHarness配件Accessories跑车(自由车)RacingBicycle排气消音器ExhaustMuffler排气歧管ExhaustManifold排气管ExhaustPipe排档头Knob排档杆ShiftLever暖气总成HeaterAssembly扭力杆TorsionBar尼龙绳、特多龙绳NylonRope内装品InteriorParts内胎(含内衬)InnerTire(Flap)模、夹、治、检具Die,Fixture,Jig,Checking,Gauge 模、夹、治、检具Die,Fixture,Jig,Checking Gauge 模、夹、治、检具Die,Fixture,Jig&CheckingGauge 铭板Nameplate门饰板DoorTrim门框Sash门铰链DoorHinge马达轴MotorAxle马达零件MotorComponents马达类Motor螺旋弹簧CoilSpring螺帽/螺栓/螺丝Nut/Bolt/Screw轮胎汽门嘴TireValve轮胎Tire轮圈盖WheelCover轮圈WheelDisk轮圈Rim轮弧FenderTrim轮毂WheelHub滤清器类Filter滤清器Filter零组件用材料ComponentsMaterials 铃Bell链条盖ChainCase链条Chain链盖ChainCover炼条调整器Tensioner连杆轴承片ConnectingRodBearing连杆ConnectingRod离合器座ClutchPlate离合器总成ClutchAssembly离合器总泵ClutchMasterCylinder离合器外壳ClutchCase离合器释放轴承ClutchReleaseBearing 离合器片ClutchDisc离合器来令片ClutchLining离合器杆ClutchLever离合器分泵ClutchCylinder离合器Clutch冷却系统CoolingSystem冷却风扇CoolingFan冷气总成A/CAssembly冷气压缩机A/CCompressor冷气配管A/CHose冷气客车Air-ConditionedCar冷气导风管A/CDuct冷凝器A/CCondenser冷煤电磁阀RefrigerateSolenoidvalve 冷媒管A/CPipe冷冻车FreezerCar篮Basket喇叭Horn拉杆HandleLever快拆QuickRelease扣具CargoLash控制拉线ControlCable孔塞GrommetPlug空气清净机AirPurifier空气滤蕊AirCleanerElement空气滤清器盖AirCleanerCover空气滤清器导管AirIntakeTube空气滤清器AirCleaner空调相关零件A/CRelatedComponents空调系统Air-conditioningSystem空调滤网A/CFilter开关类Switch镜类Mirror进气歧管IntakeManifold金属表面处理(材料)MetalSurfaceTreatment(Material) 节温器Thermostat节流阀ThrottleValve节流把手ThrottleGrip接头Lug&Shell轿车PassengerCar搅拌车MixerTruck脚踏起动机杆KickStarter脚踏杆KickCrankAssembly脚踏板Pedal脚踏板Board/Footrest脚刹车器CoasterBrake交流发电机(零件)A.C.Generator(Components) 夹式刹车器CaliperBrake夹器不变座Pivot夹片、管束Clamp,Clip继电器Relay机油滤网OilStrainer机油滤清器OilFilter机油冷却器OilCooler机油浮筒OilFloat机油尺导管OilLevelGaugeTube机油尺OilLevelGauge机油帮浦OilPump机油EngineOil机车座垫用牛皮LeatherforMotorcycleSeat机车链轮Chain机车类Motorcycle货架LuggageCarrier火星塞盖PlugCover火星塞SparkPlug活性碳罐Canister活塞肖PistonPin活塞环PistonRing活塞衬套PistonLiner活塞Piston环境卫生车GarbageTruck化油器Carburetor花鼓Hub&FreeHub后轴总成RearAxleAssembly后置物板RearParcelShelf后悬吊系统RearSuspension后视镜RearMirror后视镜DoorMirror后视镜BackMirror后轮驱动座RearWheelDriveSeat 后架Carrier后防撞杆GrardAssy(Rear)后叉端RearForkEnd后舱室饰板RearTrunkTrim横梁CrossMember横拉杆接头Tie-RodEnd黑烟过滤器DieselParticleFilter合成木材SyntheticWood海滩车BeachBicycle孩童车JunvenilesBicycle管类TubeorPipe管类Pipe,Hose,Tube故障标志Reflector鼓式刹车盘BrakeDrum鼓风机BlowerAssembly鼓、碟式刹车器Drum/DiscBrakeAssembly 共鸣箱Resonator工具Tool各类孔盖Cap、Cover各类隔音垫AllKindsofSilencer隔热材HeatInsulator高压线组IgnitionCable副水箱AuxiliaryRadiator辅助气囊AirBag辅助轮TrainingWheel辅助把手BarEnd辐条/辐帽Spoke/Nipple蜂鸣器Buzzer风扇盖AirShroud风扇Fan粉末冶金PowderMetallurgy分电盘Distributor废气回收管EGRTube飞轮环齿轮RingGearofFlywheel飞轮Flywheel防撞护垫BumperPad防水衬条Weatherstrip防盗器CarBurglarAlarm防盗器BurglarAlarm方向盘SteeringWheel方向把手SteeringHandle反光片Reflector发电机Alternator发电机(零件)Alternator(Components) 多功能休闲车ATV堆高机Forklift锻造件(加工)ForgingParts(Processing) 端子Terminal动力转向油管PowerSteeringHose动力转向帮浦PowerSteeringPump动力方向系统PowerSteeringSystem定趾器ToeClip定速器CruiseController顶蓬Headlining碟式刹车器DiskBrake碟式刹车盘BrakeDisc调整器Regulator调节器Regulator吊架Hanger垫片类Seal、Gasket、Washer、Packing垫片Gasket电子件ElectricalParts电子点火器IgnitionModule电装品ElectricalParts电圈Starter电瓶Battery电动座椅装置PowerSeatUnit电动自行车马达ElectricBicycleMotor电动自行车控制器ElectricBicycleDriver电动自行车电路设计ElectricBicycleCircuit Design电动自行车电池组ElectricBicycleBatterySet 