几何中的计数问题(一)

合集下载

小学数学 奥数讲义计数专题:几何计数

小学数学 奥数讲义计数专题:几何计数

华杯赛计数专题:几何计数基础知识:1.几何计数,从类型上看,可分为数线段、数三角形、数正方形、数长方形、数平行四边形等几类.2.几何计数的基本方法和思想:分类枚举与对应.3.分类的标准:按大小,按包含的图形等.4.常见对应方法:线段对应到端点,三角形对应到端点或边,长方形对应到对边等.5.特殊方法:去点法与去线法,本质是分类.方法铺垫:1)加法原理,乘法原理;2)容斥原理;3)排列数,组合数;4)对应法.例题:例1.如图,数一数图中有多少条线段?【答案】28(条)【解答】分类:1个单位长的线段有7条;2个单位长的线段有6条;3个单位长的线段有5条;……7个单位长的线段有1条;故共有线段7+6+5+……+1=28(条).例2.数一数,图中共有多少个三角形?【答案】13(个)【解答】分类:含有1块的三角形有4个;含有2块的三角形有5个;含有3块的三角形有2个;含有4块的三角形有1个;含有6块的三角形有1个;故共有三角形4+5+2+1+1=13(个).例3.如图,数一数,图中有多少个三角形?【答案】48(个).【解答】分类:包含1个小三角形的三角形有1+3+5+7+9=25个;包含4个小三角形的三角形有1+2+3+4+3=13个;包含9个小三角形的三角形有1+2+3=6个包含16个小三角形的三角形有1+2=3个;包含25个小三角形的三角形有1个;故共有三角形25+13+6+3+1=48(个).例4.数一数,图中共有多少个三角形?【答案】35(个)【解答】分类:含有1块的三角形有10个;含有2块的三角形有10个;含有3块的三角形有10个;含有5块的三角形有5个;故共有三角形10+10+10+5=35(个).例5.图中有多少个正方形?【答案】30(个)【解答】包含1个正方形的正方形有4×4=16个;包含4个正方形的正方形有3×3=9个;包含9个正方形的正方形有2×2=4个;包含16个正方形的正方形有1个;故共有三角形16+9+4+1=30(个).例6.如图,数一数图中一共有多少条线段?多少个矩形?【答案】70(条); 60个【解答】线段:横线,共有4×条;竖线:5×,故共有线段40+30=70条;矩形:竖线中选出两条,共有条,横线中选出两条,共有,根据乘法原理,共有矩形10矩形原60个.例7.如图,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含红点的长方形有多少个?【答案】450(个);144个【解答】(1)竖线中选出两条,共有条,横线中选出两条,共有,根据乘法原理,共有矩形45×10=450个.(2)竖线中选出两条,共有6竖线中选出条,横线中选出两条,共有2×3=6条,根据乘法原理,共有矩形24×6=144个.例8.如图,数一数,图中共有多少个长方形?【答案】135个【解答】横向看:共有矩形个,竖向看:共有矩形个,这样重复计算了个,所以共有矩形90+63-18=135个.例9.如图,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?【答案】200(个)【解答】共有三角形个.例10.下图由相同的正方形和相同的等腰直角三角形构成, 则正方形的个数为多少?(17届华杯赛笔试初赛小高组第6题)【答案】83(个)【解答】包含1小个正方形的正方形有2+4+6+8+8+6+4+2=40个;包含4小个正方形的正方形有1+3+5+7+5+3+1=25个;包含9小个正方形的正方形有2+4+4+2=12个;包含16小个正方形的正方形有1+3+1=5个;共有正方形40+25+12+5+1=83个.例11. 求图中一共有多少条线段?求图中一共有多少个矩形?【答案】70条线段,60个矩形【解答】每一条线段由同一行或同一列的两个顶点确定,因此共有条线段.每个矩形由长和宽上的各一条线段对应形成,如下图:因此共有个矩形.例12. 数一数,图中有多少个三角形?【答案】78个【解答】只包含1个基本图形的有36个(朝上的21个,朝下的15个);包含4个基本图形的有21个(朝上的15个,朝下的6个);包含9个基本图形的有11个(朝上的10个,朝下的1个);包含16个基本图形的有6个;包含25个基本图形的有3个;包含36个基本图形的有1个.所以共有36+21+11+6+3+1=78个.例13. 下图是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形,那么:1)从中可以数出多少个矩形?2)从中可以数出多少个正方形?3)从中可以数出包含黑点的矩形有多少个?【答案】1)450个;2)80个;3)144个【解答】1)图中共有个矩形;2)包含1个基本图形的正方形共有4×9=36个;包含4个基本图形的正方形共有3×8=24个;包含9个基本图形的正方形共有2×7=14个;包含16个基本图形的正方形共有1×6=6个.则共有36+24+14+6=80个.3)黑点左下方的顶点共有18个,黑点右上方的顶点共有8个,所以包含黑点的矩形共有18×8=144个.例14. 图中一共包含多少个矩形?【答案】135个【解答】第(1)部分和第(3)部分合并起来是一个3×5的大矩形(如下图所示),其中一共包含矩形个;第(2)部分和第(3)部分合并起来是一个6×2的大矩形(如下图所示),其中一共包含矩形个;第(3)部分中的矩形被重复计算了,其中共有矩形个.所以图中一共包含矩形90+63-18=135个.例15. 图中的木板上钉着12枚钉子,排成三行四列的长方阵. 那么用橡皮筋一共可以套出多少个不同的三角形?【答案】200个【解答】从12枚钉子中选择3枚钉子的组合总数是.而图中共有3条直线上各有4个点(如下图实线所示),另外还有8条直线上各有3个点(如下图虚线所示).因此用橡皮筋一共可以套出个不同的三角形.例16. 求图中所有矩形的面积和以及周长的总和.【答案】周长总和:1364;面积总和:1800【解答】矩形的10种长的总长是3++4++2++6++7++6++8++9++12++15=72。

