数列的极限知识点 方法技巧 例题附答案和作业题
35.数列极限【学生版】(正式版)(含答案)

数列极限【课前预习】 一、知识梳理 1.数列极限的概念在n 无限增大的变化过程中, 如果无穷数列{}n a 中的n a 无限接近于一个常数A , 那么A 叫做数列{}n a 的极限. 记作.2.几个常用的极限(1)lim n C →∞= ; (2)1(0),lim n n αα→∞>= ; (3)lim n n q →∞=3.极限的运算法则若数列{}n a ,{}n b 的极限分别存在, 设lim n n a A →∞=, lim n n b B →∞=, 则:(1)lim()n n n a b →∞±=; (2)lim()n n n a b →∞⋅=;(3)limnn na b →∞=运用极限的运算法则时, 需要注意以下两点:(1)存在性: 即参与运算的数列的极限必须都存在; (2)有限性: 即参与运算的数列必须是有限多个. 4.无穷等比数列的各项和设无穷等比数列{}n a 的的公比为q ,前n 项和为n S ,若0||1q <<,当n →∞时n S 的极限,叫做无穷等比数列的各项和, 并用符号S 表示, 即:S = .上述概念中需要注意:(1)对于无穷等比数列而言, 仅当0||1q <<时, 才可以定义其各项和; (2)无穷等比数列的各项和本质上是该等比数列前n 项和的极限.二、基础练习1.数列{}n a 中,21,11000,,1001,2n n n a n n n ⎧≤≤⎪⎪=⎨⎪≥⎪-⎩则数列{}n a 的极限( )A.等于0B.等于1C.等于0或1D.不存在2.试举出符合下列条件的数列{},{}n n a b 的例子.(1)对于N n *∈, 有1n a >, 且lim 1n n a →∞=:______________________;(2)数列{}n a 的极限不存在, 但2lim 1n n a →∞=:______________________;(3)对于N n *∈, 有1n n b a <<, 且lim lim 1n n n n b a →∞→∞==:_____________________.3.(1)求值: 23321lim 41n n n n →∞-+=-__________.(2)计算23lim(2)n nn n →∞+++=+ .4.(1)求值: 222122008lim()n n n n →∞+++=______.(2)求值: 1111242lim 1111393n n n →∞++++=++++______. 5.等比数列{}n a 的首项11a =-,前n 项和为n S ,若6378S S =,则lim n n S →∞= .6.若2lim 223n an bn cn →∞++=--,则a b += .7.如果1lim()02nn a a →∞-=,那么实数a 的取值范围是( ) A .13a >或1a <- B.13a > C.13a >或0a < D.13a ≥或0a <8.等比数列{}n a 中, 11a >, 前n 项和为n S , 并满足11lim n n S a →∞=, 求1a 的取值范围.【例题解析】例1.给出下列命题:(1)若22lim n n a A →∞=, 则lim n n a A →∞=或者lim n n a A →∞=-.(2)若n n a b >, 且lim n n a p →∞=, lim n n b q →∞=, 则p q >;(3)lim()0n n n a b →∞-=, 则lim lim n n n n a b →∞→∞=;(4)若数列{},{}n n a b 的极限均不存在, 则{},{}n n n n a b a b ±⋅也一定没有极限. 其中不正确的命题的序号是________________;例2.试回答下列问题.(1)数列{}n a 有极限, 数列{}n b 没有极限, 试问数列{}n n a b +, {}n n a b ⋅的极限是否存在? 并举例说明. (2)数列{}n a 没有极限, 数列{}n b 没有极限, 试问数列{}n n a b +, {}n n a b ⋅的极限是否存在? 并举例说明.(3)若lim()0n n n a b →∞⋅=, 能否判定数列{}n a , {}n b 都等于0? 举例说明.例3.(1)已知222lim 31n n n an b n →∞⎛⎫++-+= ⎪+⎝⎭, 求实数,a b 的值.(2)已知131lim 3(1)3n n n n a +→∞=++, 求a 的取值范围.例4.在边长为a 的正方形ABCD 中内依次作内接正方形()1,2,3,i i i i ABC D i =,使内接正方形与相邻前一个正方形的一边夹角为α(0)2πα<<,求所有正方形的面积之和。
证明数列极限的题目及答案

证明数列极限的题目及答案题目:证明数列$a_n =\frac{n}{n + 1}$的极限为 1证明:首先,我们需要明确数列极限的定义。
对于数列$\{a_n\}$,如果对于任意给定的正数$\epsilon$,总存在正整数$N$,使得当$n > N$ 时,都有$|a_n L| <\epsilon$ 成立,那么就称数列$\{a_n\}$的极限为$L$。
接下来,我们来证明数列$a_n =\frac{n}{n + 1}$的极限为 1。