电动自行车ElectricalBicycle电动机车控制器ElectricMotorcycleDriver 电动机车ElectricMotorcycle电灯Dynamo/LightingSet电磁阀SolenoidValve电池容量计BatteryCapacityIndicator电池充电器BatteryCharger点烟器CigarLighter点火线圈模块IgnitionCoilModule点火线圈IgnitionCoil地毯FloorMat地毯Carpet底盘系统ChassisSystem底盘及其另件ChassisandRelatedParts底盘车架Frame底盘车ChasisTruck等速接头C.V.Joint登山车MountainBicycle灯泡Bulb灯类Lamp倒车显示器RearViewDisplay倒车雷达ReverseSensor导线Cable档位调整器GearPositionIndicator挡泥板MudGuard/Fender挡泥板MudGuard挡泥板Fender弹簧Spring单轮车Unicycle大型商用车(3.5吨以上) HeavyDutyCommercialCar(MoreThan3.5Tons) 打气筒FloorPump打蜡机Buffer(CarPolisher)传动轴总成SecondarySheaveAssembly传动轴TransmissionAxle传动轴PropellerShaft传动件Transmission触媒转换器缓冲绵CatalyticConverterMate触媒转化器CatalyticConverter储液瓶A/CReceiver充电器Charger齿条GearRack齿轮轴GearAxle齿轮箱GearBox齿轮衬套GearBushing齿轮变速零件GearShiftParts齿轮Gear城市车ATB车柱Pillar车用灭火器Extinguisher车头组件Headset车体及电装BodyandElectricalParts车体盖BodyCover车体打造(改装)CarBodyBuilding(Refitting) 车体Body车手带HandleStrap车身护条SideProtector车身钣金件Body&StampingParts车身CarBody车门锁DoorLock车门扶手DoorArmrest车门把手DoorHandle车门DoorPanel车轮系统WheelingSystem车轮及刹车WheelandBrake车架材料FrameMaterials车架Frame车顶内衬RoofLining车顶板Roof车灯控制器LightingController车窗升降摇柄WindowLifterHandle车窗升降机WindowLifter柴油车黑烟净化器DieselParticulateFilter 插接件ConnectorClip侧脚架SideStand侧盖SideCover残障专用车MotorcycleforHandicap补强板ReinforcementPlate玻璃类Glass玻璃滑槽GlassRun波司垫片Washer变速箱外壳TransmissionCase变速箱TransmissionBox变速器Derailleur变速杆ShiftLever避震前叉SuspensionFork避震器前后活塞杆PistonRodofFrontandRearShockAbsorber 避震器前后活塞杆PistonRodofFrontandRear ShockAbsorber 避震器ShockAbsorber避震脚踏车SuspensionBicycle比例阀ProportionalValve备胎板TrimforSpareTire保险丝座FuseSeat保险丝Fuse保险杆支撑MountofBumper保险杆Bumper帮浦类Pump钣金件StampingParts把手座GripHolder把手套Grip把手盖HandleCover把手HandleBar安全带SeatBeltYOKEASSY磁场总成WIRELEAD分电器引线WEIGHT离心块VAlVEP.C.V单向阀UOUSINGSUBASSY分电器外壳总成TANKWASHER清洗器电动机SWITCKCOlUMN灯光组合开关SWITCHASSY电磁开关总成SUPPORTASSYARM断电器总成STATORASSY发电机转子总成STARTERASSY起动机总成SPRINGGOVERNOR离心块弹簧SPEEDOMETER车速里程表SPEAKER扬声器SOCKETBULB仪表灯座SHAFT分电器轴SCREWSETTING大灯调整螺钉ROTORASSY分火头总成ROOMLAMP室内灯RINGRETAlNING大灯框RESISTORASSY附加电阻总成RELTIFIERASSY发电机整流器总成RELAYPOWE雨刮器继电器RELAYINTERMITTENTWIPER电源继电器RADIO收音机PULLEYASSY发电机皮带盘总成PLUGSPARK火花塞PANELINSTRUMENT仪表盘架PANELINDICATOR仪表指示灯面板MOTORWIPER雨刮器电动机MOTORWASHER清洗器电动机LINKWIPER雨刮器连杆LENSTURNSIGNlLAMP转向灯玻璃灯罩LED灯LEDLampLAMPKITREARCOMB尾灯总成LAMPKITLICENSE车牌灯总成LAMPKITFRONTTURNSIGNAL转向灯总成LAMPKITFRONTCOMBINATION前小灯总成ICREGUlATORASSY集成电路调节器总成IAMPASSYHEAD大灯总成HID车灯安定器组合HIDBallastCompleteSetforHeadlights HEADLAMPUNIT大灯芯GIASSMETER仪表玻璃GEARKIT分电器传动齿轮GAUGETEMP室内灯FUSE保险丝FLASHERUNITHAZARD转向灯闪光器DISTRIBUTORASSY分电器总成CONTROLLERSUBASSY真空点火提前装置CONDENSER电容器COIlASSYIGNITION点火线圈总成CLUTCHOVERRUNNING啮合器总成CLOCKDIGITAl数字钟CASEMETER仪表壳体CAPASSY分电器盖总成CAM分电器凸轮CAD/CAM车身设计CAD/CAMCarBodyDesign CABlESETSPARKPLUG高压线总成CABLEASSYHIGH中心高压线总成C.D.I.总成C.D.I.UnitAssembly BULBLAMP仪表灯BRUSH电刷BRACKETREAR起动机后端盖BRACKETASSYTRONT起动机前端盖BRACKETASSYREAR发电机后端盖总成BRACEALTERNATOR发电机调节杆件BOXASSYFUSE保险丝盒总成BOARDPRINTED仪表印刷电路BLADEASSY雨刮片总成BEARING轴承BEARINGREAR起动机启轴承BATTERY蓄电池ARMATURESET电枢总成ALTERNATORASSY交流发电机总成A/C风扇A/CFan50CC以下机车LessThan50CCMotorcycle50~150CC机车50~150CCMotorcycle150CC以上机车MoreThan150CCMotorcycle (电动)座椅(Electric)Seat(电动)滑板车(Electric)KickBoardScooter。