七年级数学奥数《几何图形的计数问题》教学课件

七年级数学奥数《几何图形的计数问题》教学课件
• 4×8+5×16+6×4+10×4+8×4+11×4+16×1
=268(个).
• 例6、(1)、图1-70(a)中有多少个三角形? • (2)、图1-70(b)中又有多少个三角形?
• 解: • (1) 图1-70(a)中有6条直线.一般来说,每3条直
线能围成一个三角形,但是这3条直线如果相交 于同一点,那么,它们就不能围成三角形了. • 从6条直线中选3条, • 有 6 5 4 20 种选法(见说明),
有三个最小的尖向上的三角形(左、右、下各一个), • 所以最小的三角形不是21个而是24个. • 于是尖向上的三角形共1+3+6+10+15+24=59(个). • 图中共有三角形59×2=118(个).
• 例5、图1-69中有多少个等腰直角三角形?
• 解:图1-69中有5×5+4×4=41个点.在每点标 一个数,它等于以这点为直角顶点的等腰直角三 角形的个数.因此,共有等腰直角三角形
• (1)、若点Pn在某个小三角形的内部,如图1-73(a),则原 小三角形的三个顶点连同Pn将这个小三角形一分为三, 即增加了两个小三角形;
• (2)、若点Pn在某两个小三角形公共边上,如图1-73(b).
• 则这两个小三角形的顶点连同点Pn将这两个小三角形分 别一分为二,即也增加了两个小三角形.
• 4个圆最多将平面分成8+6=14个部分.
• 5个圆最多将平面分成14+8=22个部分.
• 所以,5个圆最多将平面分成22个部分.
• 说明:用上面类似的方法,我们可 以计算出n个圆最多分平面的部分 数为:
• 2+1×2+2×2+…+(n-1)×2