对于任意给定的正数$\epsilon$,要使$|a_n 1| <\epsilon$,即\\begin{align}\left|\frac{n}{n + 1} 1\right|&<\epsilon\\\left|\frac{n}{n + 1} \frac{n + 1}{n + 1}\right|&<\epsilon\\\left|\frac{-1}{n + 1}\right|&<\epsilon\\\frac{1}{n + 1}&<\epsilon\\n + 1 &>\frac{1}{\epsilon}\\n &>\frac{1}{\epsilon} 1\end{align}\所以,取$N =\left\frac{1}{\epsilon} 1\right$(这里$\cdot$ 表示取整),当$n > N$ 时,就有$|a_n 1| <\epsilon$。
因此,根据数列极限的定义,数列$a_n =\frac{n}{n + 1}$的极限为 1。
题目:证明数列$b_n =\frac{1}{n}$收敛于 0证明:给定任意正数$\epsilon$,要使$|b_n 0| <\epsilon$,即\\begin{align}\left|\frac{1}{n} 0\right|&<\epsilon\\\frac{1}{n}&<\epsilon\\n &>\frac{1}{\epsilon}\end{align}\所以,取$N =\left\frac{1}{\epsilon}\right$,当$n >N$ 时,就有$|b_n 0| <\epsilon$。
求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限一、知识要点1数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即|a n -a |无限地接近于0),那么就说数列}{n a 以a 为极限记作l i m n n a a →∞=.(注:a 不一定是{a n }中的项)2几个重要极限:(1)01lim=∞→nn (2)C C n =∞→lim (C 是常数)(3)()()()⎪⎩⎪⎨⎧-=>=<=∞→1,11,110lim a a a a a nn 或不存在,(4)⎪⎪⎩⎪⎪⎨⎧<=>=++++++++----∞→)()()(0lim 011101110t s t s b a t s b n b n b n b a n a n a n a s s s s t t t t n 不存在3.数列极限的运算法则:如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→0(lim≠=∞→B B Ab a nn n4.无穷等比数列的各项和⑴公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=⑵1lim ,(0||1)1n n a S S q q→∞==<<- 二、方法与技巧⑴只有无穷数列才可能有极限,有限数列无极限.⑵运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形) ⑶求数列极限最后往往转化为()N m nm ∈1或()1<q q n型的极限.⑷求极限的常用方法: ①分子、分母同时除以m n 或n a .②求和(或积)的极限一般先求和(或积)再求极限. ③利用已知数列极限(如() 01lim,10lim =<=∞→∞→nq q n n n 等). ④含参数问题应对参数进行分类讨论求极限.⑤∞-∞,∞∞,0-0,0等形式,必须先化简成可求极限的类型再用四则运算求极限 题型讲解例1 求下列式子的极限: ①nnn )1(lim-∞→; ②∞→n lim 112322+++n n n ; ③∞→n lim 1122++n n ; ④∞→n lim 757222+++n n n ; (2)∞→n lim (n n +2-n );(3)∞→n lim (22n +24n +…+22n n ) 例2()B A b a B b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为例4 求nn nn n a a a a --∞→+-lim (a >0);例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值;例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n n n a a 的值.数列极限课后检测1下列极限正确的个数是( )①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n lim n n n n 3232+-=-1 ④∞→n lim C =C (C 为常数) A 2 B 3 C 4D 都不正确 3下列四个命题中正确的是( )A 若∞→n lim a n 2=A 2,则∞→n lim a n =AB 若a n >0,∞→n lim a n =A ,则A >0C 若∞→n lim a n =A ,则∞→n lim a n 2=A 2D 若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n5若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于( ) A 11 B 17 C 19 D 256数列{a n }中,n a 的极限存在,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于( )A 52B 72C 41D 254 7.