Macbook如何显示电池指示灯?

Macbook如何显示电池指示灯?

Macbook如何显⽰电池指⽰灯?
Battery Indicator for Mac是⼀款好⽤的电池指⽰灯⼯具,可以让你的Mac电池显⽰剩余时长,停驻在菜单栏,⼩巧轻便,使⽤⽅法简单,是⼀款不可缺少的电池⼯具。

本软件测试环境12.0.1系统!
1. 在菜单栏中显⽰剩余电池时间和百分⽐。

2. 该应⽤程序具有在连接电源插头时隐藏菜单栏图标的设置,如果您只关⼼使⽤电池时的电池时间/百分⽐,这会很有⽤。

3. 您可以通过在按下 Command 键的同时将其图标拖出菜单栏来隐藏系统电池指⽰器。

您还可以通过在按住 Command 键的同时拖动菜
单栏图标来重新排列菜单栏图标。

这意味着您可以将这个应⽤程序准确地放置在系统电池指⽰器曾经所在的位置。

7. 当电池充满电或达到特定百分⽐时,还可以优先通知。

8. 它还⽀持快捷⽅式(在 macOS 12 上)。

9. 需要 MacBook、MacBook Pro 或 MacBook Air。

10. 提⽰:在菜单打开时按 Option 键可查看电池状况和健康状况。

充电器使用说明书

充电器使用说明书

1Owner's ManualOperation illustration:1. LED Indicators and Fault Signals1.1 LED Indicators during start up:After connecting charger with battery, connect charger with AC outlet using AC cable. The charger will go into charging mode. (In order to find out the preselected charging profile, disconnect the charger with the battery set. Reconnect the charger to AC outlet, the charger display will show the number of the chosen charging profile)1.2 Battery Capacity Indicators:1.3 LED will be showing Battery Charging Profile as below:LED1(USB ) LED2(100%) LED3(75%) LED4(50%) 30 (something)20 (something) 10 (something) # of Blinking = (something)If the charging profile is #35, what would happen is LED1 will be on to represent the charging profile is 30, and LED 4 will blink 5 times, while LED2 and LED3 will remain off. This means 30 plus 5, showing the charging profile is #35. Another example is if charging profile is #18, what would happen is LED3 will be on to represents charging profile is 10 plus LED4 will blink 8 times to represent 8, which means #18.Maintenance Instructions1. Do not expose charger to oil, dirt, mud or direct heavy water spray when cleaning vehicle.2. The enclosure of the charges has been tested successfully to IEC 60529, meeting IP66.3. If the detachable input power supply cord set is damaged, replace with a cord that is a safety approved detachable cord, 3 conductor, 1.5 mm² minimum, and rated appropriate for use in the country of destination and, on the other end, an output grounding type IEC 60320 C14 plug.The instruction for cable connection:1 AC Input;2 DC Output;3 Interlock Cable:(When charger ischarging, the interlock cables will form an open circuit with no voltage.When charger is not charging, the interlock cable will form a short circuit with no voltage); 4 Interlock Cable:(When charger is charging, the interlock cable will form a short circuit with no voltage ;When charger is notcharging, the interlock cables will form an open circuit with no voltage); 5 6048:LED Cable, 6024:CANBUS; 6 CANBUS (Optional for GPSC6048); 7 Port for Battery Charging Profile UpgradeCaution: Hot Surface. Please install the power inverter where people cannot reach .Fault IndicatorWhen a fault occurs, LED2(100%)/LED3(75%)/LED4(50%)will blink atthe same time.Blinking FrequencyFault Cause Solution 1 The battery is notwell connected orbattery reverselyconnected orbattery damaged.1) Check battery connection is correct.2) Check charger connection iscorrect.3) Check each battery is good..2 Abnormal AC Power Input (Voltage) 1) Check AC input cord is connectedbetween chargerand AC outlet. 2) Make sure AC plug is tightlyinserted into AC outlet.3 Charger High TemperatureProtection1) Charger shuts down and entersprotection mode due to charger/environmental temperature is too high. Please place the charger in a well-ventilated environment.2) Disconnect the charger and wait for 15-20mins before reconnecting for charging.4 Battery High Temperature Protection 1) Charger will reduce current evenstop charging to prevent the battery from overheating when batterytemperature exceeds the preset value. 2) When the battery temperature drops, the charger will restart automatically.5 Output Current is too largeReturn to the factory for repairing.6 Battery Voltage is too high Check and assure that the correctoutput battery voltage is connected.Product Specifications:DCOutputVoltage-Range(V)0-68V(GPSC6048) 0-102V (GPSC4072) 0-34V(GPSC6024)Current-Range(A) 0-60A 0-40A 0-60APower-max(W) 4080W 4080W 2040W Power Error(%)1%Applicable to BatteryAGM, WET, GEL Lithium Reverse Polarity Electronic protection-auto-reset Short CircuitElectronic protection-auto-resetACInputVoltage-Range(V) 100-240V Frequency(Hz) 50-60Hz Current-max(A) 16A 26A 16AFull Load AC Power Factor>0.98Dimensions 35.8*28.0*10.7cm35.8*28.0* 10.0cmWeight 8.6KG 7.7KG Operating Temperature -40℃~+65℃Storage Temperature -40℃~+70℃Battery category and program code contrast table:Code Battery type b01Common type of Floodedb02 Trojan T105b03 Discover AGM (80-150Ah) b04 Discover AGM (250Ah)b05 US_Flooded (250Ah) b06 Trojan 30XHS b07 Trojan T125 b08 Trojan J305 b09 Generic Flooded(200-255Ah) b10 Trojan T145 b11 Trojan T1275 b12 Discover AGM (220Ah) b13 Trojan T605 b14 12TB-115 AGM b15 Generic Flooded (140-200Ah) b17Generic Flooded (400Ah)b18 Trojan T875 b19 US 2000XC2 b20 US 2200XC2 b21 US 250HCXC2 b22 6TB-170 AGMb23 Generic GEL (140-200Ah) b24 Generic GEL (200-255Ah) b25 Fullriver DC224-6 b26 Generic AGM (140-200Ah) b27 Trojan L16P-AC b28Common type of AGMb29 US 8VGCXC2 b30 US 12VXC2b31 US 305XC b32 US 125XC2 b33 US 145XC2 b34 Crown CR-235 b35 Crown CR-245 b38 User-definedWarning: Do not charge non-rechargeable batteries.Capacity LED2(100%) LED3(75%) LED4(50%) <50%○ ○★ (Blinking)>50% ○★ (Blinking)● >75% ★ (Blinking)● ● 100%●●●2使用说明书一、警告信息请在使用本产品前详细阅读使用说明书,理解这些安全指导,并保存好此说明书以方便取阅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptiveneuro-fuzzy inference systemK.T.Chau *,K.C.Wu,C.C.ChanDepartment of Electrical and Electronic Engineering,The University of Hong Kong,Pokfulam Road,Hong Kong,Hong KongReceived 24June 2003;accepted 27September 2003AbstractThis paper describes a new adaptive neuro-fuzzy inference system (ANFIS)model to estimate accurately the battery residual capacity (BRC)of the lithium-ion (Li-ion)battery for modern electric vehicles (EVs).The key to this model is to adopt newly both the discharged/regenerative capacity distributions and the temperature distributions as the inputs and the state of available capacity (SOAC)as the output,which represents the BRC.Moreover,realistic EV discharge current profiles are newly used to formulate the proposed model.The accuracy of the estimated SOAC obtained from the model is verified by experiments under various EV discharge current profiles.Ó2003Elsevier Ltd.All rights reserved.Keywords:Adaptive neuro-fuzzy inference system;Battery residual capacity;Electric vehicles;Lithium-ion battery;State of available capacity1.IntroductionAt the present time and in the foreseeable future,batteries have been agreed to be the major energy source for modern electric vehicles (EVs),including the battery EV (BEV),hybrid EV (HEV)and fuel cell EV (FCEV)[1].Those viable EV batteries consist of the valve regulated lead acid (VRLA),nickel cadmium (Ni–Cd),nickel zinc (Ni–Zn),nickel metal hydride (Ni–MH),zinc/Energy Conversion and Management 45(2004)1681–1692/locate/enconman*Corresponding author:Tel.:+852-2859-2704;fax:+852-2559-8738.E-mail address:ktchau@eee.hku.hk (K.T.Chau).0196-8904/$-see front matter Ó2003Elsevier Ltd.All rights reserved.doi:10.1016/j.enconman.2003.09.0311682K.T.Chau et al./Energy Conversion and Management45(2004)1681–1692air(Zn/air),aluminum/air(Al/air),sodium/sulfur(Na/S),sodium/nickel chloride(Na/NiCl2), lithium-polymer(Li-polymer)and lithium-ion(Li-ion)types[2].Recently,it has been identified that those batteries with promising application to EVs are the VRLA,Ni–MH and Li-ion batteries[3].The VRLA battery is widely accepted for low perfor-mance EVs due to its maturity and cost effectiveness;the Ni–MH battery is attractive for mode-rate performance EVs because of its good specific energy and good specific power;and the Li-ion battery is becoming accepted for high performance EVs because it offers excellent specific energy and excellent specific power.It is anticipated that the Ni–MH battery is an interim battery technology that will be superseded by the Li-ion battery if the initial cost of the Li-ion battery can be significantly reduced upon mass production.Although the development of EV battery technologies is being actively conducted,the appli-cation technology of EV batteries,namely the battery residual capacity(BRC)indicator,cannot catch up with the development pace.The BRC refers to the quantity of electricity remaining in the battery that can be delivered at a certain discharge current and temperature before reaching the specified cutoffvoltage.At the fully charged state,the corresponding BRC is denoted the battery available capacity(BAC).Since the BRC estimation is strongly related to the driving range of EVs,an accurate calculation of the BRC is vital.Actually,this technology is the key to com-mercialization and popularization of EVs.Starting from the past decade,many battery capacity estimation approaches for the VRLA battery in EVs have been investigated,such as the impedance measurement approach[4]and artificial neural network(ANN)modeling approach[5].Recently,these approaches have been extended to the Ni–MH battery.For the impedance approach[6],the terminal voltage(response) is measured when a small amplitude ac perturbation(stimulus)is injected into the battery,and hence,the impedance is calculated by the ratio of the response to the stimulus.However,the measured impedance can only indicate the state of charge(SOC),namely the theoretical ratio of the remaining active material to the total active material inside the battery that can be converted into electrical energy from the chemical energy[7],which is actually different from the BRC for EVs.For the ANN modeling approach[8],an ANN model with three layers(input,hidden and output layers)is applied.In the input layer,there are four neurons to represent the battery ter-minal voltage,discharge current,temperature and discharged capacity.In the hidden layer,five neurons are adopted as a result of a compromise between the estimation accuracy and