几何计数,数线段,直接利用公式

几何计数,数线段,直接利用公式

几何计数,数线段,直接利用公式几何计数是指利用几何方法解决计数问题的数学分支。

其中一种常见的几何计数问题是计算给定平面上点集中线段的数量。

在这篇文章中,我们将介绍如何利用公式来解决数线段的问题,具体的解题方法如下。

首先,我们考虑如何求解平面上的水平线段。

设给定平面上有n个点,我们需要求解由这n个点确定的水平线段的数量。

我们先来看一种简单的情况,假设给定的n个点中没有两个点具有相同的y坐标。

在这种情况下,由任意两个点所确定的线段都是不同的。

因此,我们只需要计算C(n, 2) = n(n-1)/2即可得到线段的数量,其中C(n, 2)表示从n个点中选择2个点的组合数。

然而,当给定的n个点中存在具有相同y坐标的点时,我们需要单独考虑这些点所确定的线段数量。

假设存在m个具有相同y坐标的点,那么我们首先可以求得这m个点所确定的线段的数量为C(m, 2) = m(m-1)/2。

然后,我们还需要将这些线段与其他n-m个点所确定的线段进行组合,因此,这种情况下线段的总数量为C(n, 2) + m(m-1)/2。

接下来,我们考虑如何求解平面上的任意方向的线段的数量。

事实上,我们可以将任意方向的线段分解为水平线段和竖直线段的组合。

假设给定的n个点中没有两个点具有相同的x坐标,那么我们可以通过先求解水平线段的数目,再求解竖直线段的数目,最后将这两个数目相乘得到线段的总数量。

水平线段的数目可以由之前的计算方法得到,而竖直线段的数目的计算方法与水平线段相同。

然而,当给定的n个点中存在具有相同x坐标的点时,我们需要单独考虑这些点所确定的线段数量。

我们可以将具有相同x 坐标的点与其他点分别进行组合,计算得到水平线段和竖直线段的数量,然后将它们相乘得到线段的总数量。

需要注意的是,在计算过程中,我们需要保证m不为0,否则计算C(m, 2)会出现问题。

此外,还要注意考虑到水平线段和竖直线段交叉的情况,需要进行适当的调整。

综上所述,通过以上公式,我们可以解决给定平面上点集中线段数量的计算问题。

小学奥林匹克数学 竞赛数学 五年级 第6讲-几何计数

小学奥林匹克数学  竞赛数学 五年级 第6讲-几何计数

第6讲几何计数【例1】导引拓展篇第1题如图,数一数,图中有多少个三角形?包含1个小三角形的有25个包含4个小三角形的有13个包含9个小三角形的有6个包含16个小三角形的有3个包含25个小三角形的有1个++++=所以共有个251363148按照顺序数出图形个数【例2】导引拓展篇第2题数一数,两个图形中分别有多少个三角形?包含1块的三角形有5个;包含2块的三角形有4个;包含3块的三角形有1个;包含4块的三角形有1个;没有5块和6块的三角形;包含7块的大三角形1个;因此所有三角形一共有++++=5411112【例2】导引拓展篇第2题数一数,两个图形中分别有多少个三角形? 共有12个三角形 增加10个三角形 增加10个三角形因此原图中共有个三角形. B C BA DEF12101032++=【例3】导引拓展篇第3题数一数下面的三个图形中分别有多少个三角形.整个五边形被分成了11块由1块构成的三角形有10个;由2块构成的三角形是10个;由3块构成的三角形共10个;由5块构成的三角形有5个.共有10+10+10+5=35个三角形。