∞→n lim n n ++++ 212=__________∞→n lim 32222-+n nn =____________∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]= 8已知a 、b 、c 是实常数,且∞→n lim c bn c an ++=2,∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是( )9 {a n }中a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =_____________10等比数列{a n }公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_____________11已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *)(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值 12已知{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21, 求极限∞→n lim (111b a +221b a +…+nn b a 1)的值例题解析答案例1n的分子有界,分可以无限增大,因此极限为0;②112322+++n n n 的分子次数等于分母次数,极限为两首项(最高项)系数之比; ③∞→n lim1122++n n 的分子次数小于于分母次数,极限为0解:①0nn =; ②2222213321lim lim 3111n n n n n n n n→∞→∞++++==++; ③∞→n lim 2222121lim lim 0111n n n n n n n→∞→∞++==++ 点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(5)因n n +2与n 都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++52 (2)∞→n lim (n n +2-n )=∞→n limnn n n ++2=∞→n lim1111++n21(3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1 点评:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim(2n 2+n +7),∞→n lim (5n 2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )=∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在对于(3)要避免出现原式=∞→n lim 22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误 例2 B例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为解:由nnn b a ∞→lim=3⇒d 1=3d 2,∴n n n nb a a a 221lim +++∞→ =2121114])12([2)1(limd d d n b n d n n na n =-+-+∞→43 点评:化归思想 例4 求nn nn n a a a a --∞→+-lim (a >0);解:nnnn n a a a a --∞→+-lim =⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<-=+-=>=+-∞→∞→).10(111lim ),1(0),1(11111lim 2222a a a a a a a n nn n n n 点评:注意分类讨论例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 解:11)()1(lim 2++-+--∞→n b n b a n a n =1,∴⎩⎨⎧=+-=-1)(01b a a ⇒a=1,b=─1例6已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围 解:∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在∴0<|q |<1或q =1当q =1时,21a -1=21,∴a 1=3 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q ∴0<|2a 1-1|<1∴0<a 1<1且a 121 综上,得0<a 1<1且a 1≠21或a 1=3 例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2)∞→n lim1122+-+-n nn n a a =∞→n lim n n n n c 3211--- ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c 21点评:求数列极限时要注意分类讨论思想的应用 试卷解析 1 答案:B3解析:排除法,取a n =(-1)n ,排除A ;取a n =n1,排除B;取a n =b n =n ,排除D .