the complexity of the ANN.In the output layer,there is one neuron indicating the battery capacity. However,this approach does not take into account the influence of the EV discharge current profile,which is essential for accurate estimation of BRC.Very recently,the ANN modeling approach has been further extended by incorporating fuzzy logic,hence the use of an adaptive neuro-fuzzy inference system(ANFIS)modeling for capacity estimation of the Ni–MH battery[9].This approach can accurately estimate the state of available capacity(SOAC)of the Ni–MH battery.The SOAC refers to the BRC normalized by the BAC.However,this modeling approach has three shortcomings.First,the discharge currents are always positive,which has not considered the regenerative braking of EVs.Second,the instantaneous temperature,rather than its distributions,is used as an input,which cannot fully describe the influence of temperature.Third,the current profiles are simplified to the climbing hill discharge current,fast discharge current,normal discharge current and small discharge current,which cannot reflect the actual operation of EVs.On the other hand,the use of anotherK.T.Chau et al./Energy Conversion and Management45(2004)1681–16921683 neuro-fuzzy system has been attempted to model the Li-ion battery for estimation of SOC[10]. However,it deals only with constant current discharge profiles,which are far from realistic EV operation.Since the Li-ion battery is becoming accepted by high performance EVs,such as the Nissan Altra EV,an accurate BRC indicator for Li-ion battery powered EVs is highly desirable.Based on the spirit of our previous work for the Ni–MH battery[9],the purpose of this paper is to propose a new ANFIS model for accurate BRC estimation of the Li-ion battery.Instead of a straight-forward extension of our previous work,the model will newly consider the effect of regenerative braking and the use of temperature distributions.Also,rather than using those simplified dis-charge current profiles,the model will newly employ realistic EV discharge current profiles for both training and validation.2.Li-ion battery characteristicsSince thefirst announcement of the Li-ion battery in1991,the Li-ion technology has seen an unprecedented rise to what is now considered to be the most promising rechargeable battery of the future.The Li-ion battery uses a lithiated carbon intercalation material(Li x C)for the negative electrode instead of metallic lithium,a lithiated transition metal intercalation oxide(Li1Àx M y O z) for the positve electrode and a liquid organic solution or a solid polymer for the electrolyte. Lithium ions are swinging through the electrolyte between the positive and negative electrodes during discharge and charge.The general electrochemical reactions are described as Li x C+Li1Àx M y O z$C+LiM y O z.On discharge,lithium ions are released from the negative electrode,migrate via the electrolyte and are taken up by the positive electrode.On charge,the process is reversed.Possible positive electrode materials are Li1Àx CoO2,Li1Àx NiO2and Li1Àx Mn2O4,which have the advantages of stability in air,high voltage and reversibility for the lithium intercalation reaction.The Li x C/Li1Àx NiO2type,loosely written as C/LiNiO2or simply called the nickel based Li-ion battery,generally possesses the cell voltage of4V,specific energy of120W h/kg and specific power of260W/kg.The cobalt based type has higher specific energy but with a higher cost and an increase of the self discharge rate.The manganese based type has the lowest cost and its specific energy lies between that of the cobalt based and nickel based types.The general advantages of the Li-ion battery are the highest cell voltage(as high as4V),excellent specific energy(90–130W h/ kg),safest design of lithium batteries(absence of metallic lithium)and long cycle life(about1000 cycles).However,it still suffers from a drawback of high initial cost.Since the EV driving range highly depends on the BAC,the corresponding influences due to the temperature and discharge current profile are very essential.Instead of using constant current discharge profiles[10]or simplified EV discharge current profiles[9],four realistic EV discharge current profiles are adopted for evaluation.Fig.1shows these four profiles,which are based on standard EV driving cycles set by various countries or regions to reflect their EV operations, namely the European driving cycle(ECE),US federal urban driving schedule(FUDS),US federal highway driving schedule(FHDS)and Japan driving mode10.15(JM10.15).Notice that the discharge rate is purposely expressed in terms of the C rate,rather than in amperes,so as to make the representation more general.For instance,when the nominal capacity of the battery is1684K.T.Chau et al./Energy Conversion and Management45(2004)1681–1692increased from15to45A h,the corresponding discharge current is simply enlarged by3times, whereas the C rate is unchanged.Based on a commercially available