【例3】导引拓展篇第3题数一数下面的三个图形中分别有多少个三角形.加上虚线就加上6个三角形变成35个三角形原图共有35-6=29个三角形【例3】导引拓展篇第3题AB C增加了一条线段AC以AB为边增加三角形有4个,以BC为边增加三角形有2个,以AC为边增加三角形有6个,共增加12个共有35+12=47个三角形数一数下面的三个图形中分别有多少个三角形.【例4】导引拓展篇第4题数一数,图中有多少个三角形?两个部分中各有35个三角形第一种有10个第二种有5个原图中共有35×2+10+5=85个三角形【例5】导引拓展篇第5题数一数图中共有多少个长方形?(正方形是特殊长方形)由1块组成的长方形共有7个由2块组成的长方形共有4个由3块组成的长方形共有2个由4块组成的长方形有1个由5块组成的长方形有1个由6块组成的长方形有1个由7块组成的长方形有1个图中共有长方形7+4+2+1+1+1+1=17个【例6】导引拓展篇第5题如图所示的一个大菱形,那么图中共能数出多少个菱形?设最小的菱形边长为1边长为1的菱形共有4×4=16个边长为2的菱形共有3×3=9个边长为3的菱形共有2×2=4个边长为4的菱形有1×1=1个菱形共有16+9+4+1=30个2212+(⋅⋅⋅⋅⋅⋅)1-nn++【例7】导引拓展篇第7题这是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)包含黑点的长方形有多少个?(1)从5条横线中取2条横线共有种方法从10条竖线中取2条竖线共有中方法图中共有长方形 22510450C C ⨯=(2)黑点上面有2条横线,下面有3条横线所以有2×3=6种取法左边有6条竖线,右边有4条竖线 所以又4×6=24种取法 共有6×24=144个含黑点的长方形 21n 21m C C ++⨯m ×n 个网格中有 个长方形【例8】导引拓展篇第8题数一数,图中共有多少个长方形?左边阴影一共有长方形个 右方阴影一共有长方形个 被重复计算有个 图中一共包含长方形90+63-18=135个224690C C ⨯=227363C C ⨯=224318C C ⨯=【例9】导引拓展篇第9题图中共有多少个平行四边形?尖朝右、尖朝左和尖朝上三种最小的平行四边形有6个两个小平行四边形拼成的有6个三个小平行四边形拼成的有2个四个小平行四边形拼成的有1个共15个有15×3=45个平行四边形【例10】导引拓展篇第10题18个大小相同的小正三角形拼成了一个平行四边形.数一数,图中共有多少个梯形?左上右下的斜线、左下右上的斜线和竖线三种左上右下:6×3+4=22个梯形左下右上: 6×3+4=22个梯形竖线梯形:5×2+2=12个所以共有22+22+12=56个梯形【例11】导引拓展篇第11题木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?三角形由不在同一直线的三点组的 从12个点中任意选择3个点有 共线三点组共有12+8=20个 所以共有220-20=200个三角形220C 312【例12】导引拓展篇第12题方格纸上放了20枚棋子,以棋子为顶点,可以连出多少正方形?最小方格有9个小正方形小正方形个数有4个小正方形个数有2个小正方形个数有4个小正方形个数有2个一共有9+4+2+4+2=21个【例13】导引拓展篇第13题图中,共有多少个不同的曲边形?中间是1个五角星,边上是5个小块1个小块:5+5=10个曲边型2个小块: 3个小块: 4个小块: 5个小块:1个共有10+10+10+5+1=36个曲边型10C 25=10C 35=5C 45=【例14】导引拓展篇第14题一个2×3的网格中,每个小正方形的面积都是1.那么以格点为顶点,可以连成多少个面积为1的三角形?底是2高是1、底是1高是2底是2高是1: 底是1高是2: 底是1高是2又是底是2高是1:直角三角形重复 重复直角三角形为1×2直角三角形1×2的长方形中由4个这样的直角三角形 重复共有4×7=28种面积为1的三角形共有:50+48-28=70种4×2 +4×2×2 +4×2 +9×2 =50种 3×4×2 +2×3×4 =48种本讲知识点汇总一、按照顺序数出图形个数二、m ×n 的方格中长方形的个数为 三、正方形以及菱形的个数为 四、可以通过对称或者图形相似简化计数过程21n 21m C C ++⨯22211-n n ++)+(⋅⋅⋅⋅⋅⋅下节课见!。

几何图形的计数问题

几何图形的计数问题

几何图形的计数问题一、数直线或线段规律1、如图,过两点可画出多少条直线?过不共线的三点最多可以作出多少条直线?过无三点共线的四个点最多可作出多少条直线?…,依次类推,经过平面上的n个点,(无三点共线)最多可作出多少条直线?(1)1条(2)3条(3)6条经过平面上的n个点,(无三点共线)最多可作出12n(n-1)条直线。