答案:C 5 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nnn n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…)∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C6 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ) ∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0∴∞→n lim a n =0答案:C7解析:原式=∞→n lim2)1(2++n n n =∞→n lim 221212nnn ++=0∞→n lim 32222-+n n n =∞→n lim 23221nn -+21 解析:∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim 22+n n=2 答案:C 8解析:答案:D 由∞→n lim cbn can ++=2,得a =2b由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b ∴c a =6∴∞→n lim a cn c an ++22=∞→n lim 22na c n ca ++=ca =69析:由题意得n a -1-n a =3 (n ≥2)∴{n a }是公差为3的等差数列,1a∴n a =3+(n -1)·3=3n ∴a n =3n 2∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3 10析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a 38∴a 1=2 11 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1n =2时,a 2=6代入得a 3=15同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2要证b n =2n 2,只需证a n =2n 2-n①当n =1时,a 1=2×12-1=1成立②假设当n =k 时,a k =2k 2-k 成立那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1) ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]8312 解:{a n }、{b n }的公差分别为d 1、d 2∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1),∴2d 2-3d 1=2又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n )∴原式=∞→n lim 41(1-121+n )=41。
求数列极限的方法总结及例题

求数列极限的方法总结及例题以《求数列极限的方法总结及例题》为标题,写一篇3000字的中文文章一、什么是数列极限数列极限是数学中非常重要的概念,它是指当数列中的每一项都确定时,其值是无限值,而它表示的数字则不会变化。
数列极限是描述数字趋势的一种抽象思想,它可以帮助我们理解许多数学问题。
然而,要求出数列极限的思路并不是十分简单,需要我们熟悉一些基本的数学知识和求极限的方法来推导出最终的结果。
二、常用的求极限的方法1.t极限定义法。
在求极限的过程中,极限定义法是最基本也是最强有力的一种方法,它可以使用限定条件将极限运算表达式化简,这样最终可以得出一个易于理解的极限表达式。
2.t化为无穷积分法。
将极限表达式进行拆分变形,将复杂的极限表达式化为无穷积分的形式,利用积分的性质来求解极限。
3.t求解解微分方程求解极限。
这种求极限的方法由求解解微分方程的极限问题引出,其本质是求解极限问题时将表达式进行拆分化简,将复杂的极限表达式化为微分方程来求解极限。
4.t比较定理。
具有相同极限值的函数可以用比较定理来求极限,其本质是利用比较定理来求出未知项的极限值。
三、例题例1:已知数列{an}为正数序列,且满足liman= 0,求lim(1/an)解:用极限定义法求解,lim(1/an)=lim(1/liman)=1/0,根据定义,1/0不存在,即数列的极限不存在。
例2:已知数列{an}为正数序列,求lim(1/an+1/bn)解:用比较定理求解,lim(1/an+1/bn)=lim(1/an)+lim(1/bn)根据定义, lim(1/an)=lim(1/bn)=0,所以lim(1/an+1/bn)=0+0=0。
四、总结从上面的分析中可以发现,要求数列极限的法子有很多,只需要熟悉基本思路,就可以把数列极限问题解决出来。
其中极限定义法是最基本也是最强有力的一种方法,它可以将极限运算表达式简化;而化为无穷积分法可以将复杂的极限表达式化为无穷积分的形式;求解解微分方程求解极限方法则是求解极限问题时将表达式进行拆分;比较定理则是利用比较定理来求出未知项的极限值。
大纲版数学理科高考总复习13-2数列的极限

依次为 r, 23r,( 23)2r,…,从而可知所有的圆的面积
形成一个以 πr2 为首项,34为公比的等比数列,因此lni→m∞Sn
=1π-r234=4πr2,选 C.
答案:C
易错点 忽视解题细节致误
例 已知 p 和 q 是两个不相等的正整数,且 q≥2,
则lni→m∞ 11+ +1n1npq- -11=(
【解】
(1)原式=lni→m∞ nn5422+-1n1n-+32=-32;
(2)原式=lni→m∞
n3+n2 2n+12n2-1
=lni→m∞ 2+11n+21n-n12=14;
(3)原式=lni→m∞
n n+1+
n=lni→m∞
1+1 1n+1=12;
(4)∵nn1+1+nn4+1+…+n3nn- +21=
)
A.0
B.1
p
p-1
C.q
D.q-1
• 【错因分析】 此题粗看上去超出了 学习的范围,考生解答此题时只注重 了对整体的分析,而忽视了对细节的 考虑,没有将选择题的特殊化解法用 好而盲目选择了D选项.