Li-ion battery,Fig.2shows the influence of temperature on its BAC under four realistic EV discharge current profiles.It indicates that the BAC remarkably varies with temperature.This temperature sensitivity is much more serious than that of the Ni–MH battery[9],implying that the use of instantaneous temperature as an input of the model forK.T.Chau et al./Energy Conversion and Management45(2004)1681–16921685 Table1Comparison of BACs under different EV discharge current profiles at20°CDischarge current profile BAC(A h)ECE10.19FUDS11.09FHDS13.48JM10.1510.71the Ni–MH battery is insufficient for modeling the Li-ion battery.On the other hand,Table1 indicates that the influence of various EV discharge current profiles on the BAC at the temper-ature of20°C.From the results in Fig.2and Table1,both the temperature and the discharge current profile should be taken into account during the estimation of SOAC for the Li-ion battery powered EVs.3.Modeling of Li-ion SOAC using ANFIS3.1.Basic ANFIS architectureFig.3shows a basic ANFIS architecture[11]in which there are two inputs and one output.In thefigure,a circle represents afixed node,whereas a square denotes an adaptive node.The input parameters are x and y.In thefirst layer,all the nodes are adaptive nodes.The outputs of this layer are the fuzzy membership grades of the inputs,namely x is fuzzified into X1and X2,while y is fuzzified into Y1and Y2,which can adopt any fuzzy membership function,such as triangular, trapezoidal or bell shaped.In the second layer,the nodes arefixed nodes.They are labeled with M,indicating that they perform as a simple multiplier.The outputs of this layer are the so-called firing strengths of the rules.In the third layer,the nodes are alsofixed nodes.They are labeled with N,indicating that they play a normalization role to thefiring strengths from the previous layer.The outputs of this layer are the so-called normalizedfiring strengths.In the fourth layer, the nodes are adaptive nodes.The output of each node in this layer is simply the product of the normalizedfiring strength and the polynomial of input parameters fðx;yÞ.In thefifth layer,there1686K.T.Chau et al./Energy Conversion and Management45(2004)1681–1692is only one singlefixed node labeled with S.This node performs the summation of all incoming signals,hence generating the output z.There are two adaptive layers in this ANFIS architecture,namely thefirst layer and the fourth layer.In thefirst layer,the modifiable parameters are the so-called premise parameters.In the fourth layer,the modifiable parameters are the so-called consequent parameters.The task of the learning algorithm is to tune all the modifiable parameters to make the ANFIS output match the training data.To improve the rate of convergence,a hybrid algorithm combining the least square method(LSM)and the gradient descent method(GDM)is adopted[12].The LSM is used to optimize the consequent parameters with the premise parametersfixed.Once the optimal consequent parameters are found,the GDM is used to adjust optimally the premise parameters corresponding to the fuzzy sets in the input domain.The output of the ANFIS is calculated by employing the consequent parameters.The output error is used to adapt the premise parameters by means of a standard back propagation algorithm.3.2.Li-ion SOAC modelThe key to the ANFIS model for the BRC estimation of the Li-ion battery is the selection of the output and input parameters.Of course,the output parameter is the desired battery capacity.This capacity can be represented by the SOC,BRC or SOAC.As mentioned before,the SOAC is actually the normalized value of BRC,namely the ratio of BRC to BAC.For EV application,the SOAC with a per unit or percentage value is preferred to the BRC in Watt hours or Joules.The original definition of the SOC is the ratio of the remaining active material to the total active material inside the battery that can be actually converted into electrical energy from the chemical energy.This SOC usually has the same trend as the SOAC but cannot be mathematically related with the SOAC when the discharge current is notfixed.Therefore,in this paper,the SOAC is adopted as the output parameter.Although the chemical parameters of the battery can directly describe the battery character-istics and capacities,they are impractical to be the input parameters for EV application.From the EV application point of view,the input parameters should be easily measurable and electrically representable,such as the battery terminal voltage,the discharge current,the discharged capacity and the temperature.Previously,the instantaneous battery terminal voltage was chosen as an input parameter for BRC estimation[10].However,the use of this parameter generally involves the problem of disturbance.Fig.4illustrates the relationships between the instantaneous battery terminal voltage and the SOAC under various EV discharge current profiles at the temperature of 20°C.It can be observed that the