2、分别数出下列各图中各有几条线段?(1)1条(2)3条(3)6条(4)10条若一条线段上有n个点,则可以一共可以数出12n(n-1)条线段。

二、数角规律3、分别数出下列各图中各有几个角?(1)1个(2)3个(3)6个(4)10个若由一个点引出n条射线,则一共可数出2n(n-1)个角。

三、数三角形规律4、分别数出下列各图中各有几个三角形?(1)(2)(3)(4)若由一个顶点引出n条射线,则一共可数出2n(n-1)个三角形。

拓展:分别数出下列各图中各有几个三角形?(1)12个提示:分两部分,分别计算(2)21个提示:分4部分,(3)15个提示:分3部分,四、数长方形、正方形规律5、数出下图中有几个长方形?(1)3个(2)9个(3)18个(4)30个6、数出下图中有几个正方形?(1)8个(2)20个(3)40个数长方形的公式:长边上的线段条数×宽边上的线段条数数正方形的公式:一个被划分成m×n的小正方形的长方形中共可以数出的正方形的个数是:(其中m≤n)m×n+(m-1)×(n-1)+(m-2)×(n-2)+…+1×[n-(m-1)]图中共有几条线段?25图中共有几个角?21图中共有几个三角形?24图中共有几个长方形?几个正方形?225,55练习解答:图中共有几条线段?分两部分:①有6个点,根据规律:(6-1)×6÷2=15(条)①有5个点,根据规律:(5-1)×5÷2=10(条)所以一共15+10=25(条)图中共有几个角?有7条射线,根据规律:(7-1)×7÷2=21(个)图中共有几个三角形?分为两部分:①这两部分一样,所以只数一个就行了,底边有5个点,根据规律:(5-1)×5÷2=10(个)①很明显,4个三角形所以一共10×2+4=24(个)图中共有几个长方形?几个正方形?长方形:长边和宽边都有6个点,根据规律算出线段条数:(6-1)×6÷2=15(段)根据数长方形规律:15×15=225(个)正方形:分5部分①以1个小正方形为单位数,长边和宽边各能数5个,共5×5=25(个)②以4个小正方形为单位数,长边和宽边各能数4个,共4×4=16(个)③以9个小正方形为单位数,长边和宽边各能数3个,共3×3=9(个)④以16个小正方形为单位数,长边和宽边各能数2个,共2×2=4(个)⑤以25个小正方形为单位数,长边和宽边各能数1个,共1×1=1(个)所以总共25+16+9+4+1=55(个)正方形。

高考中“立体几何”中的计数问题求解方法

高考中“立体几何”中的计数问题求解方法

高考中“立体几何”中的计数问题求解方法在近几年的高考试题中频繁出现以“立几”中的点、线、面的位置关系为背景的计数问题,这类问题题型新颖、解法灵活、多个知识点交织在一起,综合性强,能力要求高,有一定的难度,它不仅考查相关的基础知识,而且注重对数学思想方法和数学能力的考查。

现结合具体例子谈谈这种问题的求解策略。

1、直接求解例1:从平面上取6个点,从平面上取4个点,这10个点最多可以确定多少个三棱锥?解: 利用三棱锥的形成将问题分成平面上有1个点、2个点、3个点三类直接求解共有+ + 个三棱锥例2: 在四棱锥P-ABCD中,顶点为P,从其它的顶点和各棱的中点中取3个,使它们和点P在同一平面上,不同的取法有A.40B. 48C. 56D. 62种解: 满足题设的取法可以分成三类(1)在四棱锥的每一个侧面上除P点外取三点有种不同取法;(2)在两个对角面上除点P外任取3点,共有种不同取法;(3)过点P的每一条棱上的3点和与这条棱异面的棱的中点也共面,共有种不同取法,故共有40+8+8=56种评注:这类问题应根据立体图形的几何特点,选取恰当的分类标准,做到分类不重复、不遗漏。

2、结合“立几”概念求解例3: 空间10个点无三点共线,其中有6个点共面,此外没有任何四个点共面,则这些点可以组成多少个四棱锥?解析:3、结合“立几”图形求解例4.用正五棱柱的10个顶点中的5个顶点作四棱锥的5个顶点,共可得多少个四棱锥?解:分类:以棱柱的底面为棱锥的底面;以棱柱的侧面为棱锥的底面以棱柱的对角面为棱锥的底面以图中(梯形)为棱锥的底面共+ + + =170个4、构造几何模型求解例5.(05年湖北)以平面六面体的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率为A. B. C.D. 选A在知识的网络交汇点初设计命题是近几年高考命题改革强调的重要观念之一,在复习备考中,要把握好知识间的纵横联系和综合,使所学知识真正融会贯通,运用自如,形成有序的网络化知识体系。