【正确解答】 解法一:特殊值法,由题意取 p=1,
q=2,
则lni→m∞
11+ +1n1npq- -11=nli→1 D.2
解析:lni→m∞ n22n+2+3n1=lni→m∞ 21++n13n2=2.
• 答案:B
2 . (2010 年 江 西 高 考 ) lni→m∞ 1+13+312+…+31n =
()
3
3
A.5
B.2
C.2
D.不存在
解析:lni→m∞ 1+13+312+…+31n=lni→m∞ 1-1-1313n+1=32, 故选 B.
考研:求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111n a a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞.解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎥⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!nn n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112()122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n =)极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim nn x l →∞=存在,对①式两边取极限得:l解得:l =l (舍负);∴lim n n x →∞.4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim nn c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++; ∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++. 注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()b aJ f x dx =⎰.例7.求:()()11lim !2!n n n n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n =112lim (1)(1)(1)n n n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦ 11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12lim lim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sin sinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫ ⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()1110n nxx n n e e e e n n=→∞→∞--'===-.例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭.解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1)n n n n n n n n n n n n n -------+-=+≥+; 由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1)lim(1)lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n -----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈.解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p pp n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nkn k n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n ++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1limlim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >.解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<,∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵10011()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()()1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n n x f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x S l +→∞→∞=+=(存在); 对式子:12(1)2n n n x x x ++=+,两边同时取极限:2(1)2l l l+=+,∴l =l =lim n n x →∞.例15.证明:111lim(1ln )23n n n →∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数).证:设1111ln 23n a n n=++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n ---;对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim n n a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 例17.求:2lim (arctanarctan )1n a a n n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, ]1a an n+上应用拉格朗日中值定理, 得:21()()(), [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明, 若lim n n x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nn ααα++⋅⋅⋅+也为无穷小数列. 推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim n n x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12limn n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略. 例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211limn n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211limn n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim1()x f x g x →=,且当n →∞时, 0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n →∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数).解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n →∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==; ∴2231lim (1)nn i i a n →∞=+=∏21exp()3a .注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,]2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, ]22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim n n x c →∞=,则c 是222a x x =+在1[0, ]2a+的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =[0, )x ∈+∞且在[0, )+∞上有:()1f x '=≤<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==解得:lim n n x →∞. 