battery terminal voltagefluctuates considerably as a result of the EV discharge current variation,whereas the SOAC monotonously decreases with the progress of discharging.These phenomena indicate that the instantaneous battery terminal voltage cannot offer a direct contribution to the SOAC estimation but involves the problem of disturbance,which definitely degrades the estimation accuracy.To improve the estimation accuracy and to avoid the problem of disturbance,the discharged/ regenerative capacity distributions,rather than the instantaneous discharge current,are used as the input parameters.Also,since the temperature sensitivity of the Li-ion battery is significant,the temperature distributions are newly adopted as the input parameters.Notice that the more the divisions of the distributions,the higher is the estimation accuracy but the slower is the con-vergence.Based on trial and error,the optimal number of input parameters for the BRC esti-mation of the Li-ion battery is seven,namely four divisions for the discharged capacity,one for the regenerative capacity and two for the temperature.The corresponding input parameters X 1ðt Þto X 7ðt Þare given by:•X 1ðt Þ––discharged capacity for I l 16I d ðt Þ<I u1,•X 2ðt Þ––discharged capacity for I l 26I d ðt Þ<I u2,•X 3ðt Þ––discharged capacity for I l 36I d ðt Þ<I u 3,•X 4ðt Þ––discharged capacity for I l 46I d ðt Þ<I u 4,•X 5ðt Þ––regenerative capacity,•X 6ðt Þ––temperature for T P 20°C,•X 7ðt Þ––temperature for T <20°C,where I d ðt Þis the instantaneous discharge current within four current ranges,namely I l i and I u i (i ¼1,2,3,4)as listed in Table 2,whereas T is the temperature within two temperature ranges,namely above 20°C or not.Fig.5shows the Li-ion model for SOAC estimation using the ANFIS.The seven input pa-rameters,including four discharged capacity distributions,one regenerative capacity and two temperature distributions,are fuzzified into linguistic variables (low and high)as labeled with X k i ðt Þwhere i ¼1;...;7and k ¼1;2.The output of the model is the desired SOAC,which lies between zero and unity.Therefore,the whole process can be viewed as a nonlinear mapping from the input space,consisting of the discharged/regenerative capacity distributions and the temper-ature distributions,to the output space,namely the SOAC,which represents the BRC of the Li-ion battery.K.T.Chau et al./Energy Conversion and Management 45(2004)1681–169216874.Data collectionA commercially available Li-ion battery is used for experimentation.This battery has the nominal voltage of 3.6V and the nominal capacity of 15A h at the discharge rate of 0.2C .This nominal capacity is just a reference value,since the actual discharge rate in an EV is usually much larger than 0.2C .As mentioned before,the BAC is defined as the quantity of electricity at the fully charged state that can be delivered at a certain discharge current profile and temperature till the specified cutoffvoltage of 3V is reached.As shown in Fig.6,the system setup for experimentation is the Digatron Battery Testing System BTS-600,which consists of four main parts:•A programmable charger in which various charging algorithms,including constant voltage charging,constant current charging,multistage variable voltage variable current charging and pulse charging,can be performed.Table 2Lower and upper limits of discharge current for discharged capacity distributionsi ¼1i ¼2i ¼3i ¼4I l i 0.4C 0.27C 0.13C 0I ui 0.7C0.4C0.27C0.13C1688K.T.Chau et al./Energy Conversion and Management 45(2004)1681–1692K.T.Chau et al./Energy Conversion and Management45(2004)1681–16921689•A programmable electronic load in which various discharging algorithms,including constant current discharge,varying current discharge and EV discharge current profiles,can be per-formed.•A temperature controlled chamber in which the battery can be tested under any predefined air temperature ranging from)20to50°C.•A computer control and data acquisition system in which control signals are generated to feed the programmable charger and the programmable electronic load,while all necessary experi-mental data are automatically acquired.A series of experiments need to be conducted for data collection.These experiments are based on the realistic EV discharge current profiles,namely the ECE,FUDS,FHDS and JM10.15, under different temperatures,namely10,20and30°C.The experimental data are automatically recorded and tabulated,with each row of data containing the terminal voltage,the discharge current,the temperature,the discharged/regenerative capacity and the SOAC.5.Model training and validationThe data collected from the aforementioned experiments are separately used to train and validate the proposed SOAC model.The whole data set is composed of12datafiles obtained from12tests.It is then divided into two separate data sets,the training data set and the validation data set.The training data set is used to train the SOAC model,whereas the validation data set is used