几何中的计数问题公式

几何中的计数问题公式

几何中的计数问题公式几何中计数问题是许多研究者和学生们持续关注的一个重要领域。

这种类型的问题不仅困难,而且提供了令人兴奋的机会来解决一些基本的几何问题。

几何中计数问题的解决方法往往会涉及到一些公式,这些公式可以帮助我们解决特定的几何问题。

其中一种最经典的公式就是欧几里得的算数公式。

欧几里得的算数公式非常简单而实用,是一个通项公式,可以应用于任何正整数的数学问题。

该公式通过涉及到四个项目“n+1”,“n-1”,“n+2”和“n-2”,可以表达一个数字连续增加或减少的量。

公式如下:F(n)=F(n-1) + [2F(n-2)-F(n+1)]欧几里得的算数公式可以被用来解决几何中的计数问题。

例如,在一个二维平面上,欧几里得的算数公式可以用来计算边缘图形的内角总角度的总和。

另外,欧几里得的算数公式还可以用来解决几何中复杂情况的计数问题。

比如,假如存在一个多维地理位置的空间,欧几里得的算数公式可以用来计算该空间位置上任何点到其他离散点的距离平均值。

此外,几何中的计数问题还可以用另一个通项公式来解决,这就是帕累托的领数公式。

该公式用于解决具有两个参数的几何计数问题,其中,一个参数表示位置,另一个参数表示指数。

公式如下:F(k,n)= 2^(k-1)*(n-1)!帕累托的领数公式可以用来解决几何中的多项式计数问题。

例如,可以用它来计算一个多面体所有面的总数,或者找到一个多面体的体积。

此外,几何中的计数问题也可以用另一种非常常见的公式来解决,即伽马函数。

伽马函数可以用来表示一个几何形状内任意两点之间的距离。

其公式如下:F(n,m)= 2^(-n/2)*sqrt(n)*sqrt(m)伽马函数可以用来计算一个几何体内部任何两点之间的距离,它还可以用来计算该几何体的表面积。

因此,可以看出,几何中的计数问题是可以通过使用不同的公式来解决的。

欧几里得的算数公式、帕累托的领数公式和伽马函数都可以为我们提供帮助,在解决一些几何中的计数问题时可以使用它们。

小学奥数经典专题点拨:几何图形计数

小学奥数经典专题点拨:几何图形计数

几何图形的计数【点与线的计数】例1如图5.45,每相邻的三个圆点组成一个小三角形,问:图中是这样的小三解形个数多还是圆点的个数多?(全国第二届“华杯赛”决赛试题)讲析:可用“分组对应法”来计数。

将每一排三角形个数与它的下行线进行对应比较。

第一排三角形有1个,其下行线有2点;第二排三角形有3个,其下行线有3点;第三排三角形有5个,其下行线有4点;以后每排三角形个数都比它的下行线上的点多。

所以是小三角形个数多。

例2直线m上有4个点,直线n上有5个点。

以这些点为顶点可以组成多少个三角形?(如图5.46)(哈尔滨市第十一届小学数学竞赛试题)讲析:本题只要数出各直线上有多少条线段,问题就好解决了。

直线n 上有5个点,这5点共可以组成4+3+3++2+1+1==10(条)线段。

以这些线段分别为底边,m 上的点为顶点,共可以组成4×1×100=40(个)三角形。

同理,m 上4个点可以组成6条线段。

以它们为底边,以n 上的点为顶点可以组成6×5×5==30(个)三角形。

所以,一共可以组成70个三角形。

【长方形与三角形的计数】例1图5.47中的正方形被分成9个相同的小正方形,个相同的小正方形,它们一共有它们一共有16个顶点,个顶点,以其中不在一条直线上的以其中不在一条直线上的3点为顶点,点为顶点,可以构成三角形。

可以构成三角形。

可以构成三角形。

在这些在这些三角形中,与阴影三角形有同样大小面积的有多少个?(全国第三届“华杯赛”复赛试题)为3的三角形,或者高为2,底为3的三角形,都符合要求。

①底边长为2,高为3的三角形有2×4×4×4×4×4==32(个); ②高为2,底边长为3的三角形有8×2×2==16(个)。

所以,包括图中阴影部分三角形共有48个。

例2 图5.48中共有_中共有_______个三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师寄语:有梦才会有期望,有期望才会有拼搏,守住自己的梦,勇敢地走下去,你就会比别人提前到达成功的彼岸。