本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞. (2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-,从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n n n ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn nn a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫= ⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()111111011111111120101n n n A P P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭ ()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-.因为11α-<,所以lim(1)0n n α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ=,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn n n n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-,由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim lim n n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
数列极限的定义证明数列的极限(含解答)

数列极限的定义证明数列的极限例1证明数列,)1(,,43,34,21,21nn n --+的极限是1.(分析:所证结论,即对任意给定的0>ε,求数)(εN N =,使得N n >时,ε<-1n x )证:nn x n n 1)1(--+=任给0>ε,要使ε<-1n x ,只要1(1)11n n n n ε-+--=<,即ε1>n ,∴对于0>ε,取]1[ε=N ,则当N n >时,1(1)1n n n ε-+--<即10(1)lim 1.n n n n-→+-=例2证明:02lim 1.1n n n →+=+证:21n n x n +=+任给0>ε(不妨设1ε<),要使ε<-1n x ,只要21111n n n ε+-=<++,即11n ε>-∴对于0>ε,取1[1]N ε=-,则当N n >时,211n n ε+-<+即02lim 1.1n n n →+=+注:取1ε<,保证110ε->,取N 时更方便.若不限定110ε->,则取1max{[1],1}.N ε=-例3已知2(1)(1)nn x n -=+,证明数列的极限是0.证:任给0>ε,要使ε<-1n x ,只要22(1)1110(1)(1)1n n n n nε--=<<<+++,即即ε1>n ,∴对于0>ε,取]1[ε=N ,则当N n >时,2(1)0(1)nn ε--=<+即20(1)lim 0.(1)nn n →-=+在利用数列极限的定义来论证某个数是数列的极限是,重要的是对任意给定的正数ε,定义中的正整数N 确实存在,但没有必要求最小的N .如果知道n x a -小于某个量,(这个量是n 的一个函数),那么当这个量小于ε时,ε<-a x n 当然也成立.若令这个量小于ε来定出N 比较方便的话,就可以采用这种方法(称为放大法).例4证明221lim .292n n n n n →∞+=++证222192922(29)n n n n n n n +--=++++当9n ≥时,有2229912(29)2(29)4n n n n n n n n n--=<<++++取1max{[],9}.N ε=注:第一个不等式是有条件放大(即9n ≥);第二个不等式是无条件放大,由此可知放大不等式一般有下列要求:(1)放大后的式子应该随着n 的增大而减小,能使该式小于ε.例如,式子如果是关于n 的有理分式,则要求分母n 的次数高于分子n 的次数.(2)使最后一个式子小于ε的不等式容易解出n .例5利用数列极限的定义证明1lim 1n n n →∞=(或1lim 1,0n n a a →∞=>).分析:由于1n n x n =,底数与指数都随着n 而变化,故不好直接求解不等式11nn ε-<.需将不等式用其它方法化简放大,使得关于解n 更容易证一:令111nn a a -==+,即222(1)(1)(1)12222n n n n n n n n n a na a a a a --=+=++++>>⋅ (当2n >)即224n a n <,亦即a <1-<ε<,即24n ε>取24max{[],2}N ε=证2依据几何平均不超过算术平均不等式12n a a a n+++≤11(2)1)1n n n n +++++--=≤==+2(1)21n n --≤<=ε<,即24n ε>,故取24[N ε=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的极限一、知识要点1数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即|a n -a |无限地接近于0),那么就说数列}{n a 以a 为极限记作lim n n a a →∞=.(注:a 不一定是{a n }中的项) 2几个重要极限: (1)01lim=∞→n n (2)C C n =∞→lim (C 是常数) (3)()()()⎪⎩⎪⎨⎧-=>=<=∞→1,11,110lim a a a a a n n 或不存在,(4)⎪⎪⎩⎪⎪⎨⎧<=>=++++++++----∞→)()()(0lim 011101110t s t s b a t s b n b n b n b a n a n a n a s s s s t t t t n 不存在ΛΛ3. 数列极限的运算法则:如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→ )0(lim≠=∞→B B Ab a nn n4.无穷等比数列的各项和⑴公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=⑵1lim ,(0||1)1n n a S S q q→∞==<<- 二、方法与技巧⑴只有无穷数列才可能有极限,有限数列无极限.⑵运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)⑶求数列极限最后往往转化为()N m nm ∈1或()1<q q n 型的极限.⑷求极限的常用方法: ①分子、分母同时除以m n 或n a .②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如()Λ01lim,10lim =<=∞→∞→nq q n n n 等).④含参数问题应对参数进行分类讨论求极限. ⑤∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限题型讲解例1 求下列式子的极限: ①nnn )1(lim-∞→; ②∞→n lim 112322+++n n n ; ③∞→n lim 1122++n n ; ④∞→n lim 757222+++n n n ; (2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n + (22)n) 例2 ()B A b a B b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件例3 数列{a n }和{b n }都是公差不为0的等差数列,且n n n b a ∞→lim =3,求nnn nb a a a 221lim +++∞→Λ的值为例4 求nn nn n a a a a --∞→+-lim (a >0);例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值;例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n)=21,求a 1的取值范围例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n nn n a a 的值.