to validate the accuracy and effectiveness of the trained model for SOAC estimation.To assess the accuracy of the proposed model,the average percentage error(APE)of the SOAC is adopted for evaluation.This APE is defined as the average of the percentage errors between the actual SOACs obtained from experiments and the estimated SOACs obtained from the trained model.The APEs for both the training data set and the validation data set are calculated. Firstly,based on the training data set,the relationship between the estimated SOAC and the actual SOAC is shown in Fig.7.As expected,the agreement is excellent,and the corresponding APE is only of0.16%.1690K.T.Chau et al./Energy Conversion and Management45(2004)1681–1692Secondly,based on the validation data set,the accuracy of the trained model is assessed.Fig.8 shows the relationships between the estimated SOAC and the actual SOAC under the ECE,FUDS,FHDS and JM10.15operations at the temperature of 20°C.These comparisons confirm that the proposed model provides a highly accurate estimation of the SOAC for the different operating profiles of EVs.Fig.9summarizes that the APEs of all 12validation data sets are within 1%,which is significantly better than the 5.5%in Ref.[10]or the 2.7%in Ref.[9].6.Model realizationThe proposed SOAC model can be easily realized as a practical BRC indicator by using a low cost microcontroller.Fig.10shows the corresponding diagram of realization.The major hard-ware of this indicator is a microcontroller,such as the Intel 80C196,which incorporates all necessary functions including A/D conversion of a single chip microcomputer.The software of this indicator mainly consists of three components,namely the classification unit,the integration unit and the ANFIS unit.The classification unit is to categorize the discharge current into the four predefined current ranges,to identify the regenerative current and to classify the temperature into the predefined two temperature ranges.The integration unit is to integrate the discharged/re-generative currents and,hence,to produce the discharged/regenerative capacity distributions.The ANFIS unit is finally to make an estimation of the SOAC by using the proposed model.Evi-dently,the assembly language embedded in the microcontroller can realize all thesefunctions.K.T.Chau et al./Energy Conversion and Management 45(2004)1681–169216911692K.T.Chau et al./Energy Conversion and Management45(2004)1681–16927.ConclusionsThis paper has presented a new SOAC model to estimate accurately the BRC of the Li-ion battery for modern EVs.The key to this model is to adopt newly both the discharged/regenerative capacity distributions and the temperature distributions as the input parameters and the SOAC as the output parameter.Moreover,realistic EV discharge current profiles are newly used to formulate the proposed model.By comparing the estimated SOACs obtained from the model and the actual SOACs obtained from experiments,the proposed model is validated to offer a high accuracy.AcknowledgementsThe work was supported by the Committee for Research and Conference Grants of the Uni-versity of Hong Kong.References[1]Chan CC,Chau KT.Modern electric vehicle technology.Oxford:Oxford University Press;2001.[2]Chau KT,Wong YS,Chan CC.An overview of energy sources for electric vehicles.Energy Convers Manage1999;40(10):1021–39.[3]Chau KT,Wong YS.Hybridization of energy sources in electric vehicles.Energy Convers Manage2001;42(9):1059–69.[4]Karden E,Mauracher P,Schoepe F.Electrochemical modeling of lead-acid batteries under operating conditions ofelectric vehicles.J Power Sources1997;64(1):175–80.[5]Shen WX,Chan CC,Lo EWC,Chau KT.A new battery available capacity indicator for electric vehicles usingneural network.Energy Convers Manage2002;43(6):817–26.[6]Bundy K,Karlsson M,Lindbergh G,Lundqvist A.An electrochemical impedance spectroscopy method forprediction of state of charge of a nickel-metal hydride battery at open circuit and during discharge.J Power Sources 1998;72(2):118–25.[7]Aylor JH,Thieme A,Johnson BW.A battery state of charge indicator for electric wheelchairs.IEEE Trans IndustElectron1992;39(5):398–409.[8]Peng JC,Chen YB,Eberhart R,Lee HH.Adaptive battery state of charge estimation using neural network.In:Proceedings of International Electric Vehicle Symposium,2000,CD-ROM.[9]Chau KT,Wu KC,Chan CC,Shen WX.A new battery capacity indicator for nickel-metal hydride batterypowered electric vehicles using adaptive neuro-fuzzy inference system.Energy Convers Manage2003;44:2059–71.[10]Lee YS,Wang J,Kuo TY.Lithium-ion battery model and fuzzy neural approach for estimating battery state-of-charge.In:Proceedings of International Electric Vehicle Symposium,2002,CD-ROM.[11]Jang JSR,Sun CT,Mizutani E.Neuro-fuzzy and soft computing:a computational approach to learning andmachine intelligence.NJ:Prentice-Hall;1997.[12]Jang JSR.ANFIS:Adaptive-network-based fuzzy inference system.IEEE Trans Syst,Man Cybernet1993;23(3):665–85.。

相关文档
最新文档