几何中的计数问题(一)
一、考点、热点回顾
几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等.通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,逐步学会通过观察、思考探寻事物规律的能力.
二、典型例题
一、数线段
例1 数一数下列图形中各有多少条线段.
分析要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数.这样才不至于杂乱无章、毫无头绪.我们可以按照两种顺序或两种规律去数.
第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC一条,所以上图(1)中共有线段2+1=3条.同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点的线段有CD一条.所以上页图(2)中共有线段为3+2+1=6条.
第二种:按照基本线段多少的顺序去数.所谓基本线段是指一条大线段中若有n个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段.如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD分成AB、BC、CD三条基本线段,那么线段AD总共有多少条线段?首先有三条基本线段,其次是包含有二条基本线段的是:AC、BD 二条,然后是包含有三条基本线段的是AD这样一条.所以线段AD上总共有线段3+2+1=6
条。

小结:规律——线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.也就是基本线段的条数.例如右图中线段AF上所有点数(包括两个端点A、F)共有6个,所以从1开始的连续自然数的和中最大的加数是6—1=5,或者线段AF上的分点有4个(B、C、D、E).所以从1开始的连续自然数的和中最大的加数是4+1=5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5.所以线段AF上总共有线段的条数是5+4+3+2+1=15(条).
二、数角
例2数出右图中总共有多少个角.
分析在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:
4+3+2+1=10(个).
解:4+3+2+1=10(个).
小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.
例3 数一数右图中总共有多少个角?
解:因为∠AOB内角分线OC1、OC2…OC9共有9条,即9+1=10个基本角.
所以总共有角:10+9+8+…+4+3+2+1=55(个).
三、数三角形
例4 如右图中,各个图形内各有多少个三角形?
分析可以采用类似
例1数线段的两种方法来数,如图(2):
第一种方法:先数以AB为一条边的三角形共有:
△ABD、△ABE、△ABF、△ABC四个三角形.
再数以AD为一条边的三角形共有:△ADE、△ADF、△ADC三个三角形.
以AE为一条边的三角形共有:△AEF、△AEC二个三角形.
最后以AF为一条边的三角形共有△AFC一个三角形.
所以三角形的个数总共有4+3+2+1=10.
第二种方法:先数图中小三角形共有:△ABD、△ADE、△AEF、△AFC四个三角形.
再数由两个小三角形组合在一起的三角形共有:△ABE、△ADF、△AEC三个三角形,以三个小三角形组合在一起的三角形共有:△ABF、△ADC二个三角形,
最后数以四个小三角形组合在一起的只有△ABC一个.
所以图中三角形的个数总共有:4+3+2+1=10(个).
解:①3+2+1=6(个)② 4+3+2+1=10(个).
答:图(1)及图(2)中各有三角形分别是6个和10个.
小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的条数.
例5 如右图中,数一数共有多少条线段?共有多少个三角形?
分析在数的过程中应充分利用上几例总结的规律,明确数什么?
怎么数?这样两个问题.数:就是要数出图中基本线段(基本三角形)的条数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个自然数的和.
①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本
线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).
②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4
个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个).
解:①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)
②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个).
例6 如右图中,共有多少个角?
分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决.
∠1、∠2、∠3、∠4我们可视为4个基本角,由2个基本角组成的有:∠1与∠2、∠2与∠3、∠3与∠4、∠4与∠1,共4个角.由3个基本角组成的角有:∠1、∠2与∠3;∠2、∠3与∠4;∠3、∠4与∠1;∠4、∠1与∠2,共4个角,由4个基本角组成的角只有一个.
所以图中总共有角是:4×3+1=13(个).
解:所以图中共有角是:4×3+1=13(个).
小结:由本题可以推出一般情况:若周角中含有n个基本角,那么它上面角的总数是n(n-1)+1.
三、课堂练习
1、数出下面的图形中各有多少条线段。

2、数出下面的图形中各有几个角。

3、数出下面的图形中各有几个三个角形。

四、课后练习
1.数一数下图中,各有多少条线段?
2.数一数下图中各有多少角?
3.数一数下图中,各有多少条线段?
4.数一数下图中,各有多少条线段,各有多少个三角形?。

相关文档
最新文档