数列极限课后检测1下列极限正确的个数是( )①∞→n lim αn 1=0(α>0) ②∞→n lim q n=0 ③∞→n lim n n n n 3232+-=-1 ④∞→n lim C =C (C 为常数) A2 B3 C4 D 都不正确 3下列四个命题中正确的是( )A 若∞→n lim a n 2=A 2,则∞→n lim a n =A B 若a n >0,∞→n lim a n =A ,则A >0C 若∞→n lim a n =A ,则∞→n lim a n 2=A 2D 若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n5若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于( ) A 2411 B 2417 C 2419 D 24256数列{a n }中,n a 的极限存在,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于( )A 52B 72C 41D 254 7.∞→n lim n n ++++Λ212=__________ ∞→n lim 32222-+n n n =____________∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]= 8已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是( )9 {a n }中a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =_____________10等比数列{a n }公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_____________11已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *)(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值 12已知{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值例题解析答案例1n的分子有界,分可以无限增大,因此极限为0;②112322+++n n n 的分子次数等于分母次数,极限为两首项(最高项)系数之比; ③∞→n lim1122++n n 的分子次数小于于分母次数,极限为0解:①0nn =; ②2222213321lim lim 3111n n n n n n n n→∞→∞++++==++; ③∞→n lim 2222121lim lim 0111n n n n n n n→∞→∞++==++点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(5)因n n +2与n 都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++=52(2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21 (3)原式=∞→n lim22642n n ++++Λ=∞→n lim 2)1(nn n +=∞→n lim (1+n 1)=1 点评:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n 2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在对于(3)要避免出现原式=∞→n lim 22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误 例2 B例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→Λ的值为 解:由nnn b a ∞→lim=3d 1=3d 2 ,∴n n n nb a a a 221lim +++∞→Λ=2121114])12([2)1(lim d d d n b n d n n na n =-+-+∞→=43 点评:化归思想 例4 求nn nn n a a a a --∞→+-lim (a >0);解:nnnn n a a a a --∞→+-lim =⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<-=+-=>=+-∞→∞→).10(111lim ),1(0),1(11111lim 2222a a a a a a a n nn n n n 点评:注意分类讨论例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 解:11)()1(lim 2++-+--∞→n b n b a n a n =1,∴ ⎩⎨⎧=+-=-1)(01b a a a=1,b=─1例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n)=21,求a 1的取值范围解: ∞→n lim (q a +11-q n)=21, ∴∞→n lim q n一定存在∴0<|q |<1或q =1当q =1时,21a -1=21,∴a 1=3当0<|q |<1时,由∞→n lim (q a +11-q n)=21得q a +11=21,∴2a 1-1=q ∴0<|2a 1-1|<1∴0<a 1<1且a 1≠21综上,得0<a 1<1且a 1≠21或a 1=3 例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim n n n n cc 323211+--- ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim cc c n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21点评:求数列极限时要注意分类讨论思想的应用 试卷解析 1 答案:B3解析:排除法,取a n =(-1)n,排除A ; 取a n =n1,排除B;取a n =b n =n ,排除D .答案:C 5 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nn n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…)∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C6 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n )∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0∴∞→n lim a n =0 答案:C7 解析:原式=∞→n lim2)1(2++n n n =∞→n lim 221212nn n ++=0∞→n lim 32222-+n n n =∞→n lim 23221nn -+=21 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim 22+n n=2 答案:C 8解析: 答案:D 由∞→n lim cbn can ++=2,得a =2b由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b ∴ca =6∴∞→n lim a cn c an ++22=∞→n lim22na c n c a ++=c a =69析:由题意得n a -1-n a =3 (n ≥2)∴{n a }是公差为3的等差数列,1a =3∴n a =3+(n -1)·3=3n ∴a n =3n 2∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim 21213nn ++=3 10析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38∴a 1=211 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1n =2时,a 2=6代入得a 3=15同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2要证b n =2n 2,只需证a n =2n 2-n①当n =1时,a 1=2×12-1=1成立②假设当n =k 时,a k =2k 2-k 成立那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1) ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]=8312 解:{a n }、{b n }的公差分别为d 1、d 2∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1),∴2d 2-3d 1=2又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2 ∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n )∴原式=∞→n lim 41